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While deep learning is successful in a number of applications,
it is not yet well understood theoretically. A theoretical char-
acterization of deep learning should answer questions about
their approximation power, the dynamics of optimization, and
good out-of-sample performance, despite overparameterization
and the absence of explicit regularization. We review our recent
results toward this goal. In approximation theory both shallow
and deep networks are known to approximate any continuous
functions at an exponential cost. However, we proved that for
certain types of compositional functions, deep networks of the
convolutional type (even without weight sharing) can avoid
the curse of dimensionality. In characterizing minimization of
the empirical exponential loss we consider the gradient flow
of the weight directions rather than the weights themselves,
since the relevant function underlying classification corresponds
to normalized networks. The dynamics of normalized weights
turn out to be equivalent to those of the constrained problem
of minimizing the loss subject to a unit norm constraint. In par-
ticular, the dynamics of typical gradient descent have the same
critical points as the constrained problem. Thus there is implicit
regularization in training deep networks under exponential-type
loss functions during gradient flow. As a consequence, the crit-
ical points correspond to minimum norm infima of the loss.
This result is especially relevant because it has been recently
shown that, for overparameterized models, selection of a mini-
mum norm solution optimizes cross-validation leave-one-out sta-
bility and thereby the expected error. Thus our results imply
that gradient descent in deep networks minimize the expected
error.

machine learning | deep learning | approximation | optimization |
generalization

1. Introduction
A satisfactory theoretical characterization of deep learning
should begin by addressing several questions that are natural
in the area of machine-learning techniques based on empirical
risk minimization (see for instance refs. 1 and 2). They include
issues such as the approximation power of deep networks, the
dynamics of the empirical risk minimization by gradient flow, and
the generalization properties of gradient descent techniques—
Why does the expected error not suffer, despite the absence of
explicit regularization, when the networks are overparameter-
ized? In this paper we review briefly our work on approximation
and describe recent results in characterizing complexity control
in training deep networks. The first part, about approximation
power of deep versus shallow architectures, is a brief sum-
mary of our main results described in published papers (3) and
references there. The second part describes a recent character-
ization (details in ref. 4 with a short announcement in ref. 5)
of the optimization process used to train deep networks and
in particular of the properties of the dynamical system corre-
sponding to the gradient flow, which is the continuous equivalent
of the gradient descent algorithms in common use (we study
gradient flow and leave to others the extension to gradient
descent). One of these results, about the equivalence of con-
strained and unconstrained optimization, implies a classical form
of complexity control by gradient descent with respect to the
exponential loss.

2. Approximation
We start with the first set of questions, summarizing results in
refs. 3 and 6–9. The main result is that deep networks have the
theoretical guarantee, which shallow networks do not have, that
they can avoid the curse of dimensionality for an important class
of problems, corresponding to a certain type of compositional
functions, that is, functions of functions. An especially interesting
subset of compositional functions is the ones that can be written
as hierarchically local compositional functions where all of the
constituent functions are local—in the sense of bounded small
dimensionality. The deep networks that can approximate them
without the curse of dimensionality are of the deep convolutional
type as shown in Fig. 1—although, importantly, weight sharing is
not necessary.

Implications of results likely to be relevant in practice are 1)
deep convolutional architectures have the theoretical guarantee
that they can be much better than one-layer architectures such
as kernel machines for certain classes of problems, 2) the prob-
lems for which certain deep networks are guaranteed to avoid
the curse of dimensionality (see for a nice review ref. 10) cor-
respond to input–output mappings that are compositional with
local constituent functions, and 3) the key aspect of convolu-
tional networks that can give them an exponential advantage is
not weight sharing but locality at each level of the hierarchy.

A. Related Work. Several papers in the 1980s focused on the
approximation power and learning properties of one-hidden-
layer networks (called shallow networks here). Very little
appeared on multilayer networks (but see refs. 11–15). By now,
many publications (for instance refs. 16–18) characterize approx-
imation properties of generic multilayer networks. Much interest
has focused on separation results, that is, on the fact that specific
functions cannot be represented efficiently by shallow networks
(19) (see also refs. 14, 20, and 21). An interesting review of
approximation of univariate functions by deep rectified linear
unit (ReLU) networks has recently appeared (22). Unlike all
these papers, we focus on the approximation by deep networks
of certain important classes of multivariate functions which avoid
the curse of dimensionality. We think that our results are espe-
cially interesting because they represent a potential explanation
for one of the greatest puzzles that has emerged from the field
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Fig. 1. Top graphs are associated to functions. Each Bottom diagram
(Insets) depicts the ideal network approximating the function above. (Inset
A) A shallow universal network in 8 variables and N units approximates a
generic function of 8 variables f(x1, . . . , x8). (Inset B) A hierarchical network
at the bottom in n = 8 variables, which approximates well functions of the
form f(x1, . . . , x8) = h3(h21(h11(x1, x2), h12(x3, x4)), h22(h13(x5, x6), h14(x7, x8)))
as represented by the binary graph above. In the approximating network
each of the n− 1 nodes in the graph of the function corresponds to a set of
ReLU units. Similar to the shallow network, a hierarchical network is univer-
sal; that is, it can approximate any continuous function; the text discusses
how it can approximate a subclass of compositional functions exponentially
better than a shallow network. Redrawn from ref. 23.

of deep learning, that is, the unreasonable effectiveness of
convolutional deep networks in a number of sensory problems.

B. Shallow and Deep Networks. The general paradigm is as fol-
lows. We are interested in determining how complex a network,
denoted as a function f (x ), ought to be to theoretically guaran-
tee approximation of an unknown target function g up to a given
accuracy ε> 0. In particular, this section characterizes conditions
under which deep networks are “better” than shallow networks
in approximating functions. Both types of networks use the same
small set of operations—dot products, linear combinations, a
fixed nonlinear function of one variable, possibly convolution,
and pooling. Each node in the networks corresponds to a node in
the graph of the function to be approximated, as shown in Fig. 1.

We define a deep network with K layers with the usual
coordinate-wise scalar activation functions σ(z ) : R→R as
the set of functions f (W ; x ) =σ(W Kσ(W K−1 · · ·σ(W 1x ))),
where the input is x ∈Rd , and the weights are given by the matri-
ces W k , one per layer, with matching dimensions. We sometime
use the symbol W as a shorthand for the set of W k matrices
k = 1, . . . ,K . There are no bias terms: The bias is instantiated in
the input layer by one of the input dimensions being a constant.
A shallow network is a deep network with K = 1.

We approximate functions with networks in which the acti-
vation nonlinearity is a ReLU, given by σ(x ) = x+ =max (0, x ).
The architecture of the deep networks reflects the function
graph, with each node hi being a ridge function, comprising one
or more neurons.

Note that in our main example (Fig. 1) of a network corre-
sponding to a function with a binary tree graph, the resulting
architecture is an idealized version of deep convolutional neu-
ral networks described in the literature. In particular, it has only
one output at the top unlike most of the deep architectures with

many channels and many top-level outputs. Correspondingly,
each node computes a single value instead of multiple channels,
using the combination of several units. However, our results hold
also for these more complex networks (see corollary 4 in ref. 21).

The sequence of results is as follows:

• Both shallow (Fig. 1, Inset A) and deep (Fig. 1, Inset B) net-
works are universal; that is, they can approximate arbitrarily
well any continuous function of n variables on a compact
domain. The result for shallow networks is classical.
• We consider a special class of functions of n variables on a com-

pact domain that are hierarchical compositions of local func-
tions, such as g(x1, . . . , x8) = h3(h21(h11(x1, x2), h12(x3, x4)),
h22(h13(x5, x6), h14(x7, x8))).
The structure of the function in Fig. 1B is represented by a
graph of the binary tree type, reflecting dimensionality d = 2
for the constituent functions h . In general, d is arbitrary but
fixed and independent of the dimensionality n of the func-
tion g . Ref. 21 formalizes the more general compositional case
using directed acyclic graphs.
• The approximation of functions with such a specific compo-

sitional structure can be achieved with the same degree of
accuracy by deep and shallow networks but the number of
parameters is in general much lower for the deep networks than
for the shallow network for the same approximation accuracy.

The two main theorems (3) are one about shallow networks
(originally due to ref. 24) and the second one about deep
networks with smooth activation function (7–9). They can be con-
densed in the following informal statement, where complexity is
measured in terms of number N of units:

Theorem 1 (Informal). For a continuous target function g(x ) with
x ∈Rn the complexity of a shallow network that provides accuracy
at least ε is O(ε−n). If g(x ) has a graph representation in terms
of a binary tree, consider a deep network with the same composi-
tional architecture and with an activation function σ :R→R which
is infinitely differentiable and not a polynomial. Then the complex-
ity of the network to provide approximation with accuracy at least ε
is O((n − 1)ε−2).

The exponential dependence of the number of parameters
required for an accuracy O(ε) on the dimension n is known as
the curse of dimensionality. The precise statement of the result
in ref. 3 shows that the curse of dimensionality can be reduced
by smoothness of the target functions. Of course, the binary tree
case of the theorem is the simplest case: The extension to more
complex trees is obvious.

The result of Theorem 1 can be extended to nonsmooth ReLU
for the case of deep networks in a number of ways, one of which,
suggested by Mhaskar (25), is as follows. The first step is to recall
theorem 3.2 in ref. 25 that applies to smooth activation functions
such as the “square” of the ReLU, that is, the function x2

+ defined
as =x2 if x ≥ 0 and otherwise =0. Loosely speaking, theorem 3.2
implies that for such activation functions deep networks with a
sufficient number of neurons and layers can approximate contin-
uous functions as well as free knots splines. The second step is
to use theorem 1 in ref. 26 on approximating (x+)2 with ReLU
networks.

The intuition of why hierarchical compositional functions can
be approximated by deep networks without incurring the curse
of dimensionality can be best explained in the following way.

Consider the space of polynomials, which is of course a smaller
space than spaces of Sobolev functions, but which can approx-
imate arbitrarily well continuous functions. Let us call Pn

k the
linear space of polynomials of degree at most k in n variables and
Tn

k the subset of the space Pn
k which consists of compositional

polynomials with a binary tree graph and constituent polyno-
mial functions of degree k (in two variables). Then the following
theorems hold (3):
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Theorem 2. Let σ :R→R be infinitely differentiable and not a poly-
nomial. Every g ∈Pn

k can be realized with an arbitrary accuracy by
a shallow network with r units, r =

(
n+k
k

)
≈ kn .

Theorem 3. Let σ :R→R be infinitely differentiable and not a poly-
nomial. Let n = 2`. Then f ∈Tn

k can be realized by a deep network
with a binary tree graph and a total of r units with r = (n −
1)
(

2+k
2

)
≈ (n − 1)k2.

Theorems 2 and 3 make clear that a hierarchical compositional
polynomial corresponding to a binary graph is a very sparse
polynomial—among the polynomials of the same degree in the
same number of variables. It is possible to show (3) that this intu-
ition extends from polynomials to Sobolev functions. Of course
the target function graph in Fig. 1, Top Right is just one of the
directed acyclic graphs (DAGs) (23) that can describe different
forms of compositionality. Prior knowledge of the DAG under-
lying a learning problem can be exploited to a great advantage by
an appropriate deep-learning architecture.

3. Optimization and Complexity Control
It has been known for a long time that the key to predictivity
in machine learning is controlling the complexity of the net-
work and not simply the raw number of its parameters. This
is usually done during optimization by imposing a constraint,
often under the form of a regularization penalty, on the norm
of the weights, since relevant complexity measures, such as the
Rademacher complexity, depend on it. The problem is that
there is no obvious control of complexity in the training of deep
networks!

Recent results by ref. 27 illuminate the apparent absence of
“overfitting” in the special case of linear networks for binary clas-
sification. They prove that minimization of loss functions such
as the logistic, the cross-entropy, and the exponential loss yields
asymptotic convergence to the maximum margin solution for lin-
early separable datasets, independently of the initial conditions
and without explicit regularization. Here we discuss the case
of nonlinear multilayer deep neural networks (DNNs) under
exponential-type losses (Fig. 2). We first outline related work.
We then describe our main results, summarized in Theorem 4
(4, 28).

A. Related Work. A number of papers have studied gradient
descent for deep networks (29–31). Close to the approach of refs.
4 and 28 reviewed here is ref. 32. Its authors study generalization
assuming a regularizer because they are—like us—interested in
normalized margin. Unlike their assumption of an explicit reg-
ularization, we show here that commonly used techniques, such
as weight and batch normalization, in fact minimize the surrogate
loss margin while controlling the complexity of the classifier with-
out the need to add a regularizer or to use weight decay. Two very
recent papers (33, 34) develop an elegant margin maximization-
based approach which leads to some of the same results of this
section (and others). Our goal here is to review where the com-
plexity control is hiding in the training of deep networks under
exponential-type loss functions and how it leads to the selection
by gradient descent of minimum norm solutions.

B. The Dynamics of Optimization. We begin by some notation and
basic properties that we need in this optimization section.

We consider, for simplicity, the case in which f takes scalar
values, implying that the last layer matrix W K has size 1× hK−1,
where hk denotes the size of layer k . The weights of hidden
layer k have size hk × hk−1. In the case of binary classification
which we consider here the labels are y ∈{−1, 1}. The activation
function in this section is the ReLU activation.

For ReLU activations the following important positive one-
homogeneity property holds: ∀z , ∀a ≥ 0,σ(αz ) =ασ(z ). Thus,
σ(z ) = ∂σ(z)

∂z
z . A consequence of one-homogeneity is a struc-

tural lemma (lemma 2.1 of ref. 36, closely related to Euler’s

theorem for homogeneous functions)
∑

i,j W
i,j
k

(
∂f (W ;x)

∂W
i,j
k

)
=

f (W ; x ), where Wk is here the vectorized representation of the
weight matrices Wk for layer k .

For the network, homogeneity of the ReLU implies f (W ; x ) =∏K
k=1 ρk f (V1, . . . ,VK ; x ), where Wk = ρkVk with the matrix

norm ‖Vk‖p = 1. Note that ∂f (W ;x)
∂ρk

= ρ
ρk
f (V ; x ) and that the

definitions of ρk and Vk all depend on the choice of the norm
used in normalization.

We will assume that for some t >T0 the gradient flow con-
verges to an f that separates the data; that is, f (xn)yn > 0
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Fig. 2. Empirical evidence of a small generalization gap by normalized networks with respect to the cross-entropy loss. Left graph shows testing vs. training
cross-entropy loss for networks each trained on the same datasets (CIFAR-10) (46) but with different initializations, yielding zero classification error on the
training set but different testing errors. Right graph shows the same data, that is, testing vs. training loss for the same networks, now normalized by
dividing each weight by the Frobenius norm of its layer. Note that all points have zero classification error at training. The red circle on the top right refers to
a network trained on the same CIFAR-10 dataset but with randomized labels. It shows zero classification error at training and test error at chance level. The
top line is a square-loss regression of slope 1 with positive intercept. The bottom line is the diagonal at which training and test loss are equal. The networks
are three-layer convolutional networks. Left graph can be considered as a visualization of generalization bounds when the Rademacher complexity is not

controlled. Right graph is a visualization of the same relation for normalized networks that is L(ρf(V ; x))≤ L̂(ρf(V ; x)) + c1ρRN(F̃) + c2

√
ln( 1

δ )/2N for ρ= 1.

Under our conditions for N and for the architecture of the network the terms c1RN(F̃) + c2

√
ln( 1

δ )/2N represent a small offset. Note that the exponential

loss is not a better proxy for the classification loss for large ρ. Empirically for these datasets, the test exponential loss with ρ= 1 provides a ranking that
approximately agrees with the test classification ranking. From ref. 35.

Poggio et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30041



∀n = 1, . . . ,N . The assumption of separability, which is very
strong in the case of linear networks, is much weaker in the case
of overparameterized deep networks that typically can “fit the
training set”; that is, they can separate the training data after a
relatively small number of gradient descent iterations.

We conjecture that the hypothesis of smooth activations we
use here is a technicality due to the necessary conditions for
existence and uniqueness of solutions to ordinary differential
equations (ODEs). Generalizing to differential inclusions and
nonsmooth dynamical systems should allow for these conditions
to be satisfied in the Filippov sense (37). The Clarke subdiffer-
ential is supposed to deal appropriately with functions such as
ReLU (34).

The standard approach to training deep networks is to use
stochastic gradient descent to find the weights Wk that minimize
the empirical exponential loss L= 1

N

∑
n e−yn f (xn ) by computing

Ẇk =− ∂L

∂Wk
=

1

N

N∑
n=1

yn
∂f (W ; xn)

∂Wk
e−yn f (W ;xn ) [1]

on a given dataset {xn , yn} ∀n = 1, . . . ,N with y binary. Since
the goal is binary classification, we are interested in f (V ; x )
(remember sign f (V ; x ) = sign f (W ; x )). We want to study the
dynamics of f (V ; x ) implied by Eq. 1. With this goal we study
three related versions of this problem:

1) Minimization of L= 1
N

∑
n e−ρyn f (V ;xn ) under the constraint

‖Vk‖= 1 with respect to (wrt) Vk for fixed ρ;
2) Minimization of L= 1

N

∑
n e−ρyn f (V ;xn ) under the constraint

‖Vk‖= 1 wrt Vk and ρ;
3) Minimization of L= 1

N

∑
n e−ρyn f (V ;xn ) = 1

N

∑
n e−yn f (W ;xn )

wrt Vk , ρ, which is equivalent to typical training, Eq. 1.

B.1. Constrained minimization. Constrained optimization of the
exponential loss, using Lagrange multipliers, minimizes L=
1
N

∑
n e−ρyn f (V ;xn ) under the constraint ‖Vk‖= 1 which leads

us to minimize

L=
1

N

∑
n

e−ρyn f (V ;xn ) +
∑
k

λk‖Vk‖2 [2]

with λk such that the constraint ‖Vk‖= 1 is satisfied. We
note that this would be the natural approach for training
deep networks while controlling complexity—based on classical
generalization bounds (4).
B.2. Fixed ρ: minima. Gradient descent on L for fixed ρ wrt Vk

yields then the dynamical system

V̇k = ρ
1

N

∑
n

e−ρyn f (V ;xn )yn

(
∂f (V ; xn)

∂Vk
−Vk f (V ; xn)

)
[3]

because λk = 1
2
ρ 1
N

∑
n e−ρyn f (V ;xn )yn f (V ; xn), since V T

k V̇k =

0, which in turn follows from ‖Vk‖2 = 1.
Since for fixed ρ the domain is compact, some of the station-

ary points V̇k = 0 of the constrained optimization problem must
correspond to one or more minima. Assuming data separation is
achieved (that is, yn f (V ; xn)> 0 ∀n), they satisfy

∑
n

e−ρyn f (V ;xn )yn
∂f (V ; xn)

∂Vk
=
∑
n

e−ρyn f (V ;xn )Vkyn f (V ; xn).

[4]
Of course the infimum of the exponential loss L is zero only for
the limit ρ=∞; for any finite ρ the minimum of L is at the bound-
ary of the compact domain. For any finite, sufficiently large ρ
the minimum is the critical point of the gradient with a positive

semidefinite Hessian. In general it is not unique; it is unique in
the case of one-hidden-layer linear networks.
B.3. ρ→∞ has the same stationary points as the full dynamical
system. Consider the limit of ρ→∞ in Eq. 4. The asymptotic
stationary points of the flow of Vk then satisfy∑

n

e−ρyn f (V ;xn )yn

(
∂f (V ; xn)

∂Vk
−Vk f (V ; xn)

)
= 0 [5]

also in the limit limρ→∞, that is, for any large ρ. So the stationary
Vk points for any large ρ=R satisfy Eq. 5 with ρ=R.

Consider now gradient descent for the full system obtained
with Lagrange multipliers, that is, on L=

∑
n e−ρyn f (V ;xn ) +∑

k λk‖Vk‖2 wrt Vk and ρk , with λk chosen (as before) to
implement the unit norm constraint. The full gradient dynamical
system is

ρ̇k =
ρ

ρk

1

N

∑
n

e−ρyn f (V ;xn )yn f (V ; xn) [6]

V̇k = ρ
1

N

∑
n

e−ρyn f (V ;xn )yn

(
∂f (V ; xn)

∂Vk
−Vk f (V ; xn)

)
.

[7]
Observe that after onset of separability ρ̇k > 0 with limt→∞ ρ̇k =
0, limt→∞ ρ(t) =∞ (for one layer ρ∝ log t) (4). Thus ρ(t) is
a monotonically increasing function from t0 to t =∞. Further-
more, ρk grows at a rate which is independent of the layer k

(4). In fact, Eq. 1 via the relation ˙‖Wk‖= ∂‖Wk‖
∂Wk

∂Wk
∂t

= Wk
‖Wk‖

Ẇk

implies ˙‖Wk‖2 = 2
∑N

n=1 yn f (W ; xn)e−yn f (W ;xn ), which shows
that the rate of growth of ‖Wk‖2 is independent of k . This
observation (38) is summarized as follows:

Lemma 1. During gradient descent, the rate of change of the squares
of the Frobenius norms of the weights is the same for each layer;
that is, ∂ρ

2
k

∂t
= 2 1

N

∑N
n=1 ρyn f (V ; xn)e−ρyn f (V ;xn ).

Because ρ(t) grows monotonically in t , there exists T such that
ρ(T ) =R. At time T then, the condition for a stationary point of
Vk in Eq. 7 coincides with Eq. 5. This leads to the following:

Lemma 2. The full dynamical system 7 in the limit of t→∞ con-
verges to the same limit to which the dynamical system 3 converges
for ρ→∞, in the sense of having the same sets of stationary points.
B.4. Asymptotic stationary points coincide with maximum mar-
gin. Here we show that the limit for the two systems exists,
is not trivial, and corresponds to maximum margin/minimum
norm solutions. We start from Eq. 5. Without loss of gener-
ality let us assume that the training data f (V ; xn) are ranked
at t =T0 according to increasing normalized margin; that is,
f (V ; x1)≤ f (V ; x2)≤ · · ·≤ f (V ; xN ). Let us call Bk (V ; xn) =

yn( ∂f (V ;xn )
∂Vk

−Vk f (V ; xn)). Then the equilibrium condition of
Eq. 5 becomes

N∑
n

e−ρ(T0)yn f (V ;xn )Bk (V ; xn)

= e−Ry1f (V ;x1)(B1 +B2e
−R∆2 + · · ·+BN e−R∆N ) = 0,

[8]
where ∆1 = y1f (V ; x1)− y1f (V ; x1) = 0, ∆2 = y2f (V ; xn)−
y1f (V ; x1)≥ 0, ∆3 = y3f (V ; xn)− y1f (V ; x1)≥ 0, and all
∆n ≥ 0 increase with n . Eq. 8 can be rewritten then as

e−ρ(T0)y1f (V ;x1)(α1B1 +α2B2 + · · ·+αNBN ) = 0, [9]

where the αn are all positive (α1 = 1) and decreasing with n .
The left-hand side of the stationary point equation has the
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Fig. 3. Monotonic increase of the margin: the growth of the margin
minn ynf(V ; xn) in the binary case. The network converges to 100% train-
ing accuracy in epoch 3 and changes the support vectors three times (red
circles—the numbers above them correspond to the index of the datapoint
that becomes the support vector) before stabilizing. As predicted by theory,
the margin is nondecreasing. As the support vectors change, note that the
rate of margin growth accelerates.

form ε(B1 + ε′B) = 0, with B =
∑N

n=2 αnBn , with both ε and
ε′ going to zero for T0→∞. Thus limT0→∞ ε(B1 + ε′B) =
limT0→∞ εB1 = 0 can be satisfied for sufficiently large T0 by
B1 = 0, that is, by ∂f (V ;x1)

∂Vk
−Vk f (V ; x1) = 0. This is the condi-

tion in which the stationary point corresponding to x1 provides
the maximum, or more precisely, supremum of the margin.
Before that limit is reached, the solution Vk changes with
increasing ρ(t). Thus the asymptotic stationary points coincide
with maximum margin. The following lemma (4) shows that the
margin is increasing with t , after separability is reached and after
a single support vector dominates (Fig. 3):

Lemma 3. There exists a ρ(T∗) such that for ρ>ρ(T∗) the
sum

∑N
n=1 e

−ρyn f (V ;xn )∝ e−ρy1f (V ;x1). For ρ>ρ(T∗) then the
margin increases y1

∂f (V ;x1)
∂t

≥ 0 (even if ρ is kept fixed).

Proof: y1f (V ; x1) increases monotonically or is constant because

y∗
∂f (V ; x1)

∂t
=
∑
k

(
∂y1f (V ; x1)

∂Vk

)
T V̇k

=
∑
k

ρ

ρ2
k

e−ρy1f (V ;x1)

(∥∥∥∥∂f (V ; x1)

∂Vk

∥∥∥∥2

F

− f (V ; x1)2

)
.

[10]

Eq. 10 implies ∂y1f (V ,x1)
∂t

≥ 0 because ‖f (V ; x1)‖F =

‖V T
k
∂f (V ;x1)
∂Vk

‖
F
≤‖ ∂f (V ;x1)

∂Vk
‖
F

, since the Frobenius norm
is submultiplicative and Vk has unit norm.

We finally note that the maximum margin solution in terms
of f (V ; x ) and Vk is equivalent to a minimum norm solution in
terms of Wk under the condition of the margin being at least 1.
This is stated in the following lemma (4):

Lemma 4. The maximum margin problem

max
WK ,...,W1

min
n

yn f (W ; xn), subj. to ‖Wk‖= 1, ∀k [11]

is equivalent to

min
Wk

1

2
‖Wk‖2, subj. to yn f (W ; xn)≥ 1, ∀k , n = 1, . . . ,N .

[12]
B.5. Unconstrained gradient descent for deep networks: implicit
norm control. Empirically it appears that gradient descent (GD)
and stochastic gradient descent (SGD) converge to solutions that
can generalize even without any explicit capacity control such as
a regularization term or a constraint on the norm of the weights.
How is this possible? The answer is provided by the fact—trivial
or surprising—that the unit vector W (T)

‖W (T)‖2
computed from the

solution W (T ) of gradient descent Ẇ =−∇WL at time T is
the same, irrespective of whether the constraint ‖V ‖2 = 1 is
enforced during gradient descent. This confirms Srebro results
for linear networks and throws some light on the nature of the
implicit bias or hidden complexity control. We show this result
next.

We study the new dynamical system induced by the dynam-
ical system in Ẇk

i,j
under the reparameterization W i,j

k =

ρkV
i,j
k with ‖Vk‖2 = 1. This is equivalent to changing coor-

dinates from Wk to Vk and ρk = ‖Wk‖2. For simplicity of
notation we consider here for each weight matrix Vk the
corresponding “vectorized” representation in terms of vectors
W i,j

k =Wk .
We use the following definitions and properties (for a vector

w): Define w
ρ

= v ; thus w = ρv with ‖v‖2 = 1 and ρ= ‖w‖2. The
following relations are easy to check:

1) Define S = I − vvT = I − wwT

‖w‖22
; ∂v
∂w

= S
ρ

.

2) Sw =Sv = 0 and S2 =S .
3) In the multilayer case ∂f (W ;xn )

∂Wk
= ρ

ρk

∂f (V ;xn )
∂Vk

.

The unconstrained gradient descent dynamic system used in
training deep networks for the exponential loss is given in Eq. 1;
that is,

Ẇk =− ∂L

∂Wk
=

1

N

N∑
n=1

yn
∂f (W ; xn)

∂Wk
e−yn f (W ;xn ). [13]

Following the chain rule for the time derivatives, the dynamics
for Wk induce the following dynamics for ‖Wk‖= ρk and Vk by
using relations 1) to 3) above,

ρ̇k =
∂‖Wk‖
∂Wk

∂Wk

∂t
=V T

k Ẇk

V̇k =
∂Vk

∂Wk

∂Wk

∂t
=

Sk

ρk
Ẇk ,

[14]

where Sk = I −VkV
T
k . Thus, unconstrained gradient descent

coincides with the dynamical system

ρ̇k =
ρ

ρk

1

N

N∑
n=1

e−ρyn f (V ;xn )yn f (V ; xn)

V̇k =
ρ

ρ2
k

1

N

N∑
n=1

e−ρyn f (V ;xn )yn

(
∂f (V ; xn)

∂Vk
−Vk f (V ; xn)

)
where we use the structural lemma to write V T

k
∂f (V ;xn )
∂Vk

=

f (V ; xn).
Clearly the dynamics of unconstrained gradient descent and

the dynamics of constrained gradient descent are very simi-
lar since they differ only by a ρ2 factor in the V̇ equations.
The conditions for the stationary points of the gradient for the
V vectors—that is, the values for which V̇ = 0—are the same
in both cases, since for any t > 0 we have ρ(t)> 0. This is
summarized as follows:
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Lemma 5. Constrained and unconstrained gradient descents have
the same set of minima or infima.

In ref. 4 we show that the dynamics of the constrained gradient
descent Eq. 7 are the same as those of the well-known and much
used algorithm called “weight normalization” (39).

Actual convergence for the constrained case happens if

∂f (V ; x∗)

∂Vk
−Vk f (V ; x∗) = 0 [15]

which corresponds to a long but finite time and thus a large but
finite ρ and a small but nonzero λ. Eq. 15 is thus the solution
that corresponds to a regularization problem with a nonzero but
vanishing λ.

Note that Eq. 15 gives immediately the solution in the one-
layer linear case of f (V ; x ) =V Tx . The stationary points of the
gradient are given by

∑
αnρ(t)(xn −VV Txn). The Lagrange

multiplier case is similar, giving
∑
αnρ(t)xn −λV = 0, with λ

satisfying λ2 = 1
N

∑
n e2ρynV

T xn ρ2ynxn . Thus λ→ 0 for ρ→∞.
In this case, if f (x1) = 1, the solution is V = x1. In the two-layer
linear case, the equations provide a direct relation between V1

and V2, which can be extended to the nonlinear, ReLU case.

C. Summary. There are several additional results on the dynamics
of ρ and on the different convergence times for linear networks
in the case of weight normalization vs. unconstrained gradient
descent, weight normalization showing a faster convergence. For
these additional results we refer to ref. 4. We describe here a few
implications about the loss landscape.
C.1. Landscape and minima. ReLU networks with exponential-
type loss functions do not have zeros of the gradient (wrt
the unnormalized Wk ) that separate the data. The stationary
points of the gradient of f in the nonlinear multilayer separa-
ble case under exponential loss are given by

∑N
n=1 yn

∂f (W ;xn )

∂W
i,j
k

e−yn f (W ;xn ) = 0. Thus, the only stationary points of the gradi-
ent that separate the data are for ρ=∞. If other stationary
points were to exist for a value W ∗ of the weights, they would
be given by zero-valued linear combinations with positive coef-
ficients of ∂f (W ;xn )

∂W
i,j
k

. Use of the structural lemma shows that
∂f (W ;x)

∂W
i,j
k

= 0, ∀i , j , k implies f (W ∗; x ) = 0. So stationary points

of the gradient wrt Wk that are data separating do not exist for
any finite ρ. The situation is quite different if we consider sta-
tionary points wrt Vk . Note that minima arbitrarily close to zero
loss exist for any finite, large ρ. For ρ→∞, the Hessian becomes
arbitrarily close to zero, with all eigenvalues close to zero. On
the other hand, any point of the loss at a finite ρ has a Hessian
wrt Wk which is not identically zero, since it has at least some
positive eigenvalues (4).

Clearly, it would be interesting to characterize better the
degeneracy of the local minima (we conjecture that the loss func-
tion of a deep network is a Morse–Bott function). For the goals
of this section, however, the fact that they cannot be completely
degenerate is sufficient. As shown in ref. 4, under the exponen-
tial loss, zero loss (at infinite ρ) corresponds to a degenerate
infimum, with all eigenvalues of the Hessian being zero. The
other stationary points of the gradient are less degenerate, with
at least one nonzero eigenvalue.
C.2. Summary theorem. The following theorem (informal state-
ment) summarizes the main results on minimization of the
exponential loss in deep ReLU networks:

Theorem 4. Assume that separability is reached at time T0 dur-
ing gradient descent on the exponential loss; that is, yn f (W ; xn)>
0, ∀n . Then unconstrained gradient descent converges in terms of
the normalized weights to a solution that is under complexity control
for any finite time. In addition, the following properties hold:

1) Consider the dynamics (A) resulting from using Lagrange mul-
tipliers on the constrained optimization problem: “Minimize
L=

∑
n e−ρyn f (V ;xn ) under the constraint ‖Vk‖= 1 wrt Vk .”

The dynamics converge for any fixed ρ to stationary points of the
Vk flow that are minima with a positive semidefinite Hessian.

2) Consider the dynamics (B) resulting from using Lagrange mul-
tipliers on the constrained optimization problem: “Minimize
L= 1

N

∑
n e−ρyn f (V ;xn ) under the constraint ‖Vk‖= 1 wrt Vk

and ρk .” The stationary points of Vk in (B) in the limit of t→∞
coincide with the limit ρ→∞ in the dynamics (A) and they are
maxima of the margin.

3) The unconstrained gradient descent dynamics converge to the
same stationary points of the flow of Vk as (A) and (B).

4) Weight normalization (39) corresponds to dynamics (B).

5) For each layer ∂ρ
2
k

∂t
is the same irrespective of k .

6) In the one-layer network case ρ≈ log t asymptotically. For
deeper networks, the product of weights at each layer diverges
faster than logarithmically, but each individual layer diverges
slower than in the one-layer case.

7) Gradient flow converges for infinite time to directions given
by a set of support vectors with the same value y1f (V ; x1)

that satisfy the set of K coupled vector equations ( ∂f (V ;x1)
∂Vk

=

Vk f (V ; x1)).

In summary, there is an implicit regularization in deep net-
works trained on exponential-type loss functions, originating
in the gradient descent technique used for optimization. The
solutions are in fact the same as those that are obtained by reg-
ularized optimization. Convergence to a specific solution instead
of another of course depends on the trajectory of gradient flow
and corresponds to one of multiple infima of the loss (linear net-
works will have a unique minimum), each one being a margin
maximizer. In general, each solution will show a different test
performance. Characterizing the conditions that lead to the best
among the margin maximizers is an open problem.

4. Discussion
A main difference between shallow and deep networks is in terms
of approximation power or, in equivalent words, of the ability to
learn good representations from data based on the specific com-
positional structure of certain tasks. Unlike shallow networks,
deep local networks—in particular, convolutional networks—
can avoid the curse of dimensionality in approximating the class
of hierarchically local compositional functions. This means that
for such class of functions deep local networks represent an
appropriate hypothesis class that allows good approximation
with a minimum number of parameters. It is not clear, of course,
why many problems encountered in practice can be represented
in this way. Although we and others have argued that the expla-
nation may be in either the physics or the neuroscience of
the brain, these arguments are not rigorous. Our conjecture at
present is that local hierarchical compositionality is imposed by
the wiring of our sensory cortex and, critically, is reflected in lan-
guage. Thus the specific compositionality of some of the most
common visual tasks may simply reflect the way our brain works.
From a general point of view, it is clear that there are many
different forms of compositionality that translate in different
DAGs (3).

Optimization turns out to be surprisingly easy to perform for
overparameterized deep networks because SGD will converge
with high probability to global infima that are typically more
degenerate (for the exponential loss) than other local critical
points.

The gradient flow on the appropriately normalized network
corresponding to gradient descent is under complexity control,
despite overparameterization and even in the absence of explicit
regularization, because in the case of exponential-type losses,
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the directions of the weights converge to one of several min-
ima for finite times (and to a minimum norm solution for time
going to infinity). This implicit complexity control mechanism—
implicit regularization—however, does not by itself fully explain
the behavior of overparameterized deep networks, which fit the
training data and perform well on out-of-sample points.

Remember that the classical analysis of empirical risk min-
imization (ERM) algorithms studies their asymptotic behavior
for the number of data N going to infinity. In this limiting
regime, N >D , where D is the fixed number of weights; consis-
tency (informally the expected error of the empirical minimizer
converges to the best in the class) and generalization (the empir-
ical error of the minimizer converges to the expected error of
the minimizer) are equivalent. Empirically we know that for
a nonasymptotic regime with N <D deep networks can yield
good expected error in the absence of generalization. This is
similar to the regression case for some linear kernel methods
(40–44). This phenomenon suggests that under certain condi-
tions, the pseudoinverse may perform well in terms of expected
error while the generalization gap (difference between expected
and empirical loss) is large. We note that is not surprising that
complexity control is a prerequisite for good performance even
in an overparameterized regime in which the classical analysis

via generalization does not apply. The minimum-norm pseu-
doinverse solution is unique and continuous, satisfying the key
conditions—including stability with respect to noise in the data—
of a well-posed problem. In fact, a recent paper (45) shows
that solutions of overparameterized deep networks that optimize
cross-validation leave-one-out stability minimize the expected
error. Furthermore they suggest that maximum stability corre-
sponds to minimum norm solutions. Thus the main results of
this paper imply that gradient flow in deep networks with an
exponential-type loss does (locally) minimize the expected error
because it selects minimum norm solutions.

5. Materials and Data Availability
All data and code associated with this paper are accessible
publicly at GitHub, https://github.com/liaoq/pnas2019.
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