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Fragile X syndrome (FXS) is caused by inactivation of the FMR1
gene and loss of encoded FMRP, an RNA binding protein that re-
presses translation of some of its target transcripts. Here we use
ribosome profiling and RNA sequencing to investigate the dysre-
gulation of translation in the mouse brain cortex. We find that
most changes in ribosome occupancy on hundreds of mRNAs are
largely driven by dysregulation in transcript abundance. Many
down-regulated mRNAs, which are mostly responsible for neuro-
nal and synaptic functions, are highly enriched for FMRP binding
targets. RNA metabolic labeling demonstrates that, in FMRP-
deficient cortical neurons, mRNA down-regulation is caused by
elevated degradation and is correlated with codon optimality.
Moreover, FMRP preferentially binds mRNAs with optimal codons,
suggesting that it stabilizes such transcripts through direct inter-
actions via the translational machinery. Finally, we show that the
paradigm of genetic rescue of FXS-like phenotypes in FMRP-
deficient mice by deletion of the Cpeb1 gene is mediated by res-
toration of steady-state RNA levels and consequent rebalancing of
translational homeostasis. Our data establish an essential role of
FMRP in codon optimality-dependent mRNA stability as an impor-
tant factor in FXS.
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Fragile X syndrome (FXS) is the most common form of
inherited intellectual disability caused by a single gene mu-

tation (1). FXS is caused by a trinucleotide repeat expansion in
the FMR1 locus, which results in transcriptional silencing and
loss of its protein product, FMRP (2). In FMRP-deficient mice,
protein synthesis in the brain is elevated by ∼15 to 20% (3, 4),
indicating that FMRP represses translation. In the mouse brain,
FMRP binds mostly to coding regions of ∼850 to 1,000 mRNAs
(5–9) and cosediments with polyribosomes (5). FMRP has been
proposed to repress translation by impeding ribosome translo-
cation (5, 10–13). This hypothesis is based on the evidence that
ribosomes associated with many of these mRNAs are resistant to
puromycin treatment in vitro, which causes premature polypep-
tide release and thus is an indirect measure of ribosome trans-
location, and that ribosomes transit at faster rates in FMRP-
knockout (KO) brain extracts compared to WT (5, 10). FMRP
also regulates translation directly or indirectly at the level of
initiation (14, 15), RNA splicing (13), editing (16, 17), nuclear
export (18, 19), and m6A modifications (18–20). However, the
relationship of these molecular impairments to the etiology of
FXS, if any, is unknown.
Translation is also controlled by the supply and demand of

available tRNAs (21). When particular codons represented in
mRNA are not met by a sufficient supply of charged tRNA, ri-
bosome transit slows or stalls, which in turn causes RNA de-
struction (22–27). Control of specific translation and RNA
destruction by codon bias varies with tissue (24), time of develop-
ment (23), and cell stress (28). Additionally, in yeast, transacting
factors can influence codon bias-mediated RNA destruction (22),
indicating a more complex regulation than simple codon–tRNA
balance.

Here, we have used ribosome profiling and RNA sequencing
(RNA-seq) to investigate translational dysregulation in the
FMRP KO cortex and found that FMRP coordinates the link
between RNA destruction and codon usage bias (codon opti-
mality). We find that the apparent dysregulation of translational
activity (i.e., ribosome occupancy) in FMRP KO cortex can be
accounted for by commensurate changes in steady-state RNA
levels. Down-regulated mRNAs in FMRP KO cortex are
enriched for those that encode factors involved in neuronal and
synaptic functions and are highly enriched for FMRP binding
targets. These observations suggest that, in the cortex, FMRP
directly or indirectly regulates RNA stability. Indeed, RNA
metabolic profiling by 5-ethynyl uridine (5-EU) incorporation
and whole-transcriptome sequencing reveals widespread RNA
degradation in FMRP KO cortical neurons, while synthesis and
processing rates remained substantially unchanged. Of the ∼700
mRNAs that degraded significantly faster in FMRP KO cortex
compared to WT, those enriched for optimal codons were par-
ticularly affected. This widespread codon-dependent RNA de-
struction in FMRP-deficient neurons involves a massive
reshuffling of the identities of stabilizing or destabilizing codons.
Moreover, FMRP can distinguish between optimal and nonop-
timal codon-containing mRNAs, probably through the associ-
ated translational machinery. Finally, we demonstrate that, in a
genetic rescue paradigm of FXS where a double deficiency of
FMRP and CPEB1 mitigates the disorder in mice, restoration of
RNA levels drives the recovery of ribosome occupancy. These
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results indicate that a primary consequence of FMRP depletion
from the brain is the uncoupling of codon bias from the RNA
destruction machinery. This uncoupling may be a general
mechanism that underlies FXS, and restoration of the RNA
stability landscape could be a key to ameliorating the disorder.

Results
Steady-State RNA Level Changes Drive Translational Buffering in
Fragile X Brain Cortex. To identify mRNAs that are translation-
ally dysregulated in FMRP-deficient mouse cortex, we per-
formed ribosome profiling (29) and RNA-seq from WT and
FMRP KO (FK) animals (Fig. 1A). Ribosome occupancy (RO),
defined as ribosome protected fragments (RPFs) normalized to
mRNA levels, is a measure of translational activity (29) and has
served as a proxy for protein synthesis. Accumulating evidence
suggests that one mechanism whereby FMRP inhibits translation
is by stalling ribosome transit (5, 10, 12, 13), and indeed there is a

moderately (10 to 15%) higher rate of protein synthesis in
FMRP-deficient brain (3, 4, 30). Using Xtail (31), an algorithm
that tests for differential ROs (DROs) between samples, we
identified 431 mRNAs with DROs between FK and WT (false
discovery rate [FDR] < 0.05; Fig. 1B, SI Appendix, Fig. S1A, and
Dataset S1). Consistent with FMRP acting as a translation re-
pressor, 80% of these mRNAs (345 of 431) have increased RO.
To determine the underlying cause of DRO, we analyzed our

RPF and RNA-seq data separately. DRO can result from
translational dysregulation driven by differential RPF but with
little change in RNA levels; conversely, translational buffering
occurs when RPFs are unchanged but the DRO is driven by
dysregulated RNA levels (32). The RPF changes in the DRO
mRNAs are subtle; however, the changes in RNA levels strongly
oppose the changes in RO (Fig. 1B). When taken as a group,
these mRNAs with altered ROs have stronger changes at RNA
levels than at RPF levels (SI Appendix, Fig. S1A).
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Fig. 1. Steady-state RNA level changes drive translational buffering in Fragile X brain cortex. (A) Illustration of the experimental pipeline of ribosome
profiling and RNA-seq for WT and FK mouse brain cortices. (B) Heat maps showing log2FC of RPF, RO, and RNA levels for mRNAs having statistical significant
different ROs as calculated using Xtail (31) between FK and WT (two biological replicates for each genotype; FDR < 0.05). (C) Venn diagram showing the
overlap of mRNAs with DRO and mRNAs that are DE. (D) Representative GO terms enriched for mRNAs down-regulated at the RNA level in the FK brain
cortex. Gray bars and red points and lines show the −log10 P value and fold enrichments of each of these GO terms, respectively. Dataset S4 provides full lists
of enriched GO terms. (E) Venn diagrams showing the overlap between the down-regulated mRNAs and FMRP binding targets (5). Numbers of RNAs in each
group and in each overlap as well as P values of enrichment (hypergeometric test, upper tail) are indicated. (F) Empirical cumulative distribution function
(ECDF) plots showing log2FC of RPF, RO, and RNA levels for FMRP binding targets (5) and other mRNAs.

Shu et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30401

BI
O
CH

EM
IS
TR

Y

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009161117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009161117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009161117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2009161117/-/DCSupplemental


We identified 12 and 21 mRNAs with strongest increase and
decrease at RPF level (Dataset S2) and 12 and 93 mRNAs with
strongest increase and decrease at steady-state RNA level (in-
cluding Fmr1 mRNA; Dataset S3; see Materials and Methods).
The 345 RNAs with increased RO in FK are significantly
enriched for those with increased RPFs (n = 7; P = 4.17 × 10−11,
hypergeometric test), but much more so for mRNAs with re-
duced steady-state levels (n = 75; P = 5.89 × 10−110, hyper-
geometric test). This is also the case for mRNAs with decreased
RO (Fig. 1C). These data show that mRNA steady-state level
changes drive the observed RO changes, likely via translational
buffering in the FK brain cortex.
It is surprising that so few mRNAs have significantly altered

RPFs; however, if FMRP stalls ribosomes as indicated by others
(5, 10, 12, 13), then this may not be detected by steady-state ri-
bosome profiling. To assess potential stalling changes in FK
brain, we tested the variation of RPFs across transcripts mea-
sured by the coefficient of variation (CV) per transcript (12).
With our very deep RPF libraries (∼19 million unique coding
sequence mappable reads per sample), we did not detect any
discernible changes in the CV per transcript in FK vs. WT brain
(SI Appendix, Fig. S1B), indicating that steady-state ribosome
profiling is unable to detect subtle changes in translation elon-
gation. However, by blocking initiation and performing ribosome
profiling during or after the ribosomes run off, Shah et al. (13)
found that ∼50 mRNAs were associated with FMRP-stalled ri-
bosomes.
Some of the top mRNAs down-regulated at the steady-state

level include those that are involved in ion channel function [e.g.,
Pdzd2 (33) and Wnk2 (34)] and synapse development and com-
munication [e.g., Bai2 (35) and Sipa1l3 (36)]. Gene Ontology
(GO) analysis of down-regulated mRNAs shows an enrichment
for functions related to neuronal dendrites, pre- and post-
synapses, and channels and receptors (Fig. 1D and Dataset S4).
The loss of these RNAs could contribute to the neurological
defects related to FXS. The FMRP binding target RNAs in the
brain are also highly enriched for these similar GO terms (5).
Indeed, over two thirds of the down-regulated mRNAs (58 of 93)
are FMRP targets (5) (enrichment P = 7.53 × 10−51, hyper-
geometric test; Fig. 1E), including the four example genes
mentioned above. In contrast, there were no overlapping
mRNAs among the 12 that were the most increased and the
FMRP targets (enrichment P = 0.498, hypergeometric test). As a
group, the FMRP target RNAs are significantly reduced [mean
log2 fold change (FC) = −0.12; P < 2.2 × 10−16, one-tailed t test].
This observation indicates that the increased RO (mean
log2FC = 0.17; P < 2.2 × 10−16, one-tailed t test) is caused by
reduced RNA levels, although their changes at RPF level is very
subtle (mean log2FC = 0.0093; P = 0.00292, one-tailed t test;
Fig. 1F). These data show that, in the FMRP-deficient mouse
brain cortex, translational buffering is driven by steady-state
mRNA changes, particularly the down-regulation of the FMRP
target mRNAs. Interestingly, the down-regulation of mRNAs,
including FMRP binding targets, is observed across multiple
FXS mouse and human models (SI Appendix, Fig. S1C), sug-
gesting that reduction of these mRNAs could underlie FXS.

RNA Metabolic Profiling Reveals Disrupted RNA Stability in
FMRP-Deficient Neurons. Because FMRP is mostly a cytoplasmic
protein (11), we hypothesized that the down-regulation of its
target (and other mRNAs) is due to a posttranscriptional
mechanism, possibly destabilization upon loss of FMRP. To test
this hypothesis, we have used RNA approach to equilibrium
sequencing (RATE-seq) (37) to measure half-lives of the tran-
scriptome in WT and FK neurons. This general method was
developed over 40 y ago (38) and describes the fact that, upon
incorporation of a nucleotide analog into nascent transcripts
with increasing incubation periods, the fraction of transcripts

that are labeled increases until a steady-state level has been
reached. RNAs with faster degradation attain steady state at the
earliest times.
To perform RATE-seq, we incubated WT and FK mouse

cortical neurons [14 d in vitro (DIV)] with 5-EU for 0 min (for
input and unlabeled control, or “unlab”), 20 min, and 1, 3, 8, 12,
24, and 48 h, after which the RNA was “clicked” to biotin and
purified by streptavidin pull-down. The RNA was mixed with
5-EU–labeled Drosophila RNA and unlabeled yeast RNA as
controls and sequenced together with total unenriched RNAs as
input samples (Fig. 2A). The spike-in Drosophila and yeast RNAs
for library generation were used as quality control measures (SI
Appendix, Fig. S2 A–C). The sequencing reads mapped to the
Drosophila transcriptome were then used as a normalization
reference to confirm the approach to equilibrium curves of the
labeled mouse transcripts (SI Appendix, Fig. S2D). After filtering
(SI Appendix, Fig. S2E), we fit the normalized reads of each
transcript over the labeling time course according to the
approach-to-equilibrium equation and calculated the half-life of
each transcript (Materials and Methods and SI Appendix, Fig. S3A).
We collected two independent biological replicates for each

genotype (total of four sets of data). RNA-seq libraries were
processed in two batches, each with one set of WT samples and
one set of FK samples. We calculated half-lives for 3,194
mRNAs that are present in all four sets of libraries (Dataset S5),
which include 163 FMRP CLIP targets. For each of the batches,
more mRNAs in FK neurons show shorter half-lives compared
to WT neurons [batch 1, 2,071 of 3,194 (∼65%) have decreased
half-lives, mean log2FC = −0.10, P value for log2FC less than
0 < 2.2 × 10−16, one-tailed t test; batch 2, 1,774 of 3,194 (∼56%),
mean = −0.037, P = 2.08 × 10−5]. This destabilization is even
stronger for the FMRP targets. For batches 1 and 2, 130 of 163
(80%) and 127 of 163 (78%) FMRP targets show shortened half-
lives (batch 1, mean log2FC for FMRP targets’ half-lives = −0.16,
P value for FMRP target half-lives to reduce more than nontar-
gets = 0.000665, one-tailed t test; batch 2, mean log2FC = −0.20,
P = 1.71 × 10−12; Fig. 2B). This result confirms our hypothesis that
neuronal mRNAs, especially FMRP targets, are less stable upon
loss of FMRP.
One caveat of RATE-seq is that it is prone to batch effects (SI

Appendix, Fig. S3B) (39). Consequently, we sequenced the input,
unlabeled, 20-min labeled (A), and 1-h labeled (B) libraries to
greater depth and used the inference of synthesis, processing and
degradation rates from transcriptomic data (INSPEcT) program
(40, 41) to estimate the RNA metabolic rates (synthesis, pro-
cessing, and degradation) by comparing nascent and mature
RNA concentrations in the 5-EU–labeled and input total RNA
libraries. This strategy is fundamentally different from RATE-
seq (Fig. 2A). We obtained metabolism rate information for
8,590 RNAs, which include 412 FMRP target mRNAs. The rates
follow log-normal distributions with medians of 1.12 and 1.04
RPKM/h for synthesis, 6.84 and 6.60 h−1 for processing, and 0.13
and 0.14 h−1 for degradation for libraries A and B, respectively (SI
Appendix, Fig. S4A). These values demonstrate the reproducibility
of the assay.
We calculated Spearman’s correlation coefficients for all three

metabolism rates for the two genotypes for both libraries
(Fig. 2C). For synthesis, processing, and degradation, we ob-
served decreasing correlation coefficients between WT and FK.
For synthesis rates, WT and FK cluster together for the same
labeling parameter (library A or B), indicating that there is little
genotype difference. For libraries A and B, the correlation co-
efficients were 0.97 and 0.88 between WT and FK, again dem-
onstrating that the synthesis rates between the two genotypes are
similar. For processing rates, the two genotypes were also similar
despite slightly lower Spearman’s correlation coefficients be-
tween WT and FK (0.79 and 0.61 for libraries A and B). Strik-
ingly, the correlation coefficients for degradation rates between
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WT and FK were substantially lower (0.22 and 0.36 for libraries
A and B), indicating that there is a major difference in RNA
degradation between genotypes. The Spearman’s correlation
coefficients between libraries A and B for each genotype (0.87
and 0.72, respectively) indicate high reproducibility. Therefore,
the degradation rates for the four libraries are separated by ge-
notype (Fig. 2C), demonstrating that RNA stability in FK neurons
is disrupted.
We determined whether the following groups of mRNAs have

altered degradation rates: 1) mRNAs that are down-regulated
(Fig. 2D), 2) FMRP targets (Fig. 2E), and 3) mRNAs that have
DROs (Fig. 2F). For convenience, we will refer to group 1 as
down-regulated mRNAs and group 3 as RO-up/down mRNAs,
respectively. Statistical tests were performed on log10-transformed
degradation rates. In WT neurons, the down-regulated mRNAs
degraded significantly slower than the other RNAs (P = 1.31 ×
10−6, two-tailed t test). However, in FK neurons, the down-
regulated mRNAs degraded significantly faster (P = 0.000684,
two-tailed t test; Fig. 2 D, Left). Moreover, the mRNAs in FK
neurons are globally destabilized relative to those in WT neurons
(for the mRNAs not down-regulated in FK cortex, the difference
of log10 degradation rate means in FK vs. WT = 0.17 h−1; P <
2.2 × 10−16, two-tailed t test); however, the down-regulated
mRNAs are destabilized even more (difference of log10 degra-
dation rate means in FK vs. WT = 0.53 h−1; P = 2.09 × 10−15, two-
tailed t test; Fig. 2 D, Right). FMRP targets and RO-up mRNAs
are also destabilized more than the global trend (Fig. 2 E and F).
Interestingly, the RO-down mRNAs were resistant to mRNA
destabilization upon loss of FMRP; their degradation rates are not
significantly different in FK compared to WT neurons (P = 0.323,
two-tailed t test; Fig. 2 F, Right). This resistance to transcriptome-
wide destabilization could explain the observed steady-state up-
regulation of these mRNAs (Fig. 1B).
We did not identify RNAs with significantly dysregulated

synthesis or processing rates in FMRP-deficient neurons, but
detected 748 RNAs with significantly altered degradation rates,
of which 688 (92%) degraded faster in FK compared to WT
(adjusted P value cutoff of 0.01; Fig. 2G and SI Appendix, Fig.
S4B). The RNAs that degraded faster in FK neurons were sig-
nificantly enriched for FMRP targets, as well as those that were
down-regulated at the steady-state level in the cortex (SI Ap-
pendix, Fig. S4C). As groups, the RNAs that degraded faster or
slower in FK neurons displayed decreased or increased steady-
state levels (P = 5.49 × 10−14 and 1.47 × 10−4, two-tailed t test),
as well as increased or decreased ROs in FK cortex, respectively
(P < 2.2 × 10−16 and = 5.28 × 10−3), with no change at the RPF
level (Fig. 2H). Based on these and the RATE-seq data, we
conclude that there is widespread mRNA destabilization, in-
cluding many of the FMRP targets, in the absence of FMRP; this
in turn drives steady-state RNA level changes and translation
buffering.

Loss of FMRP Uncouples the Link between Optimal Codons and mRNA
Stability. To identify features of mRNAs that are involved in this
FMRP-dependent stability, we examined the correlation of brain
cortex steady-state mRNA level changes or neuronal mRNA
degradation rate changes with codon optimality [gene codon
adaptation index (cAI) score; Materials and Methods and Data-
sets S6 and S7], coding sequence (CDS) guanine-cytosine (GC)
content, and CDS 5′ and 3′ untranslated region (UTR) lengths
and their minimal energy of folding (MEF; an indication of possible
secondary structure; SI Appendix, Fig. S5A). The strongest and most
consistent correlations with both cortical steady-state mRNA level
changes and neuronal mRNA degradation rate changes were gene
cAI scores and CDS GC content, which are correlated features
themselves (42, 43). More specifically, the log2FC of cortical steady-
state mRNA levels had a negative correlation with gene cAI scores
(Spearman’s correlation coefficient = −0.22; P < 2.2 × 10−16), while

the log2FC of the neuronal mRNA degradation rate had a positive
correlation (Spearman’s correlation coefficient = 0.20; P < 2.2 ×
10−16; SI Appendix, Fig. S5A). This means mRNAs which contain
more optimal codons were the ones that had faster degradation
rates and showed a consequent down-regulation in FK.
Codon optimality, a measure of the balance between the usage

frequency of a given codon (demand) and supply of charged
tRNAs encoding the complementary anticodon (21), is a major
determinant of mRNA stability from yeast to vertebrates (22–27).
Generally, mRNAs with more optimal codons (high gene cAI
scores; presumably with faster decoding rates) are more stable
than mRNAs using less optimal codons, connecting translation
regulation to mRNA stability. Because FMRP regulates transla-
tion, codon optimality could be a mechanism that links FMRP-
mediated translation to mRNA stability. Therefore, we investi-
gated the role of codon optimality in FMRP-dependent mRNA
stability.
We grouped all detectable mRNAs into 10 equal-sized bins of

increasing gene cAI score and examined which bins were par-
ticularly affected by mRNA degradation rates (Fig. 3A). mRNAs
in bins 4 to 10 degraded significantly faster in FK neurons than in
WT neurons (Holm-adjusted P < 0.01, one-tailed t test); the
higher the cAI score bin, the faster the degradation rates be-
come. However, mRNAs in bins 1 to 3 were barely changed,
indicating that mRNAs containing nonoptimal codons are re-
sistant to destabilization upon loss of FMRP.
Compared to the general transcriptome (gene cAI scores =

0.78 ± 0.038, mean ± SD), mRNAs that degrade faster in FK
neurons (gene cAI scores = 0.79 ± 0.033) and the mRNAs that
are down-regulated in the cortex (gene cAI scores = 0.80 ±
0.023) have significantly more optimal codons (P < 2.2 × 10−16

and 1.12 × 10−14, two-tailed t test). However, the mRNAs that
degrade slower in FK neurons (gene cAI scores = 0.76 ± 0.034)
are significantly less optimal (P = 2.85 × 10−4, two-tailed t test;
Fig. 3B). tRNA adaptation index (tAI), a metric that measures
codon optimality by approximating tRNA abundance based on
their gene copy number, leads to the same conclusions (SI Ap-
pendix, Fig. S5B). These results indicate that FMRP stabilizes
mRNAs that have an optimal codon bias.
Because optimal codons may confer stability to mRNAs

(22–27), we examined whether this link is uncoupled upon loss of
FMRP. The codon-stability coefficient (CSC), which describes
the link between mRNA stability and codon occurrence, has
been calculated for each codon from yeast to human (23, 24, 26,
27). We determined whether this relationship is maintained in
the absence of FMRP. The CSC values in WT neurons ranged
from <−0.2 to >0.2 (Dataset S6), which is comparable to pre-
viously reported CSC values for human cell lines and mouse
embryonic stem cells (SI Appendix, Fig. S5C). This differs from
what has been described in Drosophila, where the neuronal CSC
is attenuated relative to somatic cells (24). Of the 60 non-start or
-stop codons, 29 had CSCs greater than 0 (stabilizing codons)
and 31 had CSCs smaller than 0 (destabilizing codons; Fig. 3 C,
Upper). Strikingly, 17 codons that are stabilizing in WT are
destabilizing in FK neurons, and 21 codons changed in the op-
posite direction (Fig. 3 C, Lower, and Dataset S6). Optimal co-
dons are prevalent in abundant mRNAs and are associated with
positive CSCs (i.e., are stabilizing codons) (23, 24, 26, 27), as we
have observed in WT neurons (Spearman’s r = 0.55; P = 1.92 ×
10−5; Fig. 3 D, Upper). In FK neurons, however, this relationship
breaks down. Codon usage frequencies in the top 10% of highly
expressed mRNAs are nearly the same as in WT (Dataset S6),
but the correlation between codon usage frequencies and CSCs
is nearly random in FK (r = 0.067; P = 0.612; Fig. 3D). These
results show that the link between codon-mediated RNA stabi-
lization and codon usage bias is uncoupled in FMRP-deficient
neurons.
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FMRP May Stabilize Codon Optimality-Dependent mRNA Stability
Directly and through Other Factors. We considered possible mecha-
nisms for how FMRP could regulate codon optimality-dependent
mRNA stability. Because the down-regulated mRNAs are enriched
for FMRP targets, FMRP may stabilize them through direct
binding. We noticed a bias for high gene cAI scores of the FMRP
targets (Fig. 4A) and hypothesized that FMRP may associate with
mRNAs of higher codon optimality. To test this, we compared a
pair of previously described reporter mRNAs that are enriched in
optimal or nonoptimal codons (27). They differ by a single nucle-
otide insertion to induce a frame shift, and thus they have almost

identical nucleotide compositions. HEK293T cells were trans-
duced with these reporters together with a FLAG-tagged FMRP-
expressing vector (44). Subsequent anti-FLAG immunoprecipita-
tion and RT-qPCR showed that the reporter with optimal codons
was more enriched compared to the reporter with nonoptimal
codons (P = 0.0261, one-tailed paired t test; Fig. 4B). This result
suggests that FMRP can indeed “identify” mRNAs with optimal
codons as opposed to general nucleotide composition.
We next examined whether FMRP binding could impact

RNA stability. As a group, the degradation rates of FMRP CLIP
targets increased more than the nontarget RNAs (P = 1.36 × 10−9,
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one-tailed t test; SI Appendix, Fig. S6A). Because too few FMRP
targets (30%) were detected in the degradation rate data set, we
focused on the steady-state RNA changes and compared RNAs in
each cAI score bin. Similar to the global trend discussed above
(Fig. 3A), FMRP targets with more optimal codons were also
more strongly down-regulated than those with nonoptimal codons
(Spearman’s correlation coefficient of RNA log2FC and gene cAI
score bin = −0.21; P = 8.27 × 10−8). However, FMRP targets in all
but the lowest codon-optimality bin were significantly reduced in
the absence of FMRP (Holm-adjusted P < 0.01, one-tailed t test;
Fig. 4C, red). This is different from the codon optimality-matched
nontargets (Fig. 4C, black). The nontarget mRNAs also showed
an optimal codon-biased down-regulation (Spearman’s correlation
coefficient of RNA log2FC and gene cAI score bin = −0.20; P <
2.2 × 10−16), but only RNAs in cAI bins 7, 8, and 9 are significantly

down-regulated (Holm-adjusted P < 0.01, one-tailed t test). In all
gene cAI score bins, the log2FC of the FMRP targets are signif-
icantly more negative than the nontarget RNAs (Holm-adjusted
P < 0.01, one-tailed t test). These results suggest that the stability
of the FMRP target RNAs is not only affected by their codon
optimality, but also by the FMRP binding.
Not all mRNAs that are depleted in the FK cortex are FMRP

CLIP targets, suggesting that FMRP could also stabilize mRNAs
through other factors. For example, YTHDF2 was shown to
antagonize FMRP’s stabilizing effect for some FMRP targets in
mouse brain cortex (20), and knockdown of this protein in hu-
man cell lines (45) leads to longer half-lives of the FMRP targets
[D = 0.14; P = 2.19 × 10−7, two-sided Kolmogorov–Smirnov
(KS) test] and of mRNAs down-regulated in the FK cortex (D =
0.37; P = 3.56 × 10−5, two-sided KS test; Fig. 4D).
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We examined RNA-seq datasets to assess other factors that
might be involved in FMRP-mediated optimal codon-dependent
mRNA stability. We selected factors that target mRNAs of
higher GC content (46) or higher codon optimality (47), and
therefore the RNA level changes upon depletion of these factors
likely affects their stability (Fig. 4D and SI Appendix, Fig. S6B).
Depletion of XRN1 (5′−3′ exonuclease) and DDX6 (DEAD-Box
Helicase 6) in human cell lines (46) leads to up-regulation of the
mRNAs down-regulated in FK cortex (D = 0.42, P = 4.05 × 10−8;
D = 0.37, P = 2.24 × 10−6, two-sided KS test; Fig. 4D). On the
other hand, depletion of FXR1 (Fragile X Mental Retardation
Syndrome-Related Protein 1) (48) leads to down-regulation of the
orthologs of FMRP targets (SI Appendix, Fig. S6B). These results
suggest that XRN1 and DDX6 might antagonize FMRP while
FXR1 might cooperate with it to stabilize mRNAs of high codon
optimality (Fig. 4E).

CPEB1 Depletion Rescues FXS by Rebalancing RNA Homeostasis.
Nearly all pathophysiologies associated with FMRP deficiency
are rescued in FMRP/CPEB1 double knockout (dKO) mice (10).
To assess how this rescue could be achieved, we performed ri-
bosome profiling and RNA-seq on CPEB1 KO (CK) and dKO
mouse brain cortices in addition to the WT and FK samples as
described above (Fig. 5A). We identified 651 genes with DROs
among the four genotypes (FDR < 0.05; Fig. 5B and Dataset S1),
including the 431 genes with DRO between FK and WT de-
scribed above (Fig. 1B). Importantly, 425 of these DROs were
rescued in the dKO cortex (i.e., not significantly different

compared to WT). Unexpectedly, >50% of RNAs with DRO in
CK (204 of 359) also had DROs in FK and were changed in the
same direction (i.e., increased or decreased). These molecular
data are consistent with previous observations such as dendritic
spine number and metabotropic glutamate receptor-mediated
long-term depression (mGLuR-LTD), which are nearly identi-
cally aberrant in the two single KO mice but rescued to normal in
dKO animals (10). Because of the molecular similarities between
WT and dKO, and between FK and CK, we henceforth refer to
these two groups as “normal” and “FXS-like.”
To determine the underlying molecular driver of the DRO

among the four genotypes, we analyzed our RPF and RNA-seq
data separately. At an adjusted P value (Padj) <0.05, only 23 and
21 RPFs were significantly different between FK and WT and
between CK and WT, respectively. Conversely, the dKO was the
most different from WT, with 410 and 333 RPFs that were sig-
nificantly higher or lower (Fig. 5C and Dataset S2). Therefore,
this genetic rescue of FXS-like phenotypes in the dKO is not
achieved by correcting translational activity as defined by the
number of RPFs. In contrast, the RNA-seq heat map displayed a
mirror image of the DRO heat map (SI Appendix, Fig. S7A).
Compared to WT, the expression of 50 genes was dysregulated in
FK (Padj < 0.05; 10 up-regulated, 40 down-regulated), along with
145 in CK (Padj < 0.05; 13 up-regulated, 132 down-regulated),
but only 2 in dKO (Padj < 0.05; Cpeb1 and Fmr1; Dataset S3).
The differentially expressed (DE) genes in FK and CK were
largely identical. Among the 10 and 13 genes up-regulated in FK
and CK, 7 overlap (P = 8.72 × 10−25, hypergeometric test, upper
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Fig. 5. Genetic rescue of FX by CPEB KO is rebalanced at RNA level. (A) Illustration of the genetic rescue paradigm described previously (10). (B and C) Heat
maps showing mRNAs having differential RO (B) and RPF (C) between any two genotypes of the four genotypes noted above. (D) Heat maps showing mRNAs
that are DE between the normal (WT and dKO) and FXS-like groups (FK and CK). Red and blue shades of the heat maps show high or low z-scores calculated
for each mRNA (row) across all samples. Each genotype has two biological replicates. (E) ECDF plots for log2FC of RNA, RO, and RPF in FK (dotted lines) and
dKO (solid lines) relative to WT for mRNAs with significantly up- (red) or down-regulated (blue) RPFs in dKO relative to WT.
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tail); among the 40 and 132 genes down-regulated, 35 overlap
(P = 3.91 × 10−72, hypergeometric test, upper tail). Because the
transcriptome profiles in FK and CK are as similar as the WT
and dKO profiles, we performed an unsupervised hierarchical
clustering to test for sample-to-sample similarities (SI Appendix,
Fig. S7B). FK and CK formed one cluster while WT and dKO
formed another, validating the FXS-like vs. normal grouping at
the RNA level.
Having validated the grouping, we tested for DE RNAs in the

FXS-like group (FK and CK) relative to the normal group (WT
and dKO). The DE RNAs between the groups are changed the
same direction (i.e., up or down) in the single KOs and are
rescued in the dKO to WT levels. With greater statistical power
than when comparing between single genotypes, we identified
733 DE RNAs in the FXS-like group (Padj < 0.01), 162 (22.1%)
up-regulated and 571 (77.9%) down-regulated (Fig. 5D and
Dataset S8). Almost all down-regulated RNAs in FK compared
to WT are down-regulated in the FK-like group (87 of 93). Over
77% of the RNAs with up-regulated ROs in FK vs. WT (267 of
345) were significantly reduced in the FXS-like group (P = 0,
hypergeometric test, upper tail). Similarly, 42% of the RNAs
with down-regulated ROs in FK (36 of 86) were significantly
increased steady-state levels (P = 3.28 × 10−51, hypergeometric
test, upper tail). Therefore, we conclude that rescue of FXS in
FMRP/CPEB1 dKO animals is achieved by rebalancing the
transcriptome.
Many mRNAs show differential RPFs in dKO compared to

WT. We investigated their RNA, RO, and RPF level changes in
FK and dKO compared to WT (Fig. 5E). The RNA levels were
only mildly changed (mean RNA log2FC for RPF-up mRNAs =
−0.065, for RPF-down mRNAs = 0.019; Fig. 5 E, Left, dotted
lines) in FK, but the slightly stronger change in RO (mean RO
log2FC for RPF-up mRNAs = 0.199, for RPF-down mRNAs =
−0.107; Fig. 5 E, Middle, dotted lines) suggests subtle transla-
tional dysregulation and consequent subtle changes in RPFs
(mean RPF log2FC for RPF-up mRNAs = 0.105, for RPF-down
mRNAs = −0.092; Fig. 5 E, Right, dotted lines). Upon deletion
of CPEB1 in the dKO, the ROs remain about the same as in FK
(mean RO log2FC for RPF-up mRNAs = 0.251, for RPF-down
mRNAs = −0.153; Fig. 5 E, Middle, solid lines), suggesting the
subtle translational dysregulation caused by loss of FMRP is not
rescued. However, the RNA levels also changed, albeit mildly, in
the same direction as their ROs (mean RNA log2FC for RPF-up
mRNAs = 0.086, for RPF-down mRNAs = −0.127; Fig. 5 E, Left,
solid lines). That is, in dKO, reduced RO is accompanied by
reduced RNAs, and vice versa. These mild but additive changes
are reflected in strong alterations in RPFs (mean RPF log2FC
for RPF-up mRNAs = 0.363, for RPF-down mRNAs = −0.325;
Fig. 5 E, Right, solid lines). These observations suggest there may
be mild translational dysregulation in the FK brain, but it is not
rescued by the deletion of CPEB1 in the dKO. The main change
introduced by removing CPEB1 was indeed at the RNA level.

Discussion
It is widely assumed that excessive protein synthesis is not only a
corollary of FXS, but a proximate cause of the disorder (49).
Consequently, several studies have used high-resolution whole-
transcriptome methods to identify mRNAs that are either bound
by FMRP (5–9) or whose translation is dysregulated in FMRP-
deficient mouse models (5, 12, 13, 50, 51). Although nearly 1,000
FMRP binding targets have been identified in the mouse brain,
surprisingly few are dysregulated at the translational level, and,
of those that are, the dysregulation is usually modest. Moreover,
in even fewer cases has the dysregulation been linked to FXS
pathophysiology (52). Therefore, the functional output of FMRP
binding remains largely elusive.
Our study shows that, in the FK mouse brain cortex, steady-state

mRNA levels are globally disrupted, which drives the dysregulated

translational buffering (Figs. 1 and 5). FMRP targets are particu-
larly down-regulated, which happens specifically in neurons (8,
50, 53). By metabolic labeling and RNA-seq in neurons, we show
that the loss of FMRP results in reduced stability not only of its
direct target substrates, but also of other mRNAs with an opti-
mal codon bias (Figs. 2 and 3). This instability drives the changes
in steady-state RNA levels and translational buffering in the
cortex (Fig. 2). Moreover, our data demonstrate that RNA sta-
bility conferred by optimal codons is mediated by FMRP and
possibly other transacting factors. The loss of FMRP leads to a
massive reshuffling of the identities of stabilizing versus destabilizing
codons (Fig. 3).
How does FMRP stabilize mRNAs that use optimal codons?

One possibility is that FMRP can stabilize its targets by directly
interacting with the translational machinery. We show that
FMRP preferentially binds an mRNA reporter that contains
optimal codons over a reporter that contains nonoptimal codons
but has nearly the same nucleotide composition (Fig. 4B). Upon
loss of FMRP, target mRNAs are destabilized more than non-
targets matched for their codon optimality (Fig. 4C), suggesting
FMRP binding could lead to enhanced stability in addition to
that provided by optimal codons. In yeast, the Ccr4–Not complex
directly binds the empty E site of the ribosome during ineffective
decoding on a nonoptimal codon, thereby rendering the mRNA
more susceptible to degradation (54). One can postulate that the
E site on an optimal codon is more frequently occupied com-
pared to a nonoptimal codon, and therefore is less likely to be
recognized by the Ccr4–Not complex. Moreover, the N terminus
of Drosophila FMRP was also shown to be able to bind directly to
ribosomes (55). If these findings are conserved in mammalian
systems, FMRP binding to ribosomes may further reduce the
chance of Ccr4–Not binding.
We cannot rule out the possibility that FMRP may “sense”

other features of mRNA, e.g., GC content of the coding se-
quence. In mammalian systems, mRNAs that contain many op-
timal codons inevitably have higher GC content in the coding
sequence, which predicts a stronger secondary structure (43).
Interestingly, mRNAs that have reduced steady-state RNA levels
or have increased degradation rates tend to have long CDSs,
which also predicts more CDS mRNA structures, as suggested by
their low minimum free energy (MFE; SI Appendix, Fig. S3). In
mammalian cells, strong secondary structure in the CDS stabi-
lizes mRNA, possibly by preventing strand-specific endonucleo-
lytic cleavage or ribosome collisions (43). FMRP binding may
help stabilize such structures in the CDS, thereby reducing RNA
degradation. Indeed, there is at least in vitro evidence that RNA
secondary structure is recognized by FMRP (1). On the other
hand, DDX6 was shown to mediate mRNA decay of GC-rich
mRNAs, possibly by facilitating unwinding of the secondary
structures throughout the transcripts and facilitating XRN1
progression (42). Therefore, it is possible that FMRP stabilizes
the mRNAs by antagonizing DDX6 and XRN1. Indeed, the
orthologs of the mRNAs down-regulated in the mouse FK brain
are up-regulated upon loss of DDX6 and XRN1 in human cells
(Fig. 4D), suggesting FMRP, DDX6, and XRN1 may share
common targets. By interacting with DDX6, FMRP could reg-
ulate a much wider pool of mRNAs than those in the FMRP
target list (5).
Our data show that nonoptimal codons can make mRNAs

refractory to FMRP deficiency-induced destabilization (Fig. 3A
and SI Appendix, Fig. S5B), while they are not essential. For
instance, the mRNAs with reduced ROs in FK (not destabilized;
Fig. 2F) are not particularly enriched for nonoptimal codons.
However, they have short CDSs and 3′ and 5′ UTRs (SI Ap-
pendix, Fig. S8A) and are replete with 5′TOP mRNAs (56) (21 of
86; P = 7.5 × 10−34, hypergeometric test, upper tail). These
features are in stark contrast to the RO-up mRNAs (destabilized
in FK neurons; Fig. 2F), which have long UTRs and CDSs and
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are depleted of 5′TOP mRNAs (0 of 345; P = 0.80, hyper-
geometric test, upper tail). We speculate the RO-up and RO-
down mRNAs are under the control of distinct posttranscrip-
tional regulation programs.
In the dKO, rebalancing of RNA levels is accompanied by, and

probably necessary for, mitigation of FXS-like phenotypes in
mice by CPEB1 depletion (Fig. 5) (10). Among the mRNAs
dysregulated between the FXS-like group (i.e., FK and CK) and
the normal group (WT and FK/CK dKO), GO analysis shows
that many up-regulated and rescued mRNAs have protein syn-
thetic functions, including ribosome biogenesis, translation, and
protein folding, while the down-regulated and rescued mRNAs
have cell projection, synaptic transmission, as well as transcrip-
tion and chromatin functions (SI Appendix, Fig. S8B and Data-
sets S9 and S10). Several important points come from this
analysis. First, the up-regulated mRNAs are among the highest
expressed in the brain (SI Appendix, Fig. S8C), and their protein
products could promote general protein synthesis. This could
contribute to the net increase in protein output in the FXS brain
(3, 4, 30). Second, we find that FMRP regulates the levels of mRNAs
that encode chromatin modifying factors, which is reminiscent of
other observations showing that FMRP controls the synthesis of
epigenetic regulators, albeit at the translational level (13, 52). Third,
the brain- and neuron-related GO terms enriched for the down-
regulated RNAs reflect the neural dysfunction that occurs in FXS.
Indeed, the down-regulated RNAs are also significantly enriched
for those related to autism, as compiled by the Simons Foundation
Autism Research Initiative project (57) (P = 3.56 × 10−7, hyper-
geometric test, upper tail; SI Appendix, Fig. S8D). Therefore, re-
storing RNA homeostasis could be a key to FXS treatment.
The precise molecular mechanism(s) by which the lack of

CPEB1 rescues FXS-like phenotypes in mice is likely to be
complex. This is not surprising given that RNA-binding proteins
can perform a variety of tasks that depend on the RNAs and/or
proteins to which they are bound in specific tissues. For example,
although FMRP inhibits protein synthesis, recent evidence in-
dicates it also activates translation (9, 58) as well as transcription.
In a similar vein, CPEB1 activates translation by elongating poly(A)
tails (59) but also alters 3′ UTR length (60), which may affect
mRNA translation, stability, or subcellular localization. Therefore,
a simple balancing of protein synthesis by the two proteins as
originally proposed by Udagawa et al. (10) is almost certainly too
simplistic. This may also be the case with other mouse FXS rescue
paradigms (61).

Materials and Methods
Animals. WT, FK, CK, and dKO mice were as used previously (10). Specifically,
FK (JAX stock no. 004624) and its WT controls (JAX stock no. 004828) were
purchased from the Jackson Lab. CK were created in-lab (62). Mice were
bred as previously described (10). All mice were maintained in a tempera-
ture- (25 °C), humidity- (50 to 60%), and light-controlled (12 h light/dark
cycle) pathogen-free environment. Animal protocols (no. 1158) were ap-
proved for use by the University of Massachusetts Medical School Institu-
tional Animal Care and Use Committee.

Ribosome Profiling and RNA-Seq in Cortex. Two mice per genotype were used
for ribosome profiling and RNA-seq. The brain was rapidly removed from
postnatal day (P) 28 to P35 mice, rinsed in ice-cold dissection buffer (1× HBSS
+ 10 mM Hepes-KOH), and rapidly dissected in dissection buffer ice/liquid
mixture to collect cerebral cortex as described previously (63). Both cortex
hemispheres were homogenized in 900 μL of homogenization buffer (63).
Five hundred microliters of the resulting ∼700 μL supernatant (cytoplasmic
lysate) was used for ribosome profiling using RNase A and T1 digestion (64),
and the rest was used for RNA-seq. Ribosome profiling and RNA-seq libraries
were prepared following published protocols (65) and sequenced with Illu-
mina NextSeq. More details are provided in SI Appendix, Supplementary Text.

Spike-In RNA for RNA Metabolism Profiling. Drosophila melanogaster (fly)
Schneider 2 cells were grown in 12mL Schneider’s insect medium (Sigma-Aldrich,
cat. no. S0146) containing 10% (vol/vol) fetal bovine serum (Sigma-Aldrich, cat.

no. F2442) at 28 °C until confluent. Cells were incubated with 200 μM 5-EU for
24 h and were washed, pelleted, and snap-frozen in liquid nitrogen. RNA was
extracted using TRIzol.

Saccharomyces cerevisiae (yeast) cells were grown in 10 mL YEP medium
containing 3% glucose at 30 °C until OD600 reached 0.5. Cells were then
pelleted, and RNA was extracted using hot acidic phenol (66).

RNA Metabolic Profiling with Cortical Neuron Cultures. DIV14 mouse cortical
neurons were used for 5-EU labeling experiments. One million cells in each
60-mm dish were incubated with 200 μM 5-EU (Click-iT Nascent RNA Capture
Kit; Invitrogen, cat. no. C10365) for 0 min (input and unlabeled), 20 min,
and 1, 3, 8, 12, 24, and 48 h. Two dishes were used for unlabeled and
20-min-labeled samples, respectively. Neuron RNA was extracted using TRI-
zol (Invitrogen, cat. no. 15596018). The 5-EU–labeled RNA was enriched, and
the RNA-seq library was prepared by adapting the Forrest et al. protocol
(67). For each WT and FK, two independent batches of neurons were pre-
pared, and each batch resulted in one of each input, unlabeled and 20-min–
to 48-h–labeled libraries (Dataset S11). SI Appendix, Supplementary Text,
includes more details.

Differential Translation and RNA Expression Analysis. Brain cortex ribosome
profiling and RNA-seq reads were processed as previously described (51).
Batch-corrected counts were used to identify differentially translated/
expressed genes with DESeq2 (68) (RPF and RNA) or Xtail (31) (RO). To identify
mRNAs with significant DROs, an FDR < 0.05 was used as cutoff. To identify
mRNAs with strongest changes at RPF and RNA levels, a Padj < 0.1 was used as
cutoff. More details are provided in SI Appendix, Supplementary Text.

Ribosome Coverage Variability Analysis. P-site offsets were calculated by ex-
amining the cumulative distribution of 27- to 34-nt reads aligning at start
codons using the package Plastid (69). After applying the respective offset to
reads of each size, only in-frame reads were used to determine the P-site
codon. The first 15 and the last 5 codons of each transcript were removed
from the reference annotation. Scripts are available at https://github.com/
elisadonnard/riboEPAsite. For each gene, the highest-expressed isoform in
WT samples was used. Mean codon coverage per transcript was calculated
for each sample (number of RPFs per codon), as was the coefficient of var-
iation (CV) in codon coverage (SD in the number of RPFs per codon divided
by mean), similar to Das Sharma et al. (12). To compare WT and FMRP KO
samples, the log2(CV in codon RPFs) per transcript was plotted versus
log2(mean codon RPF coverage). A linear model fit per sample was calcu-
lated using geom_smooth from the ggplot2 package [method = “gam”,
formula = y ∼ s(x, bs = “cs”)].

GO Analysis. GO enrichment analysis was performed using Cytoscape with the
ClueGo (70) plug-in (v2.3.3), with genes that are expressed in the mouse
cortex as the reference gene set. Specifically, biological-function GO terms
of levels 6 to 13 were tested for enrichment at Padj value <0.05 (right-sided
hypergeometric test). Enriched GO terms that are similar were then fused to
a group based on their Kappa score, which quantifies percentage of com-
mon genes between terms. The leading group terms, which are the terms
with highest significance in each group, are presented in Fig. 1D and SI
Appendix, Fig. S8B. All enriched terms are in Datasets S4, S9, and S10.

RNA Metabolism Profiling Analysis. Reads generated from the RNA metabo-
lism profiling libraries were processed as for cortical RNA-seq libraries de-
scribed above, except that a mouse–fly–yeast merged genome (mm10 + dm6
+ sacCer3) was used as the reference genome for reads mapping by hisat2
(71). The mapping statistics here were used for quality control and filtering
purposes (SI Appendix, Fig. S2 A–E). The RATE-seq analysis was then per-
formed using tools in the Determination of Rates Using Intron Dynamics
pipeline (39). For INSPEcT analysis, uniquely mapped reads that are depleted
of rRNA, tRNA sequences, and PCR duplicates were again mapped to mm10
genome with hisat2. Intron and exon read quantification and RNA metab-
olism rate (synthesis, processing, and degradation) estimation was per-
formed using INSPEcT (40) (v1.10.0), with the degDuringPulse parameter set
to TRUE. SI Appendix, Supplementary Text, provides more details.

tRNA and Codon Adaptation Index (tAI and cAI). The codon adaptation index
was calculated for a given sample as described by Sharp and Li (72). Briefly, for
each sample, a set of the top 10% expressed genes was defined using batch-
corrected TPM; the relative synonymous codon usage was then calculated,
dividing the observed frequency of each codon by the frequency expected
assuming all synonymous codons for a given amino acid are used equally;
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the cAI is then calculated by comparing the frequency of each codon to the
frequency of the most abundant (or optimal) codon for a given amino acid.
All codes used to perform this analysis are available on GitHub (https://
github.com/elisadonnard/CodonOPT). This pipeline also includes codon tAI
and calculates gene tAI scores. Codon cAI and gene cAI scores were calcu-
lated for both brain cortex and neurons using their respective tran-
scriptomes (Datasets S6 and S7). Because the results from cortex and neurons
are largely identical, only WT neuron codon cAI and gene tAI and cAI scores
are presented.

CSC Analysis. CSCs were calculated as previously described (23, 24, 26, 27). SI
Appendix, Supplementary Text, provides more details.

MFE Analysis. The sequences of 5′UTR, CDS, and 3′UTR were first extracted
from the highest-expressing isoform of each gene using Biostrings (v2.54.0)
(73). MFE of each sequence was then calculated using the RNALfold module
in ViennaRNA (v2.4.14) (74) with the default parameters.

RNA Immunoprecipitation. Cultured HEK 293T cells (ATCC) were transfected
with Lipofectamine 3000 (Invitrogen) based onmanufacturer instructions in a
six-well plate. At 48 h post transfection, cytoplasmic fraction was collected
by lysing the cells with polysome buffer, as was used for ribosome profiling
(see above), plus 1% Nonidet P-40. Ten percent of the cleared lysate was put
aside as input sample, and the rest of the lysate was diluted 1:10 with NT2
buffer (75) and used for immunoprecipitation using antibody-precoated
Protein G Dynabeads (Invitrogen) for 40 min at 4 °C by end-to-end rota-
tion. The antibodies used were monoclonal ANTI-FLAG M2 antibody
(Sigma-Aldrich) or normal mouse IgG (Santa Cruz). After washing three

times with NT2 buffer, RNA was extracted using the TRIzol Reagent (Invi-
trogen) from the beads and from the input lysate. cDNA was made with a
QuantiTect Reverse Transcription Kit (Qiagen). qPCR was performed to
quantify the reporters (27) with mCherry sequences and Fmr1 gene, with
primers mCherry-F gtacgggtcaaaagcttacgtt, mCherry-R ccttctggaaatgaaagt
ttaagg, Fmr1-F cgcggtcctggatatacttc, and Fmr1-R tggagctaatgaccaatcactg.
More details are provided in SI Appendix, Supplementary Text.

Code Availability. Codes used to perform ribosome coverage variability
analysis and cAI analysis are available on GitHub (https://github.com/eli-
sadonnard/riboEPAsite and https://github.com/elisadonnard/CodonOPT).
Other customized R scripts for data analysis are available from the corre-
sponding authors upon request.

Data Availability. The data supporting the findings of this study have been
deposited in the publicly accessible GEO repository with the accession codes
GSE140565 and GSE140642.
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