
CO
LL

O
Q

U
IU

M
PA

PE
R

CO
M

PU
TE

R
SC

IE
N

CE
S

Understanding the role of individual units in a deep
neural network
David Baua,1 , Jun-Yan Zhua,b, Hendrik Strobeltc, Agata Lapedrizad,e, Bolei Zhouf , and Antonio Torralbaa

aComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139; bAdobe Research, Adobe Inc.,
San Jose, CA 95110; cMassachusetts Institute of Technology–International Business Machines (IBM) Watson Artificial Intelligence Laboratory, Cambridge,
MA 02142; dMedia Lab, Massachusetts Institute of Technology, Cambridge, MA 02139; eEstudis d’Informàtica, Multimèdia i Telecomunicació, Universitat
Oberta de Catalunya, 08018 Barcelona, Spain; and fDepartment of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
SAR, China

Edited by David L. Donoho, Stanford University, Stanford, CA, and approved July 7, 2020 (received for review August 31, 2019)

Deep neural networks excel at finding hierarchical representa-
tions that solve complex tasks over large datasets. How can we
humans understand these learned representations? In this work,
we present network dissection, an analytic framework to system-
atically identify the semantics of individual hidden units within
image classification and image generation networks. First, we
analyze a convolutional neural network (CNN) trained on scene
classification and discover units that match a diverse set of object
concepts. We find evidence that the network has learned many
object classes that play crucial roles in classifying scene classes.
Second, we use a similar analytic method to analyze a generative
adversarial network (GAN) model trained to generate scenes. By
analyzing changes made when small sets of units are activated or
deactivated, we find that objects can be added and removed from
the output scenes while adapting to the context. Finally, we apply
our analytic framework to understanding adversarial attacks and
to semantic image editing.

machine learning | deep networks | computer vision

Can the individual hidden units of a deep network teach us
how the network solves a complex task? Intriguingly, within

state-of-the-art deep networks, it has been observed that many
single units match human-interpretable concepts that were not
explicitly taught to the network: Units have been found to detect
objects, parts, textures, tense, gender, context, and sentiment (1–
7). Finding such meaningful abstractions is one of the main goals
of deep learning (8), but the emergence and role of such concept-
specific units are not well understood. Thus, we ask: How can we
quantify the emergence of concept units across the layers of a
network? What types of concepts are matched, and what function
do they serve? When a network contains a unit that activates on
trees, we wish to understand if it is a spurious correlation or if
the unit has a causal role that reveals how the network models its
higher-level notions about trees.

To investigate these questions, we introduce network dissec-
tion (9, 10), our method for systematically mapping the semantic
concepts found within a deep convolutional neural network
(CNN). The basic unit of computation within such a network
is a learned convolutional filter; this architecture is the state of
the art for solving a wide variety of discriminative and generative
tasks in computer vision (11–19). Network dissection identifies,
visualizes, and quantifies the role of individual units in a network
by comparing the activity of each unit with a range of human-
interpretable pattern-matching tasks such as the detection of
object classes.

Previous approaches for understanding a deep network
include the use of salience maps (20–27): Those methods ask
where a network looks when it makes a decision. The goal of our
current inquiry is different: We ask what a network is looking
for and why. Another approach is to create simplified surrogate
models to mimic and summarize a complex network’s behavior
(28–30), and another technique is to train explanation networks
that generate human-readable explanations of a network (31).

In contrast to those methods, network dissection aims to directly
interpret the internal computation of the network itself, rather
than training an auxiliary model.

We dissect the units of networks trained on two different types
of tasks: image classification and image generation. In both set-
tings, we find that a trained network contains units that corre-
spond to high-level visual concepts that were not explicitly labeled
in the training data. For example, when trained to classify or gen-
erate natural scene images, both types of networks learn individ-
ual units that match the visual concept of a “tree” even though we
have never taught the network the tree concept during training.

Focusing our analysis on the units of a network allows us to
test the causal structure of network behavior by activating and
deactivating the units during processing. In a classifier, we use
these interventions to ask whether the classification performance
of a specific class can be explained by a small number of units
that identify visual concepts in the scene class. For example, we
ask how the ability of the network to classify an image as a ski
resort is affected when removing a few units that detect snow,
mountains, trees, and houses. Within a scene generation net-
work, we ask how the rendering of objects in a scene is affected
by object-specific units. How does the removal of tree units affect
the appearance of trees and other objects in the output image?

Finally, we demonstrate the usefulness of our approach with
two applications. We show how adversarial attacks on a classi-
fier can be understood as attacks on the important units for a
class. Also, we apply unit intervention on a generator to enable a
human user to modify semantic concepts such as trees and doors
in an image by directly manipulating units.

Results
Emergence of Object Detectors in a Scene Classifier. We first iden-
tify individual units that emerge as object detectors when training
a network on a scene classification task. The network we analyze

This paper results from the Arthur M. Sackler Colloquium of the National Academy of
Sciences, “The Science of Deep Learning,” held March 13–14, 2019, at the National
Academy of Sciences in Washington, DC. NAS colloquia began in 1991 and have been
published in PNAS since 1995. From February 2001 through May 2019 colloquia were
supported by a generous gift from The Dame Jillian and Dr. Arthur M. Sackler Foun-
dation for the Arts, Sciences, & Humanities, in memory of Dame Sackler’s husband,
Arthur M. Sackler. The complete program and video recordings of most presenta-
tions are available on the NAS website at http://www.nasonline.org/science-of-deep-
learning.y

Author contributions: D.B., J.-Y.Z., H.S., A.L., B.Z., and A.T. designed research; D.B.,
J.-Y.Z., H.S., A.L., and B.Z. performed research; D.B. and B.Z. contributed new analytic
tools; D.B. and J.-Y.Z. analyzed data; A.T. was the supervising advisor; and D.B., J.-Y.Z.,
and A.T. wrote the paper.y

The authors declare no competing interest.y

Published under the PNAS license.y

This article is a PNAS Direct Submission.y
1 To whom correspondence may be addressed. Email: davidbau@csail.mit.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1907375117/-/DCSupplemental.y

First published September 1, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.1907375117 PNAS | December 1, 2020 | vol. 117 | no. 48 | 30071–30078

http://orcid.org/0000-0003-1744-6765
http://orcid.org/0000-0003-4030-0684
http://www.nasonline.org/science-of-deep-learning
http://www.nasonline.org/science-of-deep-learning
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:davidbau@csail.mit.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1907375117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1907375117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1907375117
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1907375117&domain=pdf


A

B

C

E F

D

Fig. 1. The emergence of single-unit object detectors within a VGG-16 scene classifier. (A) VGG-16 consists of 13 convolutional layers, conv1 1 through
conv5 3, followed by three fully connected layers: fc6, -7, -8. (B) The activation of a single filter on an input image can be visualized as the region where the
filter activates beyond its top 1% quantile level. (C) Single units are scored by matching high-activating regions against a set of human-interpretable visual
concepts; each unit is labeled with its best-matching concept and visualized with maximally activating images. (D) Concepts that match units in the final
convolutional layer are summarized, showing a broad diversity of detectors for objects, object parts, materials, and colors. Many concepts are associated
with multiple units. (E) Comparing all of the layers of the network reveals that most object detectors emerge at the last convolutional layers. (F) Although
the training set contains no object labels, unit 150 emerges as an airplane object detector that activates much more strongly on airplane objects than
nonairplane objects, as tested against a dataset of labeled object images not previously seen by the network. The jitter plot shows peak activations for the
unit on randomly sampled 1,000 airplane and 1,000 nonairplane Imagenet images, and the curves show the kernel density estimates of these activations.

is a convolutional neural network (CNN) with the VGG-16
architecture (named after the Oxford Visual Geometry Group)
(13) trained to classify images into 365 scene categories using
the Places365 dataset, from the Massachusetts Institute of Tech-
nology Computer Science and Artificial Intelligence Laboratory
Scene Recognition Database (32). We analyze all units within
the 13 convolutional layers of the network (Fig. 1A). Materials
and Methods has further details on networks and datasets.

Each unit u computes an activation function au(x , p) that
outputs a signal at every image position p given a test image
x . Filters with low-resolution outputs are visualized and ana-
lyzed at high-resolution positions p using bilinear up sampling.
Denote by tu the top 1% quantile level for au : That is, writing
Px ,p [·] to indicate the probability that an event is true when sam-
pled over all positions and images, we define the threshold tu ≡
maxt Px ,p [au(x , p)> t ]≥ 0.01. In visualizations, we highlight the
activation region {p | au(x , p)> tu} above the threshold. As seen
in Fig. 1B, this region can correspond to semantics such as
the heads of all of the people in the image. To identify fil-
ters that match semantic concepts, we measure the agreement
between each filter and a visual concept c using a computer
vision segmentation model (33) sc : (x , p)→{0, 1} that is trained
to predict the presence of the visual concept c within image x at
position p. We quantify the agreement between concept c and
unit u using the intersection over union (IoU) ratio:

IoUu,c =
Px ,p [sc(x , p)∧ (au(x , p)> tu)]

Px ,p [sc(x , p)∨ (au(x , p)> tu)]
. [1]

This IoU ratio is computed on the set of held-out validation set
images. Within this validation set, each unit is scored against
1,825 segmented concepts c, including object classes, parts of
objects, materials, and colors. Then, each unit is labeled with the
highest-scoring matching concept. Fig. 1C shows several labeled
concept detector units along with the five images with the highest
unit activations.

When examining all 512 units in the last convolutional layer,
we find many detected object classes and relatively fewer
detected object parts and materials: within layer conv 3, units
match 51 object classes, 22 parts, 12 materials, and eight col-
ors. Several visual concepts such as “airplane” and “head” are
matched by more than one unit. Fig. 1D lists every segmented
concept matching units in layer conv5 3, excluding any units with
IoU ratio < 4%, showing the frequency of units matching each
concept. Across different layers, the last convolutional layer has
the largest number of object classes detected by units, while the
number of object parts peaks two layers earlier, at layer conv5 1,
which has units matching 28 object classes, 25 parts, nine materi-
als, and eight colors (Fig. 1E). A complete visualization of all of
the units of conv5 3 is provided in SI Appendix, as well as more
detailed comparisons between layers of VGG-16, comparisons
with layers of AlexNet (12) and ResNet (16), and an analysis of
the texture vs. shape sensitivity of units using a stylization method
based on ref. 34.

Interestingly, object detectors emerge despite the absence of
object labels in the training task. For example, the aviation-
related scene classes in the training set are “airfield,” “airport

30072 | www.pnas.org/cgi/doi/10.1073/pnas.1907375117 Bau et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1907375117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1907375117


CO
LL

O
Q

U
IU

M
PA

PE
R

CO
M

PU
TE

R
SC

IE
N

CE
S

terminal,” “hangar,” “landing deck,” and “runway.” Scenes in
these classes do not always contain airplanes, and there is no
explicit airplane object label in the training set. Yet, unit 150
emerges as a detector that locates airplanes, scoring IoU=9.0%
agreement with our reference airplane segmentations in scene
images. The accuracy of the unit as an airplane classifier can
be further verified on Imagenet (35), a dataset that contains
1,000 object classes; its images and classes are disjoint from
the Places365 training set. Imagenet contains two airplane class
labels: “airliner” and “warplane,” and a simple threshold on unit
150 (peak activation > 23.4) achieves 85.6% balanced classifica-
tion accuracy on the task of distinguishing these airplane classes
from the other object classes. Fig. 1F shows the distribution of
activations of this unit on a sample of airplane and nonairplane
Imagenet images.

Role of Units in a Scene Classifier. How does the network use the
above object detector units? Studies of network compression
have shown that many units can be eliminated from a network

while recovering overall classification accuracy by retraining (36,
37). One way to estimate the importance of an individual unit
is to examine the impact of the removal of the unit on mean
network accuracy (38, 39).

To obtain a more fine-grained understanding of the causal
role of each unit within a network, we measure the impact of
removing each unit on the network’s ability of classifying each
individual scene class. Units are removed by forcing the specified
unit to output zero and leaving the rest of the network intact. No
retraining is done. Single-class accuracy is tested on the balanced
two-way classification problem of discriminating the specified
class from all of the other classes.

The relationships between objects and scenes learned by the
network can be revealed by identifying the most important units
for each class. For example, the four most important conv5 3
units for the class “ski resort” are shown in Fig. 2A: These units
damage ski resort accuracy most when removed. The units detect
snow, mountains, houses, and trees, all of which seem salient to
ski resort scenes.

A

B

C

D

E

Fig. 2. A few units play important roles in classification performance. (A) The four conv5 3 units cause the most damage to balanced classification accuracy
for ski resort when each unit is individually removed from the network; dissection reveals that these most-important units detect visual concepts that are
salient to ski resorts. Accuracy lost (acc lost) is measured on both training data and held-out validation (val) data. (B) When the most-important units to the
class are removed all together, balanced single-class accuracy drops to near-chance levels. When the 492 least-important units in conv5 3 are removed all
together (leaving only the 20 most-important units), accuracy remains high. (C) The effect on ski resort prediction accuracy when removing sets of units of
successively larger sizes. These units are sorted in ascending and descending order of individual unit’s impact on accuracy. (D) Repeating the experiment for
each of 365 scene classes. Each point plots single-class classification accuracy in one of three settings: the original network, the network after removing the
20 units most important to the class, and with all conv5 3 units removed except the 20 most-important ones. On the y axis, classes are ordered alphabetically.
(E) The relationship between unit importance and interpretability. Units that are among the top four important units for more classes are also closer matches
for semantic concepts as measured by IoUu,c.

Bau et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30073



To test whether the ability of the network to classify ski resorts
can be attributed to just the most important units, we remove
selected sets of units. Fig. 2B shows that removing just these
4 (of 512) units reduces the network’s accuracy at discriminat-
ing ski resort scenes from 81.4 to 64.0%, and removing the
20 most important units in conv5 3 reduces class accuracy fur-
ther to 53.5%, near chance levels (chance is 50%), even though
classification accuracy over all scene classes is hardly affected
(changing from 53.3 to 52.6%, where chance is 0.27%). In
contrast, removing the 492 least-important units (leaving only
the 20 most important units in conv5 3) has only a small impact
on accuracy for the specific class, reducing ski resort accu-
racy by only 3.7% (to 77.7%). Of course, removing so many
units damages the ability of the network to classify other scene
classes: Removing the 492 least-important units reduces all-class
accuracy to 2.1% (chance is 0.27%).

The effect of removing varying numbers of most-important
and least-important units upon ski resort accuracy is shown in
Fig. 2C. To avoid overfitting to the evaluation data, we rank
the importance of units according to their individual impact
on single-class ski resort accuracy on the training set, and the
plotted impact of removing sets of units is evaluated on the held-
out validation set. The network can be seen to derive most of
its performance for ski resort classification from just the most
important units. Single-class accuracy can even be improved by
removing the least important units; this effect is further explored
in SI Appendix.

This internal organization, in which the network relies on a
small number of important units for most of its accuracy with
respect to a single output class, is seen across all classes. Fig. 2D
repeats the same experiment for each of the 365 scene classes.
Removing the 20 most important conv5 3 units for each class
reduces single-class accuracy to 53.0% on average, near chance
levels. In contrast, removing the 492 least important units only
reduces single-class accuracy by an average of 3.6%, just a slight
reduction. We conclude that the emergent object detection done
by units of conv5 3 is not spurious: Each unit is important to a
specific set of classes, and the object detectors can be interpreted
as decomposing the network’s classification of individual scene
classes into simpler subproblems.

Why do some units match interpretable concepts so well, while
other units do not? The data in Fig. 2E show that the most
interpretable units are those that are important to many differ-
ent output classes. Units that are important to only one class
(or none) are less interpretable, measured by IoU. We further
find that important units are predominantly positively correlated
with their associated classes, and different combinations of units
provide support for each class. Measurements of unit-class corre-
lations and examples of overlapping combinations of important
units are detailed in SI Appendix.

Does the emergence of interpretable units such as airplane,
snow, and tree detectors depend on having training set labels that
divide the visual world into hundreds of scene classes? Perhaps
the taxonomy of scenes encodes distinctions that are necessary to
learn about objects. Or is it possible for a network to infer such
concepts from the visual data itself? To investigate this question,
we next conduct a similar set of experiments on networks trained
to solve unsupervised tasks.

Emergence of Object Detectors in a Generative Adversarial Network.
A generative adversarial network (GAN) learns to synthesize
random realistic images that mimic the distribution of real
images in a training set (14). Architecturally, a trained GAN gen-
erator is the reverse of a classifier, producing a realistic image
from a random input latent vector. Unlike classification, it is an
unsupervised setting: No human annotations are provided to a
GAN, so the network must learn the structure of the images by
itself.

Remarkably, GANs have been observed to learn global
semantics of an image: For example, interpolating between
latent vectors can smoothly transform the layout of a room (40)
or change the texture of an object (41). We wish to understand
whether the GAN also learns to decompose local semantics, for
example, if the internal units represent the generation of a scene
as a hierarchy of meaningful parts.

We test a Progressive GAN architecture (19) trained to imi-
tate LSUN kitchen images (42). This network architecture con-
sists of 15 convolutional layers, as shown in Fig. 3A. Given a
512-dimensional vector sampled from a multivariate Gaussian
distribution, the network produces a 256 × 256 realistic image
after processing the data through the 15 layers. As with a clas-
sifier network, each unit is visualized by showing the regions
where the filter activates above its top 1% quantile level, as
shown in Fig. 3B. Importantly, causality in a generator flows in
the opposite direction as a classifier: When unit 381 activates on
lamp shades in an image, it is not detecting objects in the image
because the filter activation occurs before the image is gener-
ated. Instead, the unit is part of the computation that ultimately
renders the objects.

To identify the location of units in the network that are associ-
ated with object classes, we apply network dissection to the units
of every layer of the network. In this experiment, the reference
segmentation models and thresholds used are the same as those
used to analyze the VGG-16 classifier. However, instead of ana-
lyzing agreement with objects that appear in the input data, we
analyze agreement with segmented objects found in the gener-
ated output images. As shown in Fig. 3C, the largest number of
emergent concept units does not appear at the edge of the net-
work as we saw in the classifier but in the middle: Layer 5 has
units that match the largest number of distinct object and part
classes.

Fig. 3D shows each object, part, material, and color that
matches a unit in layer 5 with IoU> 4%. This layer contains 19
object-specific units, 41 units that match object parts, one mate-
rial, and six color units. As seen in the classification network,
visual concepts such as “oven” and “chair” match many units.
Different from the classifier, more object parts are matched than
whole objects.

In Fig. 3D, individual units show a wide range of visual diver-
sity: The units do not appear to rigidly match a specific pixel
pattern but rather, different appearances for a particular class:
For example, various styles of ovens or different colors and
shapes of kitchen stools.

In Fig. 3F, we apply the window-specific unit 314 as an image
classifier. We find a strong gap between the activation of the unit
when a large window is generated and when no large window is
generated. Furthermore, a simple threshold (peak activation >
8.03) can achieve a 78.2% accuracy in predicting whether the
generated image will have a large window or not. Nevertheless,
the distribution density curve reveals that images that contain
large windows can be often generated without activating unit 314.
Two such samples are shown in Fig. 3G. These examples suggest
that other units could potentially synthesize windows.

Role of Units in a GAN. The correlations between units and gen-
erated object classes are suggestive, but they do not prove that
the units that correlate with an object class actually cause the
generator to render instances of the object class. To understand
the causal role of a unit in a GAN generator, we test the out-
put of the generator when sets of units are directly removed or
activated.

We first remove successively larger sets of tree units from a
Progressive GAN (19) trained on LSUN church scenes (42).
We rank units in layer 4 according to IoUu,tree to identify the
most tree-specific units. When successively larger sets of these
tree units are removed from the network, the GAN generates

30074 | www.pnas.org/cgi/doi/10.1073/pnas.1907375117 Bau et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1907375117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1907375117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1907375117


CO
LL

O
Q

U
IU

M
PA

PE
R

CO
M

PU
TE

R
SC

IE
N

CE
S

A

B

C

D

E

F

G

Fig. 3. The emergence of object- and part-specific units within a Progressive GAN generator (19). (A) The analyzed Progressive GAN consists of 15 con-
volutional layers that transform a random input vector into a synthesized image of a kitchen. (B) A single filter is visualized as the region of the output
image where the filter activates beyond its top 1% quantile level; note that the filters are all precursors to the output. (C) Dissecting all of the layers of the
network shows a peak in object-specific units at layer 5 of the network. (D) A detailed examination of layer 5 shows more part-specific units than objects
and many visual concepts corresponding to multiple units. (E) Units do not correspond to exact pixel patterns: A wide range of visual appearances for ovens
and chairs is generated when an oven or chair part unit is activated. (F) When a unit specific to window parts is tested as a classifier, on average the unit
activates more strongly on generated images that contain large windows than images that do not. The jitter plot shows the peak activation of unit 314 on
800 generated images that have windows larger than 5% of the image area as estimated by a segmentation algorithm and 800 generated images that do
not. (G) Some counterexamples: images for which unit 314 does not activate but where windows are synthesized nevertheless.

images with fewer and smaller trees (Fig. 4A). Removing the 20
most tree-specific units reduces the number of tree pixels in the
generated output by 53.3%, as measured over 10,000 randomly
generated images.

When tree-specific units are removed, the generated images
continue to look similarly realistic. Although fewer and smaller
trees are generated, other objects such as buildings are
unchanged. Remarkably, parts of buildings that were occluded
by trees are hallucinated, as if removing the trees reveals the
walls and windows behind them (Fig. 4B). The generator appears
to have computed more details than are necessary to render the
final output; the details of a building that are hidden behind a
tree can only be revealed by suppressing the generation of the
tree. The appearance of such hidden details strongly suggests
that the GAN is learning a structured statistical model of the
scene that extends beyond a flat summarization of visible pixel
patterns.

Units can also be forced on to insert new objects into a gen-
erated scene. We use IoUu,door to find the 20 most door-specific
units identified in layer 4 of the same outdoor church GAN. At
tested locations, the activations for this set of 20 units are all
forced to their high tu value. Fig. 4C shows the effect of applying
this procedure to activate 20 door units at two different loca-
tions in two generated images. Although the same intervention
is applied to all four cases, the doors obtained in each situation
are different: In cases 1 to 3, the newly synthesized door has a
size, style, and location that is appropriate to the scene context.

In case 4, where door units are activated on a tree, no new door
is added to the image.

Fig. 4D quantifies the context sensitivity of activating door
units in different locations. In 10,000 randomly generated
images, the same 20-door-unit activation is tested at every fea-
ture map location, and the number of newly synthesized door
pixels is evaluated using a segmentation algorithm. Doors can be
easily added in some locations, such as in buildings and especially
on top of an existing window, but it is nearly impossible to add
a door into trees or in the sky. By learning to solve the unsuper-
vised image generation problem, a GAN has learned units for
emergent objects such as doors and trees. It has also learned a
computational structure over those units that prevents it from
rendering nonsensical output, such as a door in the sky or a door
in a tree.

Applications
We now turn to two applications enabled by our understand-
ing of the role of units: understanding attacks on a classifier and
interactively editing a photo by activating units of a GAN.

Analyzing Adversarial Attack of a Classifier. The sensitivity of
image classifiers to adversarial attacks is an active research area
(43–46). To visualize and understand how an attack works, we
can examine the effects on important object detector units. In
Fig. 5A, a correctly classified ski resort image is attacked to the
target “bedroom” by the Carlini–Wagner optimization method

Bau et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30075



A

B

D

C

Fig. 4. The causal effect of altering units within a GAN generator. (A) When successively larger sets of units are removed from a GAN trained to generate
outdoor church scenes, the tree area of the generated images is reduced. Removing 20 tree units removes more than half the generated tree pixels from
the output. (B) Qualitative results: Removing tree units affects trees while leaving other objects intact. Building parts that were previously occluded by trees
are rendered as if revealing the objects that were behind the trees. (C) Doors can be added to buildings by activating 20 door units. The location, shape,
size, and style of the rendered door depend on the location of the activated units. The same activation levels produce different doors or no door at all (case
4) depending on locations. (D) Similar context dependence can be seen quantitatively: doors can be added in reasonable locations, such as at the location
of a window, but not in abnormal locations, such as on a tree or in the sky.

(45, 47). The adversarial algorithm computes a small perturba-
tion, which when added to the original, results in a misclassified
image that is visually indistinguishable from the original image.

To understand how the attack works, we examine the four most
important units to the ski resort class and the four most impor-
tant units to the bedroom class. Fig. 5B visualizes changes in the

A B

C

Fig. 5. Application: Visualizing an adversarial attack. (A) The test image is correctly labeled as a ski resort, but when an adversarial perturbation is added,
the visually indistinguishable result is classified as a bedroom. (B) Visualization of the attack on the four most important units to the ski resort class and the
four units most important to the bedroom class. Areas of maximum increase and decrease are shown; ∆peak indicates the change in the peak activation
level for the unit. (C) Over 1,000 images attacked to misclassify images to various incorrect target classes. The units that are changed most are those that
dissection has identified as most important to the source and target classes. Mean absolute value change in peak unit activation is graphed, with 99% CIs
shown.

30076 | www.pnas.org/cgi/doi/10.1073/pnas.1907375117 Bau et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1907375117


CO
LL

O
Q

U
IU

M
PA

PE
R

CO
M

PU
TE

R
SC

IE
N

CE
S

activations for these units between the original image and the
adversarial image. This reveals that the attack has fooled the net-
work by reducing detection of snow, mountain, house, and tree
objects and by increasing activations of detectors for beds, person
heads, and sofas in locations where those objects do not actually
exist in the image. Fig. 5C shows that, across many images and
classes, the units that are most changed by an attack are the few
units that are important to a class.

Semantic Paint Using a GAN. Understanding the roles of units
within a network allows us to create a human interface for con-
trolling the network via direct manipulation of its units. We
apply this method to a GAN to create an interactive painting
application. Instead of painting with a palette of colors, the
application allows painting with a palette of high-level object
concepts. Each concept is associated with 20 units that maxi-
mize IoUu,c for the concept u . Fig. 6A shows our interactive
interface. When a user adds brush strokes with a concept, the
units for the concept are activated (if the user is drawing) or
zeroed (if the user is erasing). Fig. 6B shows typical results
after the user adds an object to the image. The GAN deals
with the pixel-level details of how to add objects while keeping
the scene reasonable and realistic. Multiple changes in a scene
can be composed for creative effects. Movies of image editing
demonstrations are included in Movies S1–S3; online demon-
strations are also available at the website http://gandissect.csail.
mit.edu.

Discussion
Simple measures of performance, such as classification accuracy,
do not reveal how a network solves its task: Good performance
can be achieved by networks that have differing sensitivities to
shapes, textures, or perturbations (34, 48).

To develop an improved understanding of how a network
works, we have presented a way to analyze the roles of individual
network units. In a classifier, the units reveal how the network
decomposes the recognition of specific scene classes into par-
ticular visual concepts that are important to each scene class.
Additionally, within a generator, the behavior of the units reveals
contextual relationships that the model enforces between classes
of objects in a scene.

Network dissection relies on the emergence of disentangled,
human-interpretable units during training. We have seen that
many such interpretable units appear in state-of-the-art models,
both supervised and unsupervised. How to train better disentan-
gled models is an open problem that is the subject of ongoing
efforts (49–52).

We conclude that a systematic analysis of individual units can
yield insights about the black box internals of deep networks. By
observing and manipulating units of a deep network, it is possible
to understand the structure of the knowledge that the network
has learned and to build systems that help humans interact with
these powerful models.

Materials and Methods
Datasets. Places365 (53, 54) consists of 1.80 million photographic images,
each labeled with 1 of 365 scene classes. The dataset also includes 36,500
labeled validation images (100 per class) that are not used for training. Ima-
genet (35, 55) consists of 1.28 million photographic images, each focused
on a single main object and labeled with 1 of 1,000 object classes. LSUN is
a dataset with a large number of 256 × 256 images in a few classes (42,
56). LSUN kitchens consist of 2.21 million indoor kitchen photographs, and
LSUN outdoor churches consist of 1.26 million photographs of church build-
ing exteriors. Recognizable people in dataset images have been anonymized
by pixelating faces in visualizations.

Tested Networks. We analyze the VGG-16 classifier (13) trained by the
Places365 authors (32) to classify Places365 images (57). The network
achieves classification accuracy of 53.3% on the held-out validation set
(chance is 0.27%). The 13 convolutional layers of VGG-16 are divided into
five groups. The layers in the first group contain 32 units that process
image data at the full 224×224 resolution; at each successive group, the
feature depth is doubled, and the feature maps are pooled to halve the
resolution, so that at the final stage that includes conv5 1 and conv5 3,
the layers contain 512 units at 14 × 14 resolution. The GAN models that
we analyze are trained by the Progressive GAN authors (19, 58). The
models are configured to generate 256 × 256 output images using 15
convolutional layers divided into eight groups, starting with 512 units in
each layer at 4 × 4 resolution and doubling resolution at each succes-
sive group, so that layer 4 has 8 × 8 resolution and 512 units and layer
5 has 16 × 16 resolution and 512 units. Unit depth is halved in each
group after layer 6, so that the 14th layer has 32 units and 256 × 256
resolution. The 15th layer (which is not pictured in Fig. 3A) produces a
three-channel red–green–blue image. Code and pretrained weights for all
tested networks are available at the GitHub and project website for this
paper (59).

Reference Segmentation. To locate human-interpretable visual concepts
within large-scale datasets of images, we use the Unified Perceptual Pars-
ing image segmentation network (33) trained on the ADE20K scene dataset
(53, 60) and an assignment of numerical color values to color names (61).
The segmentation algorithm achieves mean IoU of 23.4% on objects, 28.8%
on parts, and 54.2% on materials. To further identify units that specialize
in object parts, we expand each object class into four additional object
part classes, which denote the top, bottom, left, or right half of the
bounding box of a connected component. Our reference segmentation
algorithm can detect 335 object classes, 1,452 object parts, 25 materials, and
11 colors.

A B

Fig. 6. Application: Painting by manipulating GAN neurons. (A) An interactive interface allows a user to choose several high-level semantic visual concepts
and paint them onto an image. Each concept corresponds to 20 units in the GAN. (B) After the user adds a dome in the specified location, the result is a
modified image in which a dome has been added in place of the original steeple. After the user’s high-level intent has been expressed by changing 20 dome
units, the generator automatically handles the pixel-level details of how to fit together objects to keep the output scene realistic.

Bau et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30077

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1907375117/-/DCSupplemental
http://gandissect.csail.mit.edu
http://gandissect.csail.mit.edu


Data Availability. The code, trained model weights, and datasets needed
to reproduce the results in this paper are public and available to down-
load from GitHub at https://github.com/davidbau/dissect and at the project
website at https://dissect.csail.mit.edu/data/.

ACKNOWLEDGMENTS. We thank Aditya Khosla, Aude Oliva, William
Peebles, Jonas Wulff, Joshua B. Tenenbaum, and William T. Freeman for
their advice and collaboration. Also, we are grateful for the support of the

Massachusetts Institute of Technology–IBM Watson Artificial Intelligence
Lab, Defense Advanced Research Projects Agency Explainable Artificial
Intelligence (DARPA XAI) Program FA8750-18-C-0004, NSF Grant 1524817
on Advancing Visual Recognition with Feature Visualizations, NSF Grant
BIGDATA 1447476, Grant RTI2018-095232-B-C22 from the Spanish Ministry
of Science, Innovation and Universities (to A.L.), Early Career Scheme of
Hong Kong Grant 24206219 (to B.Z.), and a hardware donation from
Nvidia.

1. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Object detectors emerge in
deep scene CNNs. arXiv:1412.6856 (22 December 2014).

2. M. D. Zeiler, R. Fergus, “Visualizing and understanding convolutional networks” in
European Conference on Computer Vision (Springer, Berlin, Germany, 2014), pp. 818–
833.

3. A. Mahendran, A. Vedaldi, “Understanding deep image representations by invert-
ing them” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (IEEE, New York, NY, 2015), pp. 5188–5196.

4. C. Olah et al., The building blocks of interpretability. Distill 3, e10 (2018).
5. A. Bau et al., Identifying and controlling important neurons in neural machine

translation. https://openreview.net/pdf?id=H1z-PsR5KX. Accessed 24 August 2020.
6. A. Karpathy, J. Johnson, L. Fei-Fei, Visualizing and understanding recurrent networks.

arXiv:1506.02078 (5 June 2015).
7. A. Radford, R. Jozefowicz, I. Sutskever, Learning to generate reviews and discovering

sentiment. arXiv:1704.01444 (6 April 2017).
8. Y. Bengio, A. Courville, P. Vincent, Representation learning: A review and new

perspectives. IEEE Trans. Pattern Anal. Mach. Intelligence 35, 1798–1828 (2013).
9. B. Zhou, D. Bau, A. Oliva, A. Torralba, Interpreting deep visual representations via

network dissection. arXiv:1711.05611 (26 June 2018).
10. D. Bau et al., Gan dissection: Visualizing and understanding generative adversarial

networks. https://openreview.net/pdf?id=Hyg X2C5FX. Accessed 24 August 2020.
11. Y. LeCun, Y. Bengio, “Convolutional networks for images, speech, and time series”

in The Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed. (MIT Press,
Cambridge, MA, 1995), vol. 3361, pp. 255–258.

12. A. Krizhevsky, I. Sutskever, G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks” in Advances in Neural Information Processing Systems
(Curran Associates, Red Hook, NY, 2012), pp. 1097–1105.

13. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition. arXiv:1409.1556 (4 September 2014).

14. I. Goodfellow et al., “Generative adversarial nets” in Advances in Neural Information
Processing Systems (Curran Associates, Red Hook, NY, 2014), pp. 2672–2680.

15. O. Vinyals, A. Toshev, S. Bengio, D. Erhan, “Show and tell: A neural image caption
generator” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (IEEE, New York, NY, 2015), pp. 3156–3164.

16. K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(IEEE, New York, NY, 2016), pp. 770–778.

17. P. Isola, J. Y. Zhu, T. Zhou, A. A. Efros, “Image-to-image translation with conditional
adversarial networks” in Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition (IEEE, New York, NY, 2017), pp. 1125–1134.

18. J. Y. Zhu, T. Park, P. Isola, A. A. Efros, “Unpaired image-to-image translation using
cycle-consistent adversarial networks” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (IEEE, New York, NY, 2017), pp. 2223–2232.

19. T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of GANs for improved
quality, stability, and variation. https://openreview.net/pdf?id=Hk99zCeAb. Accessed
24 August 2020.

20. S. Bach et al., On pixel-wise explanations for non-linear classifier decisions by layer-
wise relevance propagation. PLoS One 10, e0130140 (2015).

21. T. Zhou, P. Krahenbuhl, M. Aubry, Q. Huang, A. A. Efros, “Learning dense correspon-
dence via 3D-guided cycle consistency” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (IEEE, New York, NY, 2016), pp. 117–126.

22. R. C. Fong, A. Vedaldi, “Interpretable explanations of black boxes by meaningful per-
turbation” in International Conference on Computer Vision (IEEE, New York, NY,
2017), pp. 3429–3437.

23. S. M. Lundberg, S. I. Lee, “A unified approach to interpreting model predictions” in
Advances in Neural Information Processing Systems (Curran Associates, Red Hook, NY,
2017), pp. 4765–4774.

24. R. R. Selvaraju et al., “Grad-cam: Visual explanations from deep networks via
gradient-based localization” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (IEEE, New York, NY, 2017), pp. 618–626.

25. M. Sundararajan, A. Taly, Q. Yan, “Axiomatic attribution for deep networks” in Pro-
ceedings of the 34th International Conference on Machine Learning (JMLR, 2017),
vol. 70, pp. 3319–3328.

26. D. Smilkov, N. Thorat, B. Kim, F. Viégas, M. Wattenberg, Smoothgrad: Removing noise
by adding noise. arXiv:1706.03825 (12 June 2017).

27. V. Petsiuk, A. Das, K. Saenko, “Rise: Randomized input sampling for explanation of
black-box models” in British Machine Vision Conference (BMVA Press, Malvern, UK,
2018).

28. M. T. Ribeiro, S. Singh, C. Guestrin, “Why should I trust you?: Explaining the predic-
tions of any classifier” in Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (ACM, New York, NY, 2016), pp. 1135–1144.

29. B. Kim, J. Gilmer, F. Viegas, U. Erlingsson, M. Wattenberg, Interpretability beyond
feature attribution: Quantitative testing with concept activation vectors (TCAV).
arXiv:1711.11279 (7 June 2018).

30. A. Koul, A. Fern, S. Greydanus, Learning finite state representations of recurrent
policy networks. https://openreview.net/pdf?id=S1gOpsCctm. Accessed 24 August
2020.

31. L. A. Hendricks et al., “Generating visual explanations” in European Conference on
Computer Vision (Springer, Berlin, Germany, 2016), pp. 3–19.

32. B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, A. Oliva, “Learning deep features for scene
recognition using places database” in Advances in Neural Information Processing
Systems (Curran Associates, Red Hook, NY, 2014), pp. 487–495.

33. T. Xiao, Y. Liu, B. Zhou, Y. Jiang, J. Sun, “Unified perceptual parsing for scene under-
standing” in Proceedings of the European Conference on Computer Vision (Springer,
Berlin, Germany, 2018), pp. 418–434.

34. R. Geirhos et al., Imagenet-trained CNNs are biased towards texture; increasing shape
bias improves accuracy and robustness. arXiv:1811.12231 (14 January 2019).

35. J. Deng et al., “Imagenet: A large-scale hierarchical image database” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, New York,
NY, 2009), pp. 248–255.

36. W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, “Learning structured sparsity in deep neural
networks” in Advances in Neural Information Processing Systems (Curran Associates,
Red Hook, NY, 2016), pp. 2074–2082.

37. H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters for efficient
convnets. https://openreview.net/pdf?id=rJqFGTslg. Accessed 24 August 2020.

38. A. S. Morcos, D. G. Barrett, N. C. Rabinowitz, M. Botvinick, On the importance of
single directions for generalization. arXiv:1803.06959 (22 May 2018).

39. B. Zhou, Y. Sun, D. Bau, A. Torralba, Revisiting the importance of individual units in
CNNs via ablation. arXiv:1806.02891 (7 June 2018).

40. A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv:1511.06434 (19 November
2015).

41. J. Y. Zhu, P. Krähenbühl, E. Shechtman, A. A. Efros, “Generative visual manipula-
tion on the natural image manifold” in European Conference on Computer Vision
(Springer, Berlin, Germany, 2016), pp. 597–613.

42. F. Yu et al., LSUN: Construction of a large-scale image dataset using deep learning
with humans in the loop. arXiv:1506.03365 (4 June 2016).

43. C. Szegedy et al., Intriguing properties of neural networks. arXiv:1312.6199 (21
December 2013).

44. I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial
examples. arXiv:1412.6572 (20 December 2014).

45. N. Carlini, D. Wagner, “Towards evaluating the robustness of neural networks in
2017” in IEEE Symposium on Security and Privacy (SP) (IEEE, 2017), pp. 39–57.

46. A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning models
resistant to adversarial attacks. https://openreview.net/pdf?id=rJzIBfZAb. Accessed 24
August 2020.

47. J. Rauber, W. Brendel, M. Bethge, Foolbox: A python toolbox to benchmark the
robustness of machine learning models. arXiv:1707.04131 (20 March 2018).

48. A. Ilyas et al., Adversarial examples are not bugs, they are features. arXiv:1905.02175
(12 August 2019).

49. X. Chen et al., “Infogan: Interpretable representation learning by information max-
imizing generative adversarial nets” in Advances in Neural Information Processing
Systems (Curran Associates, Red Hook, NY, 2016), pp. 2172–2180.

50. I. Higgins et al., β-vae: Learning basic visual concepts with a constrained variational
framework. https://openreview.net/pdf?id=Sy2fzU9gl. Accessed 24 August 2020.

51. Q. Zhang, Y. Nian Wu, S. C. Zhu, Interpretable convolutional neural networks.
arXiv:1710.00935 (2 October 2017).

52. A. Achille, S. Soatto, Emergence of invariance and disentanglement in deep
representations. JMLR 19, 1947–1980 (2018).

53. B. Zhou et al., “Scene parsing through ade20k dataset” in Computer Vision and
Pattern Recognition (IEEE, 2017).

54. B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Places365-Standard. http://
places2.csail.mit.edu/download.html. Accessed 1 August 2020.

55. J. Deng et al., ImageNet ILSVRC 2012 data set. http://www.image-net.org/download-
images. Accessed 1 August 2020.

56. F. Yu et al., LSUN: Construction of a large-scale image dataset using deep learning
with humans in the loop. https://www.yf.io/p/lsun. Accessed 1 August 2020.

57. B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, A. Torralba, Data from “Pre-trained CNN
models on Places365-Standard.” GitHub. https://github.com/CSAILVision/places365.
Accessed 1 August 2020.

58. T. Karras, T. Aila, S. Laine, J. Lehtinen, Progressive growing of GANs. GitHub.
https://github.com/tkarras/progressive growing of gans. Accessed 1 August 2020.

59. D. Bau et al., Code for understanding the role of individual units in a deep neural
network. Github. https://github.com/davidbau/dissect. Deposited 24 August 2020.

60. B. Zhou et al., ADE20K full dataset. https://groups.csail.mit.edu/vision/datasets/ADE20K/.
Accessed 1 August 2020.

61. J. Van De Weijer, C. Schmid, J. Verbeek, D. Larlus, Learning color names for real-world
applications. IEEE Trans. Image Process. 18, 1512–1523 (2009).

30078 | www.pnas.org/cgi/doi/10.1073/pnas.1907375117 Bau et al.

https://github.com/davidbau/dissect
https://dissect.csail.mit.edu/data/
https://openreview.net/pdf?id=H1z-PsR5KX
https://openreview.net/pdf?id=Hyg_X2C5FX
https://openreview.net/pdf?id=Hk99zCeAb
https://openreview.net/pdf?id=S1gOpsCctm
https://openreview.net/pdf?id=rJqFGTslg
https://openreview.net/pdf?id=rJzIBfZAb
https://openreview.net/pdf?id=Sy2fzU9gl
http://places2.csail.mit.edu/download.html
http://places2.csail.mit.edu/download.html
http://www.image-net.org/download-images
http://www.image-net.org/download-images
https://www.yf.io/p/lsun
https://github.com/CSAILVision/places365
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/davidbau/dissect
https://groups.csail.mit.edu/vision/datasets/ADE20K/
https://www.pnas.org/cgi/doi/10.1073/pnas.1907375117

