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Abstract

Use of high-throughput, in vitro bioactivity data in setting a point-of-departure (POD) has the 

potential to accelerate the pace of human health safety evaluation by informing screening level 

assessments. The primary objective of this work was to compare PODs based on high-throughput 

predictions of bioactivity, exposure predictions, and traditional hazard information for 448 

chemicals. PODs derived from new approach methodologies (NAMs) were obtained for this 

comparison using the 50th (PODNAM,50) and the 95th (PODNAM,95) percentile credible interval 

estimates for the steady-state plasma concentration used in in vitro to in vivo extrapolation of 

administered equivalent doses (AEDs). Of the 448 substances, 89% had a PODNAM,95 that was 

less than the traditional POD (PODtraditional) value. For the 48 substances for which PODtraditional 

< PODNAM,95, the PODNAM and PODtraditional were typically within a factor of 10 of each other, 
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and there was an enrichment of chemical structural features associated with organophosphate and 

carbamate insecticides. When PODtraditional < PODNAM,95, it did not appear to result from an 

enrichment of PODtraditional based on a particular study type, (e.g. developmental, reproductive, 

chronic studies). Bioactivity:exposure ratios (BERs), useful for identification of substances with 

potential priority, demonstrated that high-throughput exposure predictions were greater than the 

PODNAM,95 for 11 substances. When compared to threshold of toxicological concern (TTC) 

values, the PODNAM,95 was greater than the corresponding TTC value 90% of the time. This work 

demonstrates the feasibility, and continuing challenges, of using in vitro bioactivity as a protective 

estimate of POD in screening level assessments via a case study.

Keywords

High-throughput screening; high-throughput toxicokinetics; threshold of toxicological concern 
(TTC), point of departure (POD); new approach methodologies

1 Introduction

The future of chemical risk assessment is moving towards high-throughput approaches that 

can provide preliminary estimates of hazard and exposure. The utilization and sharing of 

these new approaches and associated data internationally is imperative because each 

regulatory authority is addressing distinct but related challenges in chemical screening and 

evaluation. A commonality among these challenges is the need to prioritize chemicals for 

further evaluation and conduct screening-level assessments, as there are thousands of 

chemicals with potential human exposures but with minimal hazard information (Egeghy et 
al., 2012; Judson et al., 2009). New approach methodologies (NAMs) (ECHA, 2016; EPA, 

2018a) include in vitro and in silico approaches for prediction of hazard and exposure, 

thereby enabling solutions to some of these regulatory challenges. NAMs for hazard 

evaluation can be used in high-throughput formats, and in some cases may identify chemical 

mechanisms of action. NAMs for exposure provide rapid estimates using limited 

information for more chemicals than lower-throughput models can achieve. The promise of 

NAMs is motivating regulatory authorities to define and adopt fit-for-purpose NAMs, and 

support efforts to reduce, refine, and replace resource-intensive vertebrate animal tests. 

International collaborative efforts that deepen understanding of NAMs and their application 

while preventing duplicative efforts have become a salient need.

There are several key regulatory drivers of international use of NAMs in toxicology 

applications. In the US, the amended Toxic Substances Control Act (TSCA) (Lautenberg, 

2016) requires a risk-based screening process for prioritizing chemicals as high-priority 

substances for risk evaluation or low-priority sibstances for which risk evaluations are not 

warranted. The amended TSCA requires the U.S. Environmental Protection Agency (EPA) 

to develop a plan, “to promote the development and implementation of alternative test 

methods and strategies to reduce, refine, or replace vertebrate animal testing and provide 

information of equivalent or better scientific quality and relevance for assessing risks of 

injury to health or the environment” (EPA, 2018a). In the European Union (EU), the 

European Chemical Agency (ECHA) regulates chemical substances under the Registration, 
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Evaluation, Authorisation and Restriction of Chemicals (REACH) (Commission, 2007), that 

also promotes the use of NAMs as a means to increase the data availability for data poor 

substances (ECHA, 2016, 2017). Health Canada (HC) and Environment and Climate Change 

Canada (ECCC) are continuing work under the Chemicals Management Plan (CMP) to 

address human health and ecological concerns for approximately 4,300 prioritized 

substances on the Canadian Domestic Substances List (DSL) by the year 2020 (ECCC/HC, 

2016a). High-throughput NAMs have been identified as a possible means to meet near-term 

timelines for screening assessments and to inform selection of future priorities as the 

program continues to evolve post-2020 (ECCC/HC, 2016b). These and other regulatory 

drivers underscore the need for an international discussion about how to apply NAMs in a 

transparent and effective way.

One aspect of prioritization and screening-level assessment strategies is a trade-off between 

speed and uncertainty. Though the specific implications of these strategies are likely to differ 

by regulatory authority, each of the aforementioned regulatory agencies are responsible for 

protecting human and environmental health and have traditionally relied on in vivo studies in 

efforts to achieve this mission. Despite increasing interest in prediction of human health 

hazard directly, rather than relying on animal models and associated extrapolation concerns, 

a conceptual bridge for toxicologists to understand how current practice could be augmented 

by incorporation of NAMs will enable greater discussion and progress. Thus, there is a clear 

need and opportunity to demonstrate how preliminary screening-level risk assessment using 

a NAM-based approach would perform when compared to traditional points of departure 

(PODs). Acknowledging and documenting the caveats and limitations of this comparison is 

central to building the confidence and insight needed to employ NAMs. Hence, the study 

documented here sought to use as many chemicals as possible to illustrate how the current 

state-of-the-science would support NAM-based screening-level risk assessment.

NAMs for exposure, bioactivity, and in vitro to in vivo extrapolation are available, for 

differing numbers of substances, to inform this exercise of demonstrating a risk-based 

screening-level assessment approach. High-throughput exposure predictions have been 

generated using a series of computational models under the ExpoCast project, the second 

version of which used a series of heuristics (Wambaugh et al., 2014) including chemical use 

type (Dionisio et al., 2015) and production volume to quantitatively predict exposure for 

thousands of chemicals. The US Environmental Protection Agency (EPA) Toxicity 

Forecaster (ToxCast) program (Kavlock et al., 2012) and the interagency Tox21 project 

(Thomas et al., 2018; Tice et al., 2013) provide publicly available, high-throughput in vitro 
bioactivity information for a diverse biological and chemical space. Additionally, for this 

case study, researchers at the Singapore Agency for Science, Technology, and Research 

(A*STAR) provided high-throughput phenotypic profiling information from three cell-based 

toxicity models for lung, kidney, and liver toxicity for a subset of substances (Lee et al., 
2018; Su et al., 2016). Using high-throughput toxicokinetic (httk) information and reverse 

dosimetry, all of these bioactivity data, i.e. the micromolar concentration of a substance that 

altered an assay signal in vitro, were transformed into administered equivalent doses (AEDs) 

in milligram per kilogram bodyweight per day (mg/kg/day) units within a complex process 

referred to as in vitro to in vivo extrapolation (IVIVE). The reverse dosimetry component of 

IVIVE in this case relies on the assumption that a nominal in vitro assay concentration 
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approximates an in vivo serum concentration using steady state kinetics, and then involves a 

toxicokinetic model to estimate the external exposures (in mg/kg/day units) that may have 

resulted in that concentration (Bell et al., 2017; Jamei et al., 2009; Sipes et al., 2017b; 

Wambaugh et al., 2018; Wetmore et al., 2014; Wetmore et al., 2015; Wetmore et al., 2013; 

Wetmore et al., 2012). A NAM-based POD, or PODNAM, can be selected from the range of 

AEDs. This PODNAM can be compared to exposure predictions to develop a 

bioactivity:exposure ratio (BER) to provide a risk-based context.

To understand the possible added benefit of in vitro bioactivity-derived PODNAM, a well-

known, protective in silico approach that can be used in the absence of in vitro bioactivity 

information, the threshold of toxicological concern (TTC), was also included for comparison 

to PODNAM and exposure values. In addition, the PODNAM can be compared to traditional 

in vivo data for these chemicals, aggregated and summarized as the traditional POD 

(PODtraditional). Curation of these traditional data from in vivo toxicity testing has provided 

an important resource to evaluate whether PODNAM is protective relative to the 

PODtraditional (understanding that the PODtraditional itself is an approximation using animal 

models). Two examples of publicly-available curated traditional data include the Toxicity 

Reference Database (ToxRefDB) (Martin et al., 2009a; Martin et al., 2009b) and the Toxicity 

Value Database (ToxValDB) (Williams et al., 2017) the latter of which aggregates summary 

level information from over 40 sources, including ToxRefDB; EPA sources, such as the High 

Production Volume Information System (HPVIS), Integrated Risk Information System 

(IRIS) (https://www.epa.gov/iris), Provisional Peer-Reviewed Toxicity Values (PPRTVs) 

(https://hhpprtv.ornl.gov/), curated data from Office of Water (OW), Office of Land and 

Emergency Management (OLEM), and the Office of Pollution Prevention and Toxics 

(OPPT); other US state and federal sources, such as the Food and Drug Administration 

(FDA), U.S. Geological Survey (USGS), Department of Defense (DOD), Department of 

Energy (DOE), and California EPA (CalEPA); and international sources, such as ECHA via 

eChem Portal (https://www.echemportal.org/echemportal/index.action) and EFSA via the 

Chemical Hazards Database (https://www.efsa.europa.eu/en/data/chemical-hazards-data), 

the World Health Organization (WHO), the Cosmetics Ingredients Safety (COSMOS) 

database (https://cosmosdb.eu/cosmosdb.v2/accounts/login/?next=/cosmosdb.v2/), Health 

Canada, and the Hazard Evaluation Support System (HESS) (Williams, et al., 2017). The 

traditional data included for derivation of a PODtraditional included many study designs, 

including repeat-dose studies such as subacute, subchronic, chronic, reproductive, 

developmental and/or multi-generation reproduction studies, among others. Given that most 

of the in vitro bioactivity data measures disruption of a molecular target, pathway, or cellular 

function, rather than adversity at the tissue, organism, or population level as measured in in 
vivo toxicity studies, this work evaluates the hypothesis that the PODNAM would be 

protective relative to the PODtraditional across multiple study types and durations of exposure.

Several examples and case studies have considered the possibility of using high-throughput 

data in various regulatory decision contexts, from prioritization, to test replacement, to use 

in chemical-specific assessment (Browne et al., 2015; Cote et al., 2016; Judson et al., 2014; 

Judson et al., 2011; Kleinstreuer et al., 2017; Paul Friedman et al., 2016; Pradeep et al., 
2017; Thomas et al., 2013). Progress has been made in the acceptance of NAMs for 

prioritization of chemicals subject to the US EPA Endocrine Disruptor Screening Program 
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(EDSP) (Browne, et al., 2015; Kleinstreuer, et al., 2017) and as alternatives for existing in 
vivo endocrine disruptor-related test guidelines (EFSA, 2018; USEPA, 2015). Further 

regulatory acceptance of NAMs is demonstrated by the development of defined approaches 

for assessment of skin sensitization, with the goal of developing an internationally-

recognized test guideline using an integrated set of NAMs to predict human skin 

sensitization hazard potential (Casati et al., 2018). The use of NAMs for determination of 

either the dose that may alter specific biological pathway activities of interest (e.g. nuclear 

receptor signaling) or general in vitro bioactivity has also demonstrated promise for 

prioritizing substances (Judson, et al., 2014; Judson, et al., 2011; Wetmore, et al., 2013). 

However, as with some in vivo toxicity studies, for many substances it may not be possible 

to identify a specific human health outcome, predominant mode-of-action (MoA), or adverse 

outcome pathway (AOP) based on the in vitro bioactivity data. Hence, screening-level 

assessment may require identification of a threshold dose at which no bioactivity would be 

observed in assays covering a broad biological space (Thomas, et al., 2013). Prioritization 

based on the integration of bioactivity data and predicted exposures has been suggested as a 

path forward for addressing the problem of thousands of chemicals with limited information 

for assessment by many groups, including Health Canada in their approach to the Chemical 

Management Plan (ECCC/HC, 2016a), academics, government scientists, and chemical 

industry scientists (Becker et al., 2015; Embry et al., 2014; Perkins et al., 2017; Sipes, et al., 

2017b). The retrospective case study presented herein advances the integrated use of NAMs 

for in vitro bioactivity and exposure by addressing the following questions: can the proposed 

workflow to derive a PODNAM be shown to be broadly protective for potential application to 

screening-level chemical assessments independent of the biological events or adverse 

outcome pathways involved? Further, does in vitro bioactivity combined with exposure 

estimates provide a useful risk-informed prioritization metric?

Importantly, this work asks these questions as viewed through a multi-agency, international 

lens. The Accelerating the Pace of Chemical Risk Assessment (APCRA) initiative is an 

international cooperative collaboration of government agencies convened to address barriers 

and opportunities for the use of NAMs in chemical risk assessment (Kavlock, 2016; Kavlock 

et al., 2018). This initiative includes participants from across offices of the EPA, ECHA, 

EFSA, the U.S. National Toxicology Program (NTP), CalEPA, Health Canada, the European 

Commission’s Joint Research Center (JRC),the Organisation for Economic Cooperation and 

Development (OECD), France’s INERIS, the Australian National Industrial Chemicals 

Notification and Assessment Scheme (NICNAS), the National Institute for Public Health 

and the Environment (RIVM) of the Netherlands, the Japanese Ministry of Health, Welfare, 

and Labour, Korea’s Ministry of Environment, Singapore’s Agency for Science and 

Technology Research (A*STAR), and the Taiwanese Safety and Health Technology Center 

(SAHTECH). An initial goal of this group was to directly identify and address obstacles to 

adoption of NAMs in regulatory decision-making, considering the geographic differences in 

regulatory perspectives and requirements while understanding that generation and analysis 

of the data for substances of concern can be shared. This first APCRA case study is the 

result of a collaborative discourse within APCRA that aims to evaluate how the PODNAM 

compares to the PODtraditional across 448 chemicals with high-throughput hazard and 

toxicokinetic information in the context of screening-level assessments. We evaluate whether 
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the PODNAM can serve as a “lower bound” estimate of the PODtraditional. In addition, this 

case study incorporates high-throughput exposure information to examine the BER as a 

potential metric for prioritization. This work intends to increase confidence in NAM-based 

workflows that could be used in regulatory decision making by presenting a case study of 

how this might be applied.

2 Methods

2.1 Overview of the approach

This section gives a brief overview of the approach, as illustrated in Figure 1 and with 

additional details provided in subsequent sections of the Methods and the Supplemental 

Appendix.

First, in vitro bioactivity data were aggregated to develop PODNAM estimates. Data were 

available from ToxCast for all 448 substances, and high-throughput phenotypic profiling 

toxicity (HIPPTox) data from A*STAR was available for 57 substances in this case study. 

For each ToxCast substance, a 5th percentile was calculated based on the distribution of 50% 

maximal activity concentration (AC50) values. For the HIPPTox data, a POD was defined 

differently (and referred to as the HIPPTox-POD). The HIPPTox-POD attempts to identify 

the lowest concentrations for any change in the measured cellular phenotypes of three cell 

models and uses EC10 to represent a threshold for this activity. For the HIPPTox data for 

kidney, liver, and/or lung toxicity, the minimum 10% effect concentration (min EC10) was 

calculated. The intent in selecting the minimum of either the 5th percentile of the ToxCast 

AC50 values or the minimum HIPPTox value was to provide a “lower bound” estimate on a 

bioactive concentration in vitro. The lower value of either the ToxCast 5th percentile or the 

HIPPTox min EC10 was assumed to represent the steady state plasma concentration that was 

then used to calculate the administered equivalent dose (AED) values using high throughput 

toxicokinetic (HTTK) information from the httk R package (Pearce et al., 2017). The HTTK 

model (built into the R package) used Monte Carlo simulation to incorporate population 

variability. The PODNAM values used in this work correspond to the 50th and 95th percentile 

in the population distribution of steady state AED values and are referred to as the 

PODNAM,50 and the PODNAM,95, respectively.

Second, after derivation of PODNAM values based on in vitro data, a series of comparisons 

to other values were made. The intersection of CASRN between ToxCast and HTTK 

information was used to obtain PODtraditional from ToxValDB and sources from the case 

study partners, including ECHA, EFSA, and Health Canada. The PODNAM was compared to 

the PODtraditional to derive a POD ratio (log10 PODtraditional:PODNAM) for both PODNAM,50 

and PODNAM,95. Exposure predictions for the total U.S. population from the ExpoCast 

Systematic Empirical Evaluation of Models version 2 (SEEM2) framework (Wambaugh, et 

al., 2014) were used to derive a bioactivity:exposure ratio (BER). To understand how NAMs 

in this work compared to the TTC (HealthCanada, 2016; Kroes et al., 2004; Patlewicz et al., 
2008), the PODNAM,95 was also compared to a TTC to derive a PODNAM,95:TTC ratio. The 

PODtraditional:PODNAM ratios, the BER, and the PODNAM,95:TTC ratio, expressed as 

logarithms in base 10, are the main metrics employed to evaluate the hypotheses in this 

study.
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All of the data sources used in this case study, including chemical use type, high-throughput 

bioactivity data, HTTK, in vivo data, and exposure information, are summarized in Table 1, 

including the version and citations if applicable. Supplemental File 1 contains all of the in 
vivo POD information used, and Supplemental File 2 contains all of the values derived in 

this work (including BER and POD ratio). The software (written using R version 3.5.1) and 

all required source files are available via the US EPA GitHub repository (https://github.com/

USEPA/-Examining-the-Utility-of-In-Vitro-Bioactivity) and FTP (ftp://newftp.epa.gov/

COMPTOX/NCCT_Publication_Data/FriedmanPaul_K/APCRA_retrospective).

2.2 Comparison of high-throughput bioactivity, in vivo point-of-departure, and exposure 
information

2.2.1 Substance identification—Compilation of the data for this case study resulted in 

a total of 448 chemicals with the requisite in vitro bioactivity, high-throughput toxicokinetic, 

exposure prediction, and traditional animal in vivo toxicity values. Each CASRN from the 

intersection of data sources was mapped to a registered substance identifier (DTXSID) in 

EPA’s DSSTox database through the Batch Search feature of the EPA CompTox Chemicals 

Dashboard (https://comptox.epa.gov/dashboard/dsstoxdb/batch_search) (Williams, et al., 

2017). Mapping to DTXSID enabled mapping from substance to identifiers that indicate 

specific structure(s) needed for use in evaluation of enrichment of structural features and 

generation of TTC values. Linking data records to DTXSID promotes data interoperability 

and clarity on the specific chemical structures used as databases including ToxCast, 

ToxValDB, and HTTK databases, among others, rapidly evolve.

The substance use categories utilized in ExpoCast SEEM2 modeling (Dionisio, et al., 2015; 

Wambaugh, et al., 2014) and available via the Aggregated Computational Toxicology Online 

Resource (ACToR) were retrieved to evaluate the functional diversity of the 448 substances 

examined in this case study. In some cases, a substance may be associated with multiple 

functional uses.

2.2.2 In vitro bioactivity data—In vitro bioactivity data from two sources were used: 

ToxCast data from the US EPA ToxCast program and HIPPTox data from the A*STAR 

program. The details of data extraction and selection of an in vitro bioactivity concentration 

to use for in vivo-to-in vitro extrapolation of AEDs is described in detail below. Briefly, the 

minimum of either the 5th percentile of the filtered ToxCast AC50 values or the HIPPTox-

POD, if available, was used as the in vitro bioactive concentration for each substance in the 

case study.

2.2.2.1 ToxCast data: The ToxCast high-throughput bioactivity data were obtained from 

the MySQL database, invitrodb (version 3) (EPA, 2018b), for all 448 chemicals. Only multi-

concentration screening data were used, as single concentration screening data were not 

considered quantitatively informative of a PODNAM. The structure of information in 

invitrodb and the R package used to maintain the database and perform curve-fitting are 

described in detail elsewhere (Filer et al., 2017; NCCT, 2018; Watt et al., 2018). The data 

retrieved included the AC50 and hit-call determination (from level 5 of invitrodb), caution 

flags on the curve-fitting for each AC50 (from level 6), and quantitative uncertainty 
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associated with the curve-fitting (from level 7). The caution flag and uncertainty information 

from levels 6 and 7 were used to filter the ToxCast dataset, with the intent of removing AC50 

values from the dataset that originate from curve-fits that may be less informative on a 

quantitative basis. As the ToxCast data pipeline is a semi-automated, first-tier analysis tool 

for heterogeneous data, using these data on a single substance-basis presents a challenge as a 

subset of the potency values may be from curve fits that may be artefacts of the curve-fitting 

workflow. In this work, we implemented a filtering of the curves available for each 

substance prior to estimation of the 5th percentile on the distribution of ToxCast AC50 values 

by substance.

Level 6 caution flag information denotes curve behavior that may indicate a less 

quantitatively-informative AC50 value, such as curves based on a single active concentration, 

AC50 value lower than lowest concentration screened, borderline activity, efficacy less than 

50%, and general indicators of excessive noise and overfitting. There are currently 10 

possible caution flags, and the curves for the substances in this case study had zero to six 

flags associated with them prior to filtering (Supplemental Appendix). Level 7 uncertainty 

information was generated (Brown et al., in prep) using bootstrap resampling to define the 

reproducibility of the curve fits (Watt and Judson, 2018; toxboot R package v0.2.0). Briefly, 

toxboot uses smooth, nonparametric bootstrap resampling to add random normally 

distributed noise to give a resampled set of concentration-response values. The resampled 

data is fit to the three ToxCast models (constant, Hill, gain-loss), repeated 1000 times, and 

the variables relating to model fitting parameters are stored in a Mongo database. The 

resulting data were used to generate point estimates, winning model, and hitcall for each of 

the 1000 resamples. Summary statistics (hit percent, median AC50, and AC50 95% 

confidence interval) were generated based on the toxboot resampling. Hit percent is the 

probability of a positive hitcall given the collection of resampled data. Filtering criteria using 

level 5, 6, and 7 information were as follows: curves were required to have less than 3 flags, 

and AC50 value greater than the lowest concentration screened, and a hit percent of greater 

than or equal to 50%.

Prior to curve filtering, for the 448 chemicals in this case study, the number of ToxCast 

concentration-response assay endpoints in which each substance was screened varied from 

211 to 4557, with a median of 883 assay endpoints; the differences in numbers of assays 

screened may affect the observed positive hit rate. The filtering criteria described above 

reduced the total number of curves used from 54,048 to 46,735 (approximately 14% 

removed). The remaining curves are each associated with zero to 2 caution flags, and a 

median hit percent of 100, indicating that post-filtering most curves were highly 

reproducible (ranging 13 to 100). Following filtering, the number of positive hitcalls per 

substance ranged from 0 to 1351, with a median of 56 positive hitcalls per substance. Most 

substances (297 out of 448) had hitcall sums of less than 100, and only 36 substances had 5 

or fewer positive hitcalls. One substance, phenobarbital (CASRN 50-06-6), was active in 4 

out of 290 assay endpoints screened, but all of these were dropped during the filtering 

process. Thus, for phenobarbital, a single AC50 of 100 μM was used as a representative 

AC50 at the maximum concentration screened in ToxCast to derive a threshold AED. For 

phenobarbital, a concentration of 100 μM is actually fairly consistent with in vitro 
bioactivity from other reports that typically use phenobarbital to induce CYP2B6 in vitro at 
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concentrations ranging from the 100 μM to 2 mM (Faucette et al., 2004; Hariparsad et al., 
2017). No cytotoxicity filtering of the ToxCast data was performed. All of the positive data 

in ToxCast for a given chemical, after the curve filtering described here, were included in the 

AC50 distribution. The 5th percentile of that distribution was used to identify a minimum 

bioactive concentration for each chemical in ToxCast, regardless of the specific biological 

pathways involved. The effects of filtering the ToxCast AC50 values (Supplemental Figures 

1–2) and of using the 5th percentile versus the minimum AC50 (Supplemental Figure 3) are 

further described in the Supplemental Appendix.

2.2.2.2 HIPPTox data: In vitro bioactivity data from the high-content-imaging-based 

HIPPTox platform were also included for a subset of 57 chemicals examined in this case 

study. Three human cell lines were tested with the chemicals. They include a bronchial 

epithelial cell line, BEAS-2B (Lee, et al., 2018), a proximal tubule cell line, HK-2 (Su, et al., 

2016), and a hepatocarcinoma cell line, HepG2. Up to 165 phenotypic readouts (Lee, et al., 

2018) were measured from the images of the cell models using the cellXpress software 

v1.4.2 (Laksameethanasan et al., 2013). For each cell model, a series of multivariate 

classifiers were trained to distinguish the cells treated with a chemical at seven 

concentrations (0.87 to 500 μM) from the cells treated with DMSO. The classifiers used 

multivariate phenotypic profiles constructed from all the readouts, and produced a series of 

classification accuracy values at all the tested concentrations (Loo et al., 2007). Then, the 

values were fitted using a standard log-logistic model and a flat constant model. The best 

fitted curve was determined using the Akaike information criterion (AIC). An EC10 was 

derived from the best fitted curve for each cell model. For curves based on the flat constant 

model, an arbitrary large number (namely, 105 μM) was used. Finally, the minimum EC10 

across the three cell models was supplied for use in this case study as the HIPPTox-POD. 

Calculation of AEDs and calculation of PODNAM

The minimum of the ToxCast 5th percentile of the AC50 distribution or the HIPPTox-POD 

was converted to administered equivalent doses (AEDs) using the concept of reverse 

dosimetry and HTTK information, largely from in vitro experiments. The approach taken 

using the httk R package (v1.8) was similar to the approach used by Wetmore et al. (2012, 

2014), as represented by the following Equation 1:

AED
mg
kg

day = minimumbioactivityvalue μM ∗

1mg
kg

day
Css μM

Eq 1.

Where the Css is the steady state plasma concentration estimated based on a 3-compartment 

steady state model assuming 100% bioavailability. Monte Carlo simulation was used to vary 

the pharmacokinetic parameters to represent inter-individual variability in a population. 

Population variability was incorporated into the first-order hepatic metabolic clearance, 

plasma protein binding, liver blood flow, and the rate of clearance via the kidney (Pearce, et 

al., 2017; Wetmore, et al., 2012). Dosing assumes oral infusion at a constant rate (Pearce, et 

al., 2017). More specifically, the AEDs were calculated programmatically using the 

“calc_mc_oral_equivalent” function in the httk R package (v1.8), with the following 

Friedman et al. Page 9

Toxicol Sci. Author manuscript; available in PMC 2021 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



options: the 95th quantile (which.quantile = c(0.95)); restrictive clearance 

(restrictive.clearance=T); selection of species (species=‘Human’); direct resampling of the 

population data (method=‘dr’); a correction for the amount of unbound chemical in whole 

blood versus plasma (well.stirred.correction=T); the default 3 compartment model 

(model=‘3compartmentss’); the output unit as mg/kg-bw/day (specific in httk as 

output.units=‘mg’). Although many AEDs could be calculated, the PODNAM,50 and 

PODNAM,95 were derived from AEDs that resulted from the 50th and 95th percentile, 

respectively, of the Monte Carlo simulation of Css. For clarity, the PODNAM,95 is a lower 

AED than PODNAM,50. Additionally, the maximum AED (max AED) achievable was 

calculated using the 95th percentile Css prediction and the typical maximum in vitro 
concentration screened in ToxCast of 100 μM.

2.2.3 Selection of the PODtraditional—The largest source of summarized in vivo point-

of-departure (POD) information that was publicly available for this case study was the US 

EPA Toxicity Value Database (ToxValDB) (Table 1). ToxValDB includes summary study 

information and POD information from 40 sub-sources, including sources such as: 

COSMOS, ToxRefDB, HPVIS, HESS, and PPRTVs. This database is currently publicly 

viewable on a single-substance basis using the CompTox Chemicals Dashboard (Williams, 

et al., 2017), under the Hazard tab and the Point-of-departure sub-tab. Additionally, as part 

of the efforts of APCRA, POD information for a subset of the chemicals in this case study 

was contributed by collaborators from ECHA (61 substances), EFSA (46 substances), and 

Health Canada (29 substances), which generally increased the amount of hazard data for 

chemicals already in ToxValDB, but also expanded the chemical space overall by 6 

chemicals.

Following this data aggregation step, several filters were applied. First, only oral exposures 

in units of mg/kg-bw or mg/kg-bw/day, or units that could be converted to mg/kg-bw/day 

values such as parts per million or parts per billion in the diet or mg/kg in the diet, were 

used, thereby including systemic exposures and excluding inhalation and dermal routes. The 

factors used to convert parts per million in diet to mg/kg-bw/day units were as follows: 0.05 

(rat); 0.15 (mouse); 0.025 (dog); and, 0.03 (rabbit). Study type was not constrained to allow 

for inclusion of the highest number of substances in the case study; acute, chronic, 

developmental/reproductive, neurotoxicity and developmental neurotoxicity, and other 

repeat dose study designs were all included (though there were only 66 records associated 

with an acute exposure design, which is less than 0.3% of the 22627 total study records 

included). Only the following POD types were included: no observable or no observable 

adverse effect levels (NOEL, NOAEL) or lowest observable or lowest observable adverse 

effect levels (LOEL, LOAEL). The PODtraditional was then calculated as the 5th percentile of 

the distribution of PODs from all sources for a given substance, in an effort to approximate a 

reasonable low POD value. Given that the number and distribution of POD records vary by 

substance, and that the majority of substances are associated with fewer than 100 POD 

observations, the 5th percentile was calculated using a discontinuous function with 

averaging between discontinuities (see type 2 for the quantile() function in the R stats 

package).
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2.2.5 Calculation of the POD ratio—The log10POD ratio indicates whether the 

PODNAM is less than the PODtraditional. A log10POD ratio of less than zero indicates that the 

PODNAM is greater than the PODtraditional, whereas a log10POD ratio of greater than zero 

indicates that the PODNAM was less than the PODtraditional. Using POD values in log10-

(mg/kg-day) units, the log10POD ratio is given by the difference between the 

log10PODtraditional and the log10PODNAM as in Equation 2:

log10PODratio   = log10PODtraditional − log10PODNAM, Eq. 2

Where the log10PODNAM employed may be the log10PODNAM,50 or log10PODNAM,95, 

resulting in log10POD ratio50 or log10POD ratio95, respectively. In this work, the log10POD 

ratio50 was computed for comparison with log10POD ratio95, but log10POD ratio95 was used 

as the primary value for further analyses study type enrichment and chemotype enrichment. 

As the ratios calculated in this work are on a log10 scale, it is important to note that the log 

of a ratio (log10(x/y)) is the difference of the logs (log10(x) – log10(y)).

2.2.6 Allometric scaling of the PODtraditional—To at least partially address cross-

species differences in the PODtraditional values, a second iteration of the case study was 

performed using allometrically-scaled human equivalent doses for POD information from 

mouse, rat, guinea pig, rabbit, dog, and hamster studies. Allometric scaling was performed 

based on data adapted and modified from the U.S. Food and Drug Administration (FDA) 

guidelines (Nair et al., 2016) using the following scaling factors for each species to convert 

mg/kg/day values to human equivalent doses: mouse (0.081), rat (0.162), guinea pig (0.216), 

rabbit (0.324), dog (0.541), and hamster (0.135). The POD ratio was then recalculated using 

these allometrically scaled PODs, per equation 3 below:

PODtradional,ℎuman = F × PODtraditional,animal Eq. 3

Where F is the species-specific scaling factor as indicated above.

2.2.7 Exposure data

To enable exposure comparison for the largest number of substances possible, exposure 

predictions from the US EPA ExpoCast program Systematic Empirical Evaluation of Models 

version 2 (SEEM2) model (Wambaugh, et al., 2014) were used for all 448 substances in the 

case study (the SEEM2 model was run de novo for a single substance, raloxifene 

hydrochloride, that did not appear in the 2014 publication). The ExpoCast SEEM2 model 

was calibrated to existing human exposure predictions inferred from human biomonitoring 

data, and further relies on production volume and four binary use categories from the 

ACToR use database that indicate if a substance had industrial and consumer product use, 

consumer produce use alone, industrial use without consumer product use, and/or use as a 

pesticide active or inactive ingredient. The model can be used to generate predictions for a 

large number of substances, but these predictions are associated with large credible intervals. 

From the SEEM2 model, the “US Total Exposure” median and 95th percentile on the 
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credible interval for the median prediction were used in calculation of the BER, as described 

in section 2.2.7.

Additionally, Health Canada provided exposure values from published screening level risk 

assessments conducted for existing substances under the Canadian Environmental Protection 

Act (1999) for consumer product and environmental exposures to the Canadian population; 

there were 18 chemicals in this case study with these values. These data were used only as a 

comparison to ExpoCast SEEM2 exposure values, and not in computation of the BER. Such 

a comparison is challenging due to differences in pathways, populations and metrics 

underlying the Health Canada traditional estimates and SEEM2 predictions. The Health 

Canada estimates used in screening level assessments for environmental media consider 

exposure for an individual from all sources, whereas screening level assessments for 

consumer products consider exposures for the users of such products on a product by 

product basis. Both environmental media and consumer product exposure estimates often 

make use of conservative assumptions. Further, the SEEM2 model prediction in the case 

study is based on the U.S population median and the credible interval around this median 

value. With these differences in mind, a comparison between the two was conducted as 

follows. For the Health Canada environmental exposure data, the total, or aggregate 

exposure from multiple media, for the 20–59 years age group were considered. For the 

consumer exposure data, daily exposure estimates for adults from the use of certain sentinel 

consumer products, where use was considered to be chronic, were examined where available 

(e.g. personal care products, cleaning products, textile, foam, plastics). The consumer 

product resulting in the highest exposure estimate was carried forward for analysis and no 

aggregation of exposure estimates across consumer products was performed. The highest 

exposure estimate from the combined data set of the selected consumer product and 

environmental media intakes were used for comparison to the 95th percentile on the credible 

interval for the median general population exposure estimate from ExpoCast SEEM2.

2.2.8 Calculation of the BER

Using the PODNAM and 95th percentile on the prediction of the median exposure from 

ExpoCast, both in log10(mg/kg-day) units, the log10BER95, is given by the difference 

between the log10PODNAM,95 and the log10ExpoCast95 prediction (Equation 4):

log10BER95 = log10PODNAM, 95 − log10ExpoCast95 Eq. 4

2.2.9 Enrichment calculations

2.2.9.1 Chemotype enrichment: Enrichment of chemical structural features for 

substances for which the log10POD ratio95 is less than zero makes it possible to investigate 

possible limitations in the NAM-based approach that might lead to PODNAM values greater 

than PODtraditional. For this purpose, a recently developed chemotype-enrichment workflow 

(CTEW) was utilized, based on the ToxPrint structure feature set developed by Altamira 

(Altamira, Columbus, OH USA) and Molecular Networks (Molecular Networks, Erlangen, 

GmbH) under contract from the U.S. Food and Drug Administration (Yang et al., 2015). 

Chemotype enrichment calculations were carried out by defining chemicals with a 

Friedman et al. Page 12

Toxicol Sci. Author manuscript; available in PMC 2021 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



log10POD ratio95 of less than zero as the “positive” enriched space of interest, relative to the 

remaining case study set, i.e., the “negative” space. The general approach has been 

previously described (Strickland et al., 2018; Wang et al., 2019). The set of DTXSIDs 

corresponding to the 448 CASRN in this case study provide input to the CTEW and were 

used to retrieve DSSTox structures and compute a ToxPrint feature fingerprint for each 

structure using a Linux implementation of the CORINA software (Molecular Networks, 

GmbH). Of the 448 substances, 445 were mapped to a single DSSTox structure and further 

processed. The mixtures dipropylene glycol monomethyl ether (CASRN 34590-94-8) and 

abamectin (CASRN 71751-41-2) could not be mapped to a single structure, nor could the 

isomeric mixture 3-[(dimethoxyphosphinyl)oxy]-2-butenoic acid, methyl ester (CASRN 

7786-34-7). ToxPrint chemotype (CT) enrichment statistics were evaluated for presence in 

the “positive” space. Enrichment was based on a computed odds ratio (OR) for each CT 

according to the following logic: a true positive indicates a chemical in the log10POD ratio95 

< 0 space contained the CT; a true negative indicates a chemical in log10POD ratio95 that did 

not contain the CT; false positive indicates a chemical in the log10POD ratio95 > 0 space that 

contained the CT; and, false negative indicates a chemical in the log10POD ratio95 < 0 space 

that did not contain the CT. Quantitative metrics were used to evaluate the resultant 

confusion matrix and the significance of any enrichment. The Fischer’s exact test (as 

implemented in Python, scipy.stats, alternative=greater) was used to compute the 

significance of the enrichments as indicated by p-value, which tends to yield greater weight 

to enrichments of CTs that are associated with a higher number of chemicals. To identify the 

most interesting associations, OR values ≥3 and p-value ≤0.05 thresholds were used to filter 

the CT results for significance and further examination. This statistical test does not account 

for activating or deactivating effects when multiple CTs are present and is only indicative of 

the chemical features that may lead to an underestimation of potential hazard by the 

log10PODNAM,95.

2.2.9.2 Study type enrichment: To understand the possibility that certain in vivo 
endpoints, as represented by study types, might drive PODtraditional values for which the 

corresponding PODNAM values were not lower, an analysis of whether certain study types 

included as described in Section 2.2.4, might disproportionately define the log10POD ratio95 

< 0 space was undertaken. The study types were programmatically reduced to: acute toxicity 

studies; repeat dose toxicity studies, defined by any study from 7 to 90 days in duration, 

including subacute and subchronic studies; chronic/carcinogenesis, defined by any repeat 

dose study in adult animals for greater than or equal to one year; reproductive/

developmental, defined by any study including more than one generation, including 

developmental, reproductive, multigeneration reproductive studies, or similar designs; and, 

neurotoxicity studies. Following this programmatic simplification and standardization of 

study type, a Fischer’s exact test (R stats package) was used to indicate the significance, or 

p-value, of any enrichment of study type underlying the minimum PODtraditional value for 

the log10POD ratio95 < 0 space. Separate tests were run to understand potential enrichment 

of (1) reproductive/developmental studies and (2) chronic/carcinogenesis studies for the 

log10POD ratio95 < 0 space. The confusion matrices were defined per the following logic: 

true positive indicated that the minimum PODtraditional value for a given substance with 

log10POD ratio95 < 0 was derived from a reproductive/developmental study or chronic/
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carcinogenesis study; true negative indicated that the minimum PODtraditional value for a 

given substance with log10POD ratio95 > 0 was not derived from a reproductive/

developmental study or chronic/carcinogenesis study; false positive indicated that the 

minimum PODtraditional value for a given substance with log10POD ratio95 > 0 was derived 

from a reproductive/developmental or chronic/carcinogenesis study; and, a false negative 

indicated that the minimum PODtraditional value for a given substance with log10POD ratio95 

< 0 was not derived from a reproductive/developmental or chronic/carcinogenesis study. 

Like the CTEW described above, significance thresholds of a p ≤0.05 and OR ≥ 3 were used 

to determine significance of any association.

2.2.10 TTC values—The PODNAM,95 was compared to the TTC approach that is often 

proposed for rapidly screening chemicals for priority (EFSA, 2012; HealthCanada, 2016; 

WHO, 2016). TTC values for the substances that could be associated with distinct structures 

were assigned using the software ToxTree [v2.6.6] (Patlewicz, et al., 2008) which 

implements the TTC decision-tree as described in Kroes et al., 2004. The DSSTox chemical 

structure-data (SD) file generated within the CompTox Chemicals Dashboard was converted 

from V3000 to V2000 format using ACD/Spectrus DB 2017.2 and where necessary organic 

substances with counter ions (e.g. sodium salts) were converted to their neutral form with 

KNIME (v 3.2.1) and the RDKit salt stripper node. The structure file was imported into 

ToxTree, where the Kroes TTC decision tree was run in batch mode. The daily intake was 

set at > 90 μg/day for each chemical to run through the entire decision tree. A separate 

approach was required for organophosphates (OPs) since ToxTree does not correctly 

interpret the Kroes decision tree for these chemicals. First, each OP was screened using the 

carcinogenicity and mutagenicity rule-base by ISS within ToxTree to screen for genotoxicity 

alert (GA). If an OP triggered a GA then it was assigned a TTC value of 0.0025 μg/kg bw/

day; otherwise, the OP was assigned the default Kroes TTC value for this class of chemicals, 

which is 0.3 μg/kg bw/day. Moreover, custom structural profilers built in OASIS LMC 

Pipeline Profiler [v1.0.53] were used to exclude benzidines, steroids and organo-silicon 

compounds from TTC value assignment. More recent scientific opinions related to TTC 

have recommended expansion of the original Kroes et al. 2004 exclusion criteria to maintain 

the conservative nature of the approach and/or that these compounds are not well 

represented in the dataset from which the TTC values were derived. Likewise, based on 

these opinions, carbamate substances were assigned a TTC value of 0.3 μg/kg bw/day 

(EFSA, 2012; HealthCanada, 2016; WHO, 2016).

3 Results

Al of the inputs and calculated metrics are summarized in Table 2.

3.1 Substance diversity

The extent of substance diversity in this case study was demonstrated using the same 

functional use categories that inform the ExpoCast SEEM2 exposure model. Multiple 

general functional use categories (Dionisio, et al., 2015; Wambaugh, et al., 2014) may be 

associated with a given substance. The possible functional use categories included: industrial 

process with no consumer use; pesticide active with no consumer use; pesticide inert; 

Friedman et al. Page 14

Toxicol Sci. Author manuscript; available in PMC 2021 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



consumer and industrial process; personal care product; flame retardant, consumer and no 

industrial process; pesticide active with consumer use; herbicide; colorant; fertilizer; 

petrochemical; food additive; and fragrance. Examination of these use categories 

demonstrated that substances with at least one use as a pesticide active (categories denoted 

as: pesticide active no consumer, pesticide active and consumer, herbicide, and/or 

antimicrobial) comprised nearly 70% (314/448) of the case study substances (Figure 2). This 

result is expected because the ToxCast Phase I chemical library was originally selected 

(Richard et al., 2016) in part to maximize the overlap with the ToxRefDB (Martin, et al., 

2009a; Martin, et al., 2009b). Hence, pesticide active ingredients represent a significant 

percentage of the union of the ToxRefDB and ToxCast phase 1 libraries and supply much of 

the POD information available from summaries of registrant-submitted toxicity studies, 

known as data evaluation records (DERs), from the U.S. EPA’s Office of Pesticide Programs 

(OPP). Further, HTTK information are available largely for the ToxCast phase 1 and phase 2 

chemical libraries (Pearce, et al., 2017).

3.2 BER for the 448 chemicals

The exposure predictions from ExpoCast, the PODNAM estimates based on ToxCast and 

HIPPTox data, and the PODtraditional information are compared and visualized in Figure 3, 

all on a log10-mg/kg-bw/day basis. In this comparison, two estimates of the PODNAM have 

been included: the PODNAM,50 and the PODNAM,95, with the PODNAM,95 representing a 

lower dose and therefore more conservative estimate. For the majority of substances, the 

upper 95th percentile on the credible interval for the median total US exposure from the 

ExpoCast SEEM2 model corresponded to a daily log10-mg/kg-bw/day dose well below that 

anticipated to have bioactivity as well as the log10-mg/kg-bw/day dose at which effects were 

observed in traditional animal studies. Even using the PODNAM,95 estimate 95th percentile 

estimate from ExpoCast (Figure 4A black line), only 11 substances had a log10-BER95 of 

less than zero, indicating the potential for exposure to occur within the dose range that was 

bioactive in vitro (Figure 4B). Further examination of Figure 4 suggests that using the 95th 

percentile from the credible interval for the median total US exposure, rather than the 

predicted median or 50th percentile, significantly decreased the log10BER (shifting the 

BER95 values and BER50 values approximately 2 log10 orders of magnitude to the left in 

Figure 4A). Of course, given that the BER juxtaposes exposure and bioactivity predictions, 

uncertainty in the IVIVE methods applied to bioactivity can also result in a “shifting” of the 

BER estimate; using the PODNAM,50 results in a log10BER95 that is “right-shifted” in 

comparison to the log10-BER values from the PODNAM,95, as expected since for the 

substances in this case study the PODNAM,50 was 1.7 to 19-fold higher than the PODNAM,95 

(see Supplemental Appendix Figure 5 for more details). Although the BER values provide 

an indication of risk-based priority, the BER values may be smaller given the nature of the 

ExpoCast predictions, i.e. predictions that have large uncertainty may result in the prediction 

of high exposures at the 95th percentile, and in vitro bioactivity data, i.e. very low AC50 

values that were the result of permissive approaches in curve-fitting. The nature of the BER 

values were further explored in Figure 5 via 3 comparisons: ExpoCast versus PODNAM,95, 

followed by a side-by-side comparison of ExpoCast and ToxCast in vitro bioactivity data for 

the 11 substances with log10BER95 < 0 to the distribution of these data for the entire case 

study set of 448 substances. In Figure 5A, the 11 substances identified with low BER values 
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are labeled and appear to demonstrate exposures that are generally greater than the median 

ExpoCast (95th percentile) estimate for the 448 substances, and all the PODNAM,95 are less 

than the median PODNAM,95 value for the case study substances. This is interrogated further 

in panels 5B and 5C. A distribution of the 95th percentile ExpoCast prediction for all 448 

chemicals is used to understand if the 11 substances with log10BER95 <0 had high exposure 

predictions. A similar demonstration of the AC50 used to calculate the PODNAM is provided, 

where a distribution of all AC50 values for the 448 chemicals in the top panel is compared to 

AC50 values for the chemicals with log10BER <0. Several characteristics become apparent 

for the 11 substances with log10BER < 0: one, that many of these substances demonstrated 

relatively potent in vitro activity; two, that the most potent PODNAM,95 values, based on the 

combination of in vitro bioactivity and IVIVE, tended to drive lower BER values; and, three, 

that ExpoCast SEEM2 95th percentile estimates higher than the median in the case study 

seemed to contribute to lower BER values.

The performance of the ExpoCast SEEM2 model has been previously evaluated and 

described (Wambaugh, et al., 2014). In this case study, ExpoCast predictions for a relatively 

small subset of 18 chemicals were compared to manually curated values from Health 

Canada human health risk evaluations. The curated exposure values for these 18 chemicals 

had consumer product or environmental media exposure values from Health Canada 

assessments that could be compared to the median and 95th percentile on the credible 

interval for prediction of the median total US exposure from ExpoCast. The results illustrate 

for a limited chemical space that, as expected, the 95th percentile-ExpoCast values were 

within a range of the higher of either the consumer product or environmental Health Canada 

exposure values (Figure 6). The majority of the residuals (from the first to third quartile) for 

this comparison fall within ± 0.75 log10, indicating that the 95th percentile ExpoCast 

SEEM2 values may be a reasonable estimate of exposure in the absence of more refined 

models. One substance in particular, catechol (CASRN 120-80-9), stands out for larger 

differences between ExpoCast SEEM2 and Health Canada estimates. The ExpoCast SEEM2 

model relies heavily on the ACToR use database, and catechol is suggested as a food 

additive and as having industrial (with no consumer) use. For the Health Canada catechol 

exposure estimate, dietary intake represents the majority of environmental media exposure 

with the predominant source being the natural occurrence of catechol in foods, and 

conservative estimates were derived using literature on maximum concentrations found in 

various food groups (EC/HC, 2008). Accounting for natural occurrence in food is not 

included as a use type in the ExpoCast SEEM2 model which may explain the discrepancy. 

Two other substances, di(2-ethylhexyl) adipate [DEHA] (CASRN 103-23-1) and 

chlorohexidine diacetate (CASRN 56-95-1), respectively, are consumer product chemicals 

that demonstrated slightly higher residuals. For DEHA, the Health Canada consumer 

product exposure estimate used to compare to ExpoCast SEEM2 represents the highest 

concentration reported in body lotion although a considerable range across products was 

reported (0.1 to 6%) which may partly explain the higher residual when compared to 

ExpoCast SEEM2 which represents the median of the U.S. population. Moreover, the Health 

Canada exposure estimate used in the comparison is the applied dose and it is known that 

DEHA exhibits low dermal absorption (the screening assessment adjusted the applied dose 

to estimate an internal dose using a dermal absorption value of 10% for risk 
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characterization) (EC/HC, 2011). Likewise, the Health Canada estimate for chlorohexidine 

acetate is the applied dose, and it also exhibits low dermal absorption (EC/HC, 2017). The 

ExpoCast SEEM2 exposure estimates may be lower for poorly absorbed chemicals in near-

field exposures such as topical application in part because the ExpoCast SEEM2 model was 

calibrated using human biomonitoring data.

3.3 POD ratio for the 448 chemicals

The POD ratio depends on the PODNAM and the PODtraditional. In accounting for uncertainty 

from inter-individual variability, the PODNAM,50 and PODNAM,95 were both computed for 

comparison. The PODNAM,50 for substances in this case study are 1.7 to 19 times higher 

than the PODNAM,95, dependent on the substance, with the differences based on estimation 

of population differences in metabolic and renal clearance and/or plasma protein binding 

(see Supplemental Appendix, Figure 5). The log10POD ratio indicates whether a PODNAM is 

lower than the estimate of a dose associated with in vivo effects (PODtraditional). A log10POD 

ratio < 0 means that the log10PODNAM is greater than the log10PODtraditional. The log10POD 

ratio95 was < 0 for 48 of the 448 substances, or approximately 11% of the total (Figure 3C). 

Conversely, for 400 of 448 chemicals (89%), the PODNAM,95 is less than the PODtraditional 

(Figure 3). As the log10PODNAM,50 is greater than the log10PODNAM,95, the log10POD 

ratio50 is < 0 for a higher percentage of substances in this case study (20%, or 92 of 448 

substances). Further examination of the distribution of the log10POD ratio95 demonstrates a 

range of −2.7 to 7.5, and a median of 2 (Figure 7A), indicating the median distance between 

the PODtraditional and PODNAM,95 on an arithmetic scale would be approximately 100-fold. 

Only three substances, all of which are organophosphate insecticides, dicrotophos (CASRN 

141-66-2, DTXSID9023914), azamethiphos (CASRN 35575-96-3, DTXSID9034818), and 

mevinphos (CASRN 7786-34-7, DTXSID2032683), had a log10 POD ratio95 of less than 

−2., with a log10POD ratio95 values of −2.1, −2.7, and −2.2, respectively (Table 4). For the 

log10POD ratio50, the median was 1.2 and the range was −2.9 to 7.0.

As the concentration range evaluated in the ToxCast assays may limit the upper bound of the 

PODNAM, a comparison between the PODtraditional and the maximum AED possible from 

high-throughput screening was also calculated. The maximum AED, using the 95th 

percentile prediction for the Css and using 100 μM as the input concentration, was 

calculated. This maximum AED (Figure 3, Figure 7B) was based on the general assumption 

that no ToxCast library substances would be screened at nominal concentrations that 

exceeded 100 μM. For the 48 substances with a log10POD ratio95 < 0, the maximum AED 

exceeded the minimum PODtraditional in all cases. In contrast, for the remaining 400 

substances with log10POD ratio95 > 0, 60% had a maximum AED that was less than the 

minimum PODtraditional (Figure 7B).

Similar to evaluation of the chemicals with log10BER95 < 0, hypotheses regarding why 

substances demonstrated a log10POD ratio95 < 0 were considered. First, the chemical 

domain was considered via calculation of statistical enrichment of ToxPrint chemical 

structure features, or chemotypes (CTs) (Strickland, et al., 2018; Yang, et al., 2015) (Table 

3). Through this analysis, six CTs were identified as enriched, with OR ≥ 3 and p-value ≤ 

0.05. The local balanced accuracy (BA) values (within a CT subspace) ranged from 0.57 to 
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0.62, with the bond:P=0_phosphate_thio CT completely contained within the log10POD 

ratio95 < 0 space. Of the 48 substances with log10POD ratio95 < 0, half (24 substances) 

contained one or more enriched CTs, corresponding to structural features indicative of 

organophosphate or carbamate related chemistries. Twenty-one of these 24 substances have 

clear indication of being a carbamate or organophosphate pesticide.

As ToxCast assay endpoints do not completely cover biological space, and generally include 

only short-term assays, the hypothesis that ToxCast data failed to identify chemicals that 

demonstrated critical effects in developmental/reproductive or chronic studies was tested via 

enrichment analysis of the study type that underpinned the minimum PODtraditional for each 

substance. Using a Fisher’s exact test, we failed to observe any significant enrichment of 

developmental/reproductive studies (grouped for this analysis, p < 0.87) or chronic studies 

(p-value < 0.69) in the log10POD ratio95 < 0 space. The frequency of developmental/

reproductive and chronic studies defining the minimum PODtraditional is illustrated in the 

matrices in Figure 8. Though there were no significant enrichments of study type for the 

minimum PODtraditional for chemicals with log10POD ratio95 < 0, it is interesting to note that 

chronic toxicity data appeared to generate the minimum PODtraditional more often, in general 

(for 272 out of 448 chemicals). However, this may be due to the fact that not all chemicals in 

the case study had all study types, introducing a major caveat to this analysis, such that 

broader inferences about the importance of study type are limited.

3.4 Comparison of PODNAM,95 to a TTC approach

Considering that, in the absence of HTS data, one approach to screening level risk 

assessment might be to employ a TTC to help in prioritization (HealthCanada, 2016), the 

PODNAM was further compared to a TTC developed using ToxTree (Patlewicz, et al., 2008; 

ToxTree, 2015). For the 448 substances in this case study, the following TTC values were 

defined: 141 substances were designated as 0.0025 μg/kg-bw/day (potential genotoxic 

chemical threshold), 36 substances were designated as 0.3 μg/kg-bw /day (OP or carbamate), 

212 substances were designated as 1.5 μg/kg-bw /day (Cramer Class III), 29 substances were 

designated as 30 μg/kg-bw /day (Cramer Class I), and 5 substances were designated as 9 

μg/kg/day (Cramer Class II). Twelve substances demonstrated exclusion criteria (6 steroids, 

2 metals, 2 benzidines, 1 organosilicon, 1 N-nitroso), and finally, 3 substances lacked a 

defined structure as previously described.

The primary observation from this comparison is that the PODNAM generally appeared to be 

greater than the TTC value, with the PODNAM,95 greater than the TTC for 87% of the 

substances (389/448) and the PODNAM,50 greater than the TTC for 92% of the substances 

(413/448). The median log10PODNAM,95:TTC ratio was 2.25, suggesting that on average 

there is approximately a 100-fold difference between these two predictions (Figure 9A). 

This finding may be partly explained by the methods used to develop the TTC values for 

each chemical class which are analogous to the approaches used in quantitative cancer risk 

assessment or in the development of a reference dose. For potential genotoxic chemicals the 

TTC value was developed through the use of linear lose dose extrapolation to 1 in 106 

lifetime risk-based on reference chemicals in a carcinogenicity database (Kroes, et al., 

2004). For the non-cancer portion of the decision tree (Cramer classifications, OPs and 
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carbamates) the TTC values were developed including the application of an uncertainty 

factor (UF) (e.g. UF of 100 applied to the 5th percentile from a distribution of NOELs from 

Cramer classified substances making up a repeat dose reference database (Kroes, et al., 

2004). No UFs are applied to the PODNAM (or the PODtraditional) in this analysis. In 

addition, we failed to observe a linear relationship between the log10TTC value and the 

log10PODNAM,95 value, with considerable variability in the log10PODNAM,95 values 

reported within each TTC value category (Figure 9B). As the BER has been suggested as a 

prioritization metric, and BER is the quotient of the PODNAM and the exposure prediction, 

we also examined how replacing log10PODNAM,95 with TTC would have affected the 

log10BER95 for the 11 substances with log10BER95 < 0. Interestingly, for the 11 substances 

with log10BER95 < 0, the log10TTC was greater than the log10PODNAM,95 for 8 substances, 

and only one substance (napthalene, DTXSID8020913) still had a log10BER < 0 when using 

the log10TTC instead of the log10PODNAM,95.

3.5 Comparison of PODNAM to PODtraditional from allometrically scaled data

For the main case study, PODtraditional data were collected from any in vivo toxicology study, 

regardless of species or strain, and then grouped to derive a 5th percentile from the 

distribution by chemical. In contrast, the PODNAM was derived from an AED that was 

calculated using human HTTK parameters and in vitro bioactivity (mostly from human cell 

lines and proteins). To address the issue of combining multiple species in this analysis, we 

compared the log10PODNAM,95, derived from an AED calculated using human HTTK 

parameters, to a human equivalent dose, i.e. human PODtraditional, based on allometric 

scaling of the PODtraditional data. Limiting to studies in mouse, rat, guinea pig, rabbit, dog, 

and hamster, 447 of the 448 chemicals could be included in this comparison. The human 

PODtraditional is derived from PODtraditional via multiplication by a factor less than one 

(derived based on body surface area by species) (Nair, et al., 2016). This led to 82 

substances (18%) having log10PODNAM,95 higher than the human PODtraditional (compared 

to 48 when using the animal-based PODtraditional), and 158 substances for which the 

log10PODNAM,50 was higher than the human PODtraditional (compared to 92 when using the 

animal-based PODtraditional). The median human log10POD ratio95 was 1.33, with a range of 

−3.3 to 6.7 (Supplemental Appendix, Figure 7). Given that the mechanism(s) of toxicity and 

metabolic processes may differ considerably across species, a consideration of differences in 

dosing based on allometric scaling (i.e., surface area) provides limited information regarding 

uncertainty based on interspecies differences.

4 Discussion

Herein we present a retrospective analysis to address two key questions: (1) would using in 
vitro bioactivity data from HTS programs such as ToxCast provide a “lower bound” estimate 

of a POD when compared to traditional toxicology approaches? And, (2) is the BER, using 

in vitro bioactivity across a broad range of assays, a useful tool for prioritization of 

substances? This analysis is the largest of its kind presented to date, with information for 

448 substances included. A major premise of this work is that the minimal concentration 

corresponding to in vitro bioactivity is likely to be a threshold for any specific effects or 

toxicities that might be observed in vivo. The primary conclusion of our work is that for 
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89% of the chemicals in this case study, the HTS approach to derivation of a PODNAM,95 for 

screening and prioritization purposes produced a value less than or equal to the PODtraditional 

from in vivo toxicology studies. Further, we found that BER may be a useful data-driven 

metric for prioritization that can be customized to the resources available for follow-up, i.e. 

different choices in calculation of the BER can be made depending on how much uncertainty 

is acceptable and how many substances can be further evaluated given resource constraints. 

The customizable decisions in the HTS approach employed herein are demonstrated in 

adjustments in the amount of uncertainty in (1) the IVIVE that is included in development of 

the PODNAM and (2) the exposure predictions, highlighting that for different screening 

applications differing amounts of uncertainty can be included in this workflow. As 

demonstrated, metrics that account for more of these uncertainties (e.g., use of a 95th 

percentile rather than a median on exposure predictions, or use of a PODNAM,95 instead of a 

PODNAM,50) can be used in a screening and prioritization application (see Table 2). The 

context for use of the PODNAM was further examined via comparison to a TTC approach, 

ultimately demonstrating that there may be some advantages to combining these approaches 

for preliminary screening of substances for safety. The collaborative, international 

consideration of these issues in screening level assessments demonstrates the current state-

of-the-science and presents a transparent and adaptable basis for utilization of HTS 

information.

A potential concern regarding the approach used in the case study might be whether it is 

overly conservative, i.e. whether the PODNAM values are too low or the exposure predictions 

are too high. To begin to address such a question, it is necessary to consider the impacts of 

the selections and assumptions made in the current approach. First, we consider the 

uncertainty that we consider in the use of NAM-based exposure predictions; the ExpoCast 

SEEM2 model is akin to a low-tier exposure assessment tool, and grappling with uncertainty 

in exposure prediction is more familiar to traditional safety evaluation (EPA, ExpoBox). The 

exposure predictions (Wambaugh, et al., 2014) from the ExpoCast SEEM2 analysis have 

wide credible intervals, as demonstrated by the shifting of the log10BER95 by approximately 

2 log10 units based on selection of either the median or 95th percentile exposure predictions. 

In selecting the 95th percentile exposure prediction for most of the comparative analyses in 

this work, we are using a value that includes more of the uncertainty, and the median could 

be used instead depending on the number of substances that should be prioritized and the 

degree of certainty that is desired for a given application of these data. The fact that only 

2.5% of the 448-chemical case study would have a log10BER95 less than zero, and only 15% 

with a log10BER95 less than 2, indicates that though the approach the log10BER95 attempts 

to account for more uncertainty, it does not necessarily indicate a high priority for all 

substances in the case study. There are caveats to this conclusion in that the exposure model 

was informed by functional use categories, and pesticide actives, which comprised 70% of 

the substances with sufficient data for inclusion in this case study, were generally predicted 

to have lower exposure than substances associated with other use categories (Wambaugh, et 

al., 2014). It is possible that using a substance list that included more substances associated 

with uses as pesticide inerts, personal care products, or other functional uses (Dionisio, et 

al., 2015) that more substances would be prioritized using the BER. In comparing exposure 

estimates from the ExpoCast SEEM2 model and curated exposure assessments from Health 
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Canada, we found that the ExpoCast 95th percentile was a reasonable surrogate for 18 

substances. Of these substances, the few that demonstrated larger differences (i.e., greater 

than 1 log10mg/kg-bw/day different) were likely related to reliance on different use and 

exposure scenarios between the ExpoCast SEEM2 model and the exposure assessments, 

supporting refinements in understanding of use and exposure scenario as essential for 

improved confidence in utilization of high-throughput exposure estimates (Biryol et al., 
2017; Brandon et al., 2018; Dionisio et al., 2018; Ring et al., 2018). Moving forward with 

safety evaluation of substances across geographies, international collaboration and data-

sharing regarding substance use categories and exposure scenarios or pathways will support 

progress in exposure prediction for thousands of substances.

As used in the aggregate in this case study, the in vitro bioactivity data was used to define a 

concentration range for any activity and does not necessarily support hypotheses regarding 

specific toxicological effects. Disruption of molecular targets as described by the PODNAM 

is necessary, but not sufficient, for producing adverse effects. In contrast, the PODtraditional is 

intended to represent a threshold for adversity; as such, we might anticipate that the 

PODNAM would in many cases be lower than an estimate of PODtraditional. Caveats in the 

use of ToxCast data include the possibility that, despite an attempt to filter these data for 

more reliable curve-fits (see Methods and Supplemental Appendix), we have not completely 

eliminated results from noisy curve-fits or assay interference, thereby resulting in the 

possible inclusion of some AC50 values that are not reproducible and/or biologically 

meaningful. This may bias the distribution of AC50 values available for substances, and thus 

detailed examination of the in vitro bioactivity data may be warranted when deriving 

screening level assessment values or following up on specific substances identified as a 

priority based on the BER. The use of a point estimate for the potency value (i.e., AC50) 

without use of confidence bounds (Watt, et al., 2018) may produce a higher AED value than 

using a threshold concentration based on a confidence interval. The need for applied 

research on quality control processes for improved filtering of any HTS data to include more 

reproducible and/or more reliable curves clearly emerges from this case study. Use of the 5th 

percentile for the ToxCast AC50 values per substance ameliorates some concerns with the 

appearance of low concentration outliers in the AC50 distribution (likely from less 

reproducible curve fits) (see Supplemental Appendix, Supplemental Figure 3), but also 

provides a “lower bound” estimate of a threshold concentration for bioactivity in vitro. The 

number of detailed, and thereby customizable, decisions made in determining an in vitro 
concentration for use in IVIVE is apparent.

Consideration of how much uncertainty the PODNAM should include in the IVIVE approach 

used is needed. We assumed steady state conditions and complete bioavailability when 

converting the in vitro potency values to AED values (Wetmore, et al., 2014; Wetmore, et al., 

2015; Wetmore, et al., 2013; Wetmore, et al., 2012). The assumption of steady state 

conditions may be fairly accurate for pharmaceuticals and may also work for some but not 

all of diverse, environmentally-relevant chemicals (Sipes et al., 2017a; Wambaugh, et al., 

2018; Wambaugh et al., 2015; Wang, 2010; Wetmore, et al., 2015; Yoon et al., 2014). 

However, beyond the assumption of steady state conditions, other assumptions in the HTTK 

and IVIVE approach may err on the side of lower AED predictions due to the lack of 

extrahepatic metabolic clearance; use of suspended hepatocyte model for capturing hepatic 
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metabolism; and, lack of information about bioavailability (Wetmore, et al., 2015). Available 

high-throughput IVIVE methods are being continuously improved and more data is being 

added to reduce assumptions in the modeling (e.g., estimates of bioavailability, extrahepatic 

clearance). For this analysis, we demonstrated how inter-individual variability can be 

accounted for by using the 95th percentile estimate of the Css from a Monte Carlo 

simulation, which may result in a relatively low estimate of the PODNAM,95. We compared 

this to the PODNAM,50 because, dependent on the screening level application, it may be 

desirable to exclude inter-individual variability from initial computation of the PODNAM. 

The difference between the PODNAM,50 and PODNAM,95 is variable by substance, i.e. the 

range of potential Css values observed across a theoretical population is dependent on 

metabolic and renal clearance, plasma protein binding, and other features that are substance-

dependent (for additional consideration, see Supplemental Appendix, Supplemental Figure 

5). Ultimately, despite a number of approximations and uncertainties, the current workflow 

demonstrates the potential utility of the approach for calculation of the PODNAM using data 

and tools that are currently available.

For the substances in this case study, the PODNAM,50 and PODNAM,95 were lower or 

approximately equal for the PODtraditional 80% and 89% of the substances, respectively. The 

PODNAM,95 and resultant log10POD ratio95 and log10BER95 were selected for further 

detailed analyses in this work because this represented an approach that included 

consideration of more uncertainty and narrowed the substances with log10POD ratio and 

log10BER values < 0 to clearly identify possible limitations in the NAM-based approach. 

One limitation evident from the CT enrichment work is that the current NAM battery in 

ToxCast and HIPPTox, combined with IVIVE, failed to quantitatively capture the potency of 

effects expected for substances that contain structural features of carbamate and 

organophosphate insecticides. ToxCast does contain assays responsive to 

acetylcholinesterase inhibitors (Padilla et al., 2012; Sipes et al., 2013); however, it has been 

previously suggested that these assays lack the ability to accurately reflect 

acetylcholinesterase inhibition potency (Aylward et al., 2011). Additionally, often OP 

metabolites are more potent acetylcholinesterase inhibitors, and this would not be well-

captured in assays with limited to no metabolism. For substances with the structural features 

of carbamate and/or organophosphate insecticides, a TTC approach like the one employed 

herein (which includes a separate workflow for these chemistries) may provide a more 

useful PODNAM value that would be less than or equal to the PODtraditional.

Another potential limitation of the NAM-based approach included in this work is that the 

ToxCast and HIPPTox assays are short-term in duration. One hypothesis as to why a 

substance would demonstrate a log10POD ratio95 < 0 was that the PODtraditional may have 

been effects observed in vivo following exposures of longer duration or involving specific 

susceptible lifestages. Interestingly, the minimum PODtraditional was not associated with a 

particular study type, as a surrogate for phenotype (i.e. developmental/reproductive or 

chronic studies), more frequently for substance with log10POD ratio95 < 0. Conclusions 

from this analysis of study type are necessarily limited because not all substances in the case 

study included all study types. To allow for the largest data set possible, each substance 

included in the case study may have had traditional toxicity information available from 
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multiple sources and study types, and in some instances, it is possible that multiple records 

may correspond to the same study.

Although the in vitro bioactivity approach to definition of a PODNAM has some associated 

uncertainties, in the absence of other information, the PODNAM could be used as a “lower 

bound” or protective estimate. To reduce potential uncertainties, the data used to derive the 

PODNAM could always be further reviewed and refined in a number of ways, at the expense 

of performing a more automated analysis for many substances. First, manual or semi-

automated curation of ToxCast/Tox21 data to select the in vitro bioactivity concentration 

based only on assays and curve-fits with high reproducibility could be performed for 

substances identified as priority from automated analyses. Second, the use of metabolically-

competent in vitro models to predict the bioactivity of parent and metabolite(s) may account 

for potential bioactivated toxicants (DeGroot et al., 2018; Ramaiahgari et al., 2017). 

Additional bioactivity screening using metabolically-competent in vitro models would be 

needed to understand the potential impacts of metabolism on a workflow like the one 

employed herein. Third, the specific data or assay data-based predictions to indicate specific 

potential adversities, modeling neurotoxicity, hepatotoxicity, reproductive, or developmental 

toxicity, in an expansion of the HIPPTox and ToxCast approaches included here, could be 

added. This also relates to a limitation in that not all substances in this case study were 

tested in all available assays in ToxCast or HIPPTox. Fourth, the addition of high data 

content in vitro assays, e.g. high-throughput transcriptomics and/or cellular phenotypic 

profiling data like HIPPTox, may help comprehensively cover the biological pathways 

possibly disrupted by the test substances. Finally, further refinement of the IVIVE approach 

may also improve the utility of the PODNAM. Though currently the nominal media 

concentrations from assay endpoints are used in calculation of AED values that form the 

basis of the PODNAM, refinement of the IVIVE modeling procedure to account for 

differential in vitro partitioning could reduce uncertainty (Fischer et al., 2017).

Comparison of the in vitro bioactivity approach to a TTC-based approach for definition of a 

PODNAM provides some practical insight for screening-level evaluation. When available, the 

PODNAM, which uses data generated for a particular target substance, generally provides a 

more refined estimate of a POD than the TTC. Further, the PODNAM values are likely to 

improve and change over time as more sophisticated and comprehensive HTS tools are 

developed. Though the TTC value is generally lower than the PODNAM, there may be 

advantages to using PODNAM and TTC in concert. In some cases, a TTC cannot be easily 

generated due to exclusion criteria or the presence of multiple structures in an undefined 

mixture, whereas a PODNAM may be generated. In the fraction of cases where the log10TTC 

value was greater than the log10PODNAM,95, the log10TTC could be used as a check on low 

PODNAM values. Indeed, Health Canada recently applied the TTC approach to a group of 

substances amongst the remaining priorities under the CMP. A preliminary qualitative 

characterization of uses and exposure potential indicated that 237 of the CMP substances 

were good candidates for the TTC approach as exposure to the general population was 

expected to be limited. However, after developing quantitative exposure estimates only 89 of 

the 237 substances (38%) had exposures below their respective TTC values (HealthCanada, 

2016). Thus, having an approach such as the use of PODNAM to develop a BER may have 
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proven useful as an additional screening level tool, and a suite of in silico and in vitro 
NAMs, used collectively, provide an informed, multidimensional screening level approach.

There are several considerations when using the PODtraditional. For the PODtraditional data 

themselves, toxicologists generally accept that animal studies conducted at different times, 

by different laboratories, with a different cohort of perhaps the same strain of animal, may 

yield results that are qualitatively and/or quantitatively distinct (Gottmann et al., 2001; 

Kleinstreuer, et al., 2017; Ward et al., 2017; Wolf et al., 2017). Though we do not quantify 

this variability here, the resolution of the difference between the PODNAM and PODtraditional 

may be limited by the variability in the animal study results (Casati, et al., 2018) in addition 

to the variability in the in vitro bioactivity methods. A continuing challenge and necessity 

for comparing the results of NAM will be establishing the variability in reference set data. 

An additional limitation in interpreting this work is comparison of PODNAM, largely from 

human in vitro data, to PODtraditional, which is based on several different mammalian 

species. Though allometric scaling based on differences in animal surface area was 

performed for comparison in this work, the value of this exercise is limited as species-

specific absorption, distribution, metabolism, and excretion processes might be anticipated 

on a substance by substance basis. Since humans are the species of interest for this case 

study, PODNAM based on mostly human bioactivity data were used. In the risk assessment 

process, an uncertainty factor of 10 might be used when considering interspecies differences.

Related issues (made apparent in this case study) in using traditional toxicology information 

as a reference for the NAM-based approach are the challenges of data curation and 

interoperability. For instance, clarification of records that summarize the same original 

study, or identification of specific effects observed, is limited in current publicly available 

databases of toxicity information (e.g., ToxValDB, ToxRefDB, eChemPortal, etc.) because 

of a lack of controlled semantic ontology for study features and biological effects. For 

international collaborations such as this one, it is not straightforward to identify the unique 

toxicological studies nor specific effects labeled using different terminology. Moreover, the 

basis for establishing the PODs from the original studies, regardless of their origin, may not 

be fully structured or reported, and differences in POD selection from different reviewers 

may arise. Consistent identification of the substance tested, and controlled vocabularies 

describing study designs and the reported effects, are needed to share curated data across 

databases, and across the world, in order to leverage the largest dataset possible for 

improved understanding of traditional toxicity information for regulatory toxicology. Efforts 

to create such a large, consistent, and reliable dataset are an ongoing interest within the 

APCRA initiative, among others. Improved curation and digitization of traditional toxicity 

information for comparison with NAMs across a broad range of endpoints and study types 

will require a significant investment of resources.

We have presented herein a retrospective analysis to demonstrate the utility of the BER in 

identifying potential priority chemicals for further evaluation, as well as the conservativism 

of a PODNAM when compared to PODtraditional. The result bolsters confidence that decisions 

based on a PODNAM can be health protective in screening level assessments, lending support 

for using approaches like this one to rapidly evaluate substances and potential needs for 

further screening information. Using relatively conservative assumptions of predicted 
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exposure and bioactivity, only 15% of the substances in this case study demonstrated a 

log10BER95 < 2, suggesting that this approach may provide a data-informed and reasonable 

approach to identifying chemicals of interest for further testing and assessment. A primary 

goal of the APCRA collaboration supporting this work is to identify and resolve 

impediments to adoption of NAMs in safety assessment. In demonstrating the state-of-the-

science for generation of BER and POD ratio values, we have shown in practice for 448 

chemicals a way to accelerate screening and assessment using NAMs for hazard and 

exposure. Further, we have identified a number of areas for refinement in this workflow to 

be considered in subsequent application of this NAM-based approach to regulatory 

toxicology questions. Ongoing work will be needed to demonstrate that a workflow like the 

one demonstrated herein is generalizable to substances with little to no available traditional 

POD information. As continuing improvements in HTS approaches and availability and 

interoperability of database resources are made, confidence in the utilization of NAMs for 

screening level assessments will be bolstered by scientific quality, relevance, and 

transparency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall workflow of the case study.
This case study includes 448 substances with exposure predictions, in vitro assay data, 

HTTK information, and in vivo hazard information. The 50th and 95th percentile from the 

Monte Carlo simulation of inter-individual toxicokinetic variability were used to estimate 

AEDs, and the minimum of either the ToxCast or HIPPTox-based AEDs were selected as the 

PODNAM, 50 or PODNAM, 95. The PODNAM estimates were compared to the 5th percentile 

from the distribution of the PODtraditional values obtained from multiple sources to obtain the 

log10POD ratio. The log10BER was obtained by comparing the PODNAM estimates to 

exposure predictions. All values used for computation were in log10-mg/kg-bw/day units
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Figure 2. Substance diversity.
Generic functional use categories from ACToR for the 448 case study substances are 

illustrated. One substance, represented as a row in the heatmap, may be associated with 

multiple use categories
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Figure 3. Comparison of the Exposure, PODNAM, and PODtraditional.
Comparison of ExpoCast (gray circles), PODNAM (green circles), maximum AED (black 

triangles), and PODtraditional values (blue boxes) for 448 substances. The green line segment 

indicates the PODNAM,95 to PODNAM,50. Inset images A, B, and C correspond to the red 

boxes overlaid on the main plot. Image 3A provides a magnification on the substances with 

the largest log10POD ratio values. Image 3B displays a sample of substances that approach 

the median log10POD ratio. Image 3C includes all 48 substances for which the 

PODNAM, 95 > PODtraditional.
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Figure 4: Illustration of the log10-bioactivity-exposure-ratio (BER).
A) The cumulative frequency distributions for BER estimates are plotted. The BER95 values 

used the 95th percentile from the credible interval to predict the median total US population 

exposure from ExpoCast, whereas the BER50 values used the median exposure estimate. 

BER95 and BER50 values were calculated as the “95th%-ile” and “50th%-ile,” using the 

PODNAM,95 and PODNAM,50, respectively. Orange line = BER95 using PODNAM,50; black 

line = BER95 using PODNAM,95; blue line = BER50 using PODNAM,50; gold line = BER50 

using PODNAM,95. B) Eleven chemicals had a BER95, 95th%-ile < 0, indicating overlap 

between the PODNAM,95 and the 95th percentile exposure prediction. Dashed red lines 

indicate where BER95, 95th%-ile = 0.
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Figure 5: Exposure and in vitro bioactivity that defined chemicals with log10BER < 0.
In (A), a scatterplot of log10 ExpoCast SEEM2 95th percentile value versus the PODNAM,95, 

with dotted red lines for the respective median values. The names of the 11 substances with 

log10BER95 < 0 are labeled. In (B) and (C), distributions of the exposure and the ToxCast 

AC50 data for all 448 substances are shown in the middle panels (gray histograms). Below 

these histograms in (B) and (C), side by side boxplots (showing the 1st quartile, median, and 

3rd quartile) of the log10 ExpoCast SEEM2 95th percentile values and the ToxCast AC50 

values are illustrated for the 11 substances with log10BER95 < 0. In (C), gold triangles 

indicate the 5th percentile of the AC50 distribution.
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Figure 6: Comparison of Exposure Predictions from ExpoCast and Health Canada Evaluations.
The total maximum values (in log10-mg/kg/day units) curated from Health Canada exposure 

assessments for 18 substances in this case study were compared to the ExpoCast (A) median 

and (B) 95th percentile predictions (in log10-mg/kg/day units), respectively. CASRN for 

these substances are labeled. The gray line shows a linear relationship. All CASRN and 

substance identifiers, including substance name, can be found in Supplemental File 2.
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Figure 7. Further understanding of the POD ratio distribution.
(A) The log10POD ratio is illustrated for the PODNAM,95 and the PODNAM, 50. The solid 

black line indicates where the log10-POD ratio95 is 0. Using the more conservative (i.e., 

lower) PODNAM,95, 48 of the 448 substances (10.7%) demonstrated a log10POD ratio < 0 (to 

the left of the dashed vertical line), whereas 92 of the 448 substances (20.5%) demonstrated 

a log10-POD ratio < 0 using the PODNAM,50. The medians of the log10-POD ratio 

distributions are indicated by dashed lines for PODNAM, 95 and PODNAM, 50 as 2 and 1.2, 

respectively. (B) Maximum AED (max AED) was less than the PODtraditional (5th-%ile 

POD) in 60% of the cases where the log10POD ratio95 > 0 (using PODNAM, 95). For the 48 

chemicals with log10POD ratio95 < 0, the max AED was within the range of PODtraditional.
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Figure 8. Study types enriched in the log10POD ratio95 < 0 set.
The matrices used to evaluate study type enrichment are shown. Neither developmental/

reproductive (grouped together) (p = 0.88) nor chronic (p = 0.45) study types appeared to be 

enriched in the log10POD ratio95 < 0 subset.

Friedman et al. Page 38

Toxicol Sci. Author manuscript; available in PMC 2021 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 9. PODNAM,95 compared to the TTC.
The log10TTC: PODNAM,95 ratio is illustrated for the 448 case study chemicals in (A). In 

(B), the log10 TTC value bin is compared to the log10PODNAM,95, in units of log10-mg/kg/

day; dots represent all points and violin plots capture the shape of the distribution.
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