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Abstract

Objective: There are no validated methods for predicting the timing of seizures. Using machine 

learning, we sought to forecast 24-hour risk of self-reported seizure from e-diaries.

Methods: Data from 5,419 patients on SeizureTracker.com (including seizure count, type, and 

duration) were split into training (3,806 patients/1,665,215 patient-days) and testing (1,613 

patients/549,588 patient-days) sets with no overlapping patients. An artificial intelligence (AI) 

program, consisting of recurrent networks followed by a multilayer perceptron (“deep learning” 

model), was trained to produce risk forecasts. Forecasts were made from a sliding window of 3-

month diary history for each day of each patient’s diary. After training, the model parameters were 

held constant and the testing set was scored. A rate-matched random (RMR) forecast was 

compared to the AI. Comparisons were made using the area under the receiver operating 

characteristic curve (AUC), a measure of binary discrimination performance, and the Brier score, a 

measure of forecast calibration. The Brier skill score (BSS) measured the improvement of the AI 

Brier score compared to the benchmark RMR Brier score. Confidence intervals (CIs) on 

performance statistics were obtained via bootstrapping.

Results: The AUC was 0.86 (95% CI = 0.85–0.88) for AI and 0.83 (95% CI = 0.81–0.85) for 

RMR, favoring AI (p < 0.001). Overall (all patients combined), BSS was 0.27 (95% CI = 0.23–

0.31), also favoring AI (p < 0.001).

Interpretation: The AI produced a valid forecast superior to a chance forecaster, and provided 

meaningful forecasts in the majority of patients. Future studies will be needed to quantify the 

clinical value of these forecasts for patients.
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Introduction

One of the most debilitating aspects of epilepsy is its unpredictability. Not knowing when 

the next seizure will come results in, among other things, loss of driving privileges, 

decreased employability, social stigma, and anxiety.1 This lack of foreknowledge is one of 

the reasons most patients take daily antiseizure medications rather than only during higher 

risk periods.

Patients and caregivers are very interested in noninvasive forecasting tools capable of 

providing 24-hour warnings, even if the forecasts are imperfect.2 Based on several recent 

long-term outpatient studies, there may be predictable features in seizure diaries.3–7 

Advances in machine learning techniques, particularly deep learning,8 and the availability of 

large seizure diary datasets9,10 now permit a novel approach to the challenge of risk 

forecasting.

We hypothesized that using a database of >1 million patient-reported seizures,9 it is possible 

to accurately train an algorithm to forecast the probability of future seizures. The present 

study aimed to design and validate an artificial intelligence (AI) algorithm to forecast the 

chance of a reported seizure occurring within 24 hours based on electronic seizure diary 

entries.

Patients and Methods

Data

Seizure diary data were obtained from SeizureTracker.com9,10 between December 1, 2007 

and March 13, 2018 in deidentified and unlinked format. All patients included did not opt 

out of research on the Seizure Tracker website. The study was determined exempted by the 

Beth Israel Deaconess Medical Center Institutional Review Board. Seizure Tracker is a free-

to-users multiplatform resource that includes web-based tools, mobile device applications, 

and a smart speaker “skill” that together help patients and caregivers manage seizure diary 

information.10 This patient cohort has been previously characterized, including seizure rates, 

seizure types, and epilepsy types.9

All seizure records (training and testing) with reported seizure dates outside the export range 

(December 1, 2007–March 13, 2018) or with erroneous (negative) seizure duration values 

were excluded. No data imputation was used. Patients were considered eligible if they had at 

least 3 seizures recorded and had at least 85 days between the first and last recorded seizure.

Patient data were divided into a training set and a testing set using a cutoff date of November 

30, 2015 (Fig 1). All eligible patients up to the cutoff were included in the training set, with 

diaries being truncated at the cutoff date. All diaries of eligible patients that began after the 

cutoff date were included in the test set. Accordingly, the testing set comprised only “new” 

patients who were not encountered by the AI in the training phase.

Forecasts were computed each day in each patient, using a sliding window (Fig 2). A 3-

month “look-back” history was composed into a 3 × 84 matrix for each AI forecast. The 

rows were comprised of: (1) daily seizure counts, (2) average daily seizure duration in 
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seconds, and (3) daily generalized tonic–clonic seizure counts. These 3 covariates were 

abstracted from patient-reported diary entries. Each column represented one 24-hour day. 

There were 84 columns representing days in the 3-month look-back window. Each row was 

independently normalized by the maximum value per row.

Model Training

AI Forecasting Model.—The algorithm consisted of a multilayer artificial neural network 

(ie, deep learning model) comprised of a recurrent neural network connected to a multilayer 

perceptron11 (see Fig 2). The output of the system was the estimated probability of a seizure 

occurring within the next 24 hours. Dropout regularization at 50% was used after each 

recurrent layer. Three hyperparameters were grid searched with cross-validation: number of 

covariates (1 or 3), number of history days (84 or 56 or 28), and recurrent network layer 

type. If number of covariates was 1, only daily seizure counts were used; if the number was 

3, input also included a row of daily seizure durations and a row of number of generalized 

tonic–clonic seizures. The recurrent neural network layers were adjusted to be long short-

term memory (LSTM), bidirectional LSTM, or gated recurrent unit methods.11

Training used K-fold (K = 11) cross-validation to optimize the above hyperparameters. The 

hyperparameters that minimized the binary cross-entropy in the training set were used on the 

testing set without further modification. The finalized flowchart is shown in Figure 2, 

comprising 1 covariate, 84-day history window, and LSTMs in the recurrent layers.

Rate-Matched Random Forecasting Model.—A benchmark comparison forecasting 

model was developed that represents an informed “random forecaster.” Like a coin flip, a 

random forecasting model (rate-matched random [RMR]) represents a random guess. Unlike 

the flip of a fair coin, RMR was biased to make guesses aligned with the individual’s 

historical “usual” seizure rate. As such, RMR assumed one’s future risk was equal to the 

average seizure count per day over the prior 3 months (see Fig 2). This rate was obtained by 

taking the same 84-day history of seizure counts used by the AI (described above). Because 

RMR is recalculated each forecasted day, it is possible for RMR to achieve a better accuracy 

than a stationary forecast if a patient’s average rate changes over the course of months or 

years.12

Evaluating Model Performance

The final AI model was applied to the testing set by processing the seizure diaries in the 

same manner as above. Forecasts were formed for each day in each patient in the testing set. 

Using the known seizure outcome and the forecast from each of the models, we evaluated 

model performance in 2 ways. First, we evaluated the model’s ability to make binary 

predictions (seizure vs no seizure) using the receiver operating characteristic (ROC) analysis 

on the test set; performance is summarized as the area under the ROC curve (AUC). Using 

these ROC plots, the position with the optimal balance between sensitivity and specificity 

was used to compute an F1 score, which is a balanced metric of false positives and false 

negatives. Second, we evaluated model calibration, that is, how closely the predicted 

probability of seizures matched the observed rate of seizures in the test set. Forecasting 

models are said to be “well calibrated” when the predicted risk closely matches the observed 
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risk. Calibration was quantified using Brier scores.13 These were calculated for the 2 

forecasting methods. A perfect Brier score is 0; an always-wrong forecaster has a score of 1.

Brier skill scores (BSSs)14 were also calculated; these allow for a direct comparison of the 

AI method to the RMR method. A value of BSS > 0 suggests that AI is superior to the RMR 

method. BSS values were calculated based on Brier scores and modified Brier scores.

Confidence intervals (CIs) were calculated using 5,000 rounds of bootstrapping (repeated 

random selection of patients with replacement), with each bootstrap sample consisting of 

1,613 patients randomly selected with replacement from the testing set, permitting a way to 

assess the reliability of the performance metrics. Brier scores and AUC metrics were 

compared using the permutation test.

Individual level performance was explored using a dichotomized version of the AI forecasts. 

To dichotomize, a per-patient threshold was selected by identifying the value that optimized 

the sensitivity/specificity tradeoff with the ROC. That threshold was then applied, and 

sensitivity, time in warning, percentage of seizures in HIGH, and percentage of seizures in 

LOW were computed and plotted for each patient in the testing set.

This study adheres to the principles of TRIPOD (Transparent Reporting of a Multivariable 

Prediction Model for Individual Prognosis or Diagnosis).15,16

Results

The full database included 15,855 users of Seizure Tracker with any seizure documented. Of 

those, the subset of eligible patients was divided into a training set (3,806 patients, 

1,665,215 patient-days total) and testing set (1,613 patients, 549,588 patient-days total). A 

summary of basic characteristics of the patients is shown in the Table.

A calibration curve compares forecasted risk to the true risk. An ideal forecaster would 

forecast a risk of X when the true risk is X. For example, consider a weather forecaster who 

states, “The chance of snow today is 45%.” For an ideal forecaster, when we look back at all 

past days when the same forecast was given, we will find that it snowed on 45% of such 

days. In other words, for an ideal forecaster, we find a diagonal line y = x when plotting the 

true risk (y) versus the forecasted risk (x). Figure 3 shows the AI forecaster to be much 

closer to the ideal than RMR. RMR has poor performance at the higher end of the forecast 

probability scale, because it rarely forecasts high values, and when it does, it is extremely 

inaccurate. Conversely, the AI calibration curve remains close to the y = x (ideal forecaster) 

line throughout the curve. In an analogous fashion, the ROC plot (see Fig 3) demonstrates 

that the AI surpasses the RMR across thresholds.

The Brier score was 0.10 (95% CI = 0.09–0.11) for AI and 0.14 (95% CI = 0.13–0.15) for 

RMR, favoring AI (p = 0.0005). The BSS was 0.27 (95% CI = 0.23–0.31), showing that the 

AI improves over RMR (p < 0.0001). The AUC was 0.86 (95% CI = 0.85–0.88) for AI and 

0.83 (95% CI = 0.81–0.85) for RMR, again showing AI to be superior (p = 0.0005). The F1 

score for AI was 0.56 (95% CI = 0.53–0.60) and for RMR was 0.53 (95% CI = 0.50–0.57), 

also showing AI superior (p = 0.0005).
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Comparing the AUC values at the individual level, 57% of patients demonstrated AUCAI > 

AUCRMR.

An example patient diary is shown to illustrate the result of forecasts (Fig 4). An optimal 

threshold is highlighted to facilitate dichotomizing the forecast values if desired. In that 

case, forecasts above the threshold would be considered warning days, and below threshold 

would be considered no-warning days. Other patients may prefer to use the actual forecast 

value rather than a dichotomized forecast.

Figure 5 shows the metrics for performance on the patient level for all patients in the testing 

set, with seizure rates indicated by color.

Discussion

This study demonstrates that even without electroencephalography (EEG) or implanted 

biosensors—using only electronic seizure diaries—an AI approach is able to produce 

accurate forecasts of the next recorded seizure event. The AI was trained on one of the 

world’s largest patient-reported seizure diary databases. Using a set of 1,613 patients whom 

the AI had never previously encountered in training, the technique made forecasts that were 

more accurate than a matched random forecaster according to multiple metrics. Metrics at 

the individual patient level indicated that the majority of patients had forecasts that were 

more accurate using the AI compared with RMR. Taken together, these results indicate that 

the AI is a valid forecasting method for seizures occurring 24 hours in the future.

Studies from intracranial EEG4 and patient-reported diaries17 report that circadian14 and 

other multiscale cycles appear in seizure timing. Harnessing these patterns would be 

valuable for a successful forecaster system. In the absence of a priori knowledge of these 

cycles (including how many are present and their phase, amplitude, and evolution in time), a 

forecasting method would need to fit a large number of covariates and would require a 

detailed model of how multiscale cycles work. Instead, the present study employed a deep 

learning algorithm to essentially teach itself what patterns and models would be most 

appropriate by observing a very large set of patient diaries.

The primary outcome evaluation metrics used in this study differ from recommendations of 

some groups that focus on binary outcomes, such as “time in warning” and 

“sensitivity.”18–20 However, we recommend that patients should be given actual forecast 

probabilities, rather than binarized forecasts. Although having true probabilities may be 

challenging initially for some users, they have the distinct advantage of providing more 

flexibility in interpretation, as patients can individualize their responses to different forecast 

probabilities. Probabilities also offer patients the opportunity to combine forecasts from 

other technologies (such as wearables or implanted devices) in a Bayesian manner.14 

Moreover, it is trivial to binarize forecasts for less sophisticated users, if needed or desired 

(eg, see Figs 4 and 5). Using binary metrics can help to frame the simplified value of a 

forecasting tool at the individual level. In the case of the AI forecaster, there is significant 

heterogeneity of outcomes (see Fig 5), reflecting the reality that the present forecasting 

system can be more accurate for some patients but much less so for others.
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There are several important limitations to this work. First, the primary dataset evaluated 

includes self-reported seizure diary information without physician curation. As a result, the 

underlying data are subject to quality considerations, such as over-reporting, under-

reporting, and misclassification of events.10,21–24 Nevertheless, these concerns are manifest 

in all aspects of the clinical care of seizures. Despite recent advances in seizure detection 

technology,25,26 there are currently no approved devices for detecting all seizures in 

outpatients. Moreover, it has been shown in multiple studies that data collected from self-

reported seizure diaries produce valuable insights about epilepsy, and a number of results 

originating in patient-reported databases have been corroborated with other more reliable 

datasets.6,17,27,28 Nevertheless, self-reported seizure diary data can differ substantially from 

seizure patterns characterized objectively using continuous EEG data or external observers.
23 Consequently, the results here must be interpreted as an early step toward the ultimate 

goal of forecasting all clinical seizures.

It is important to note that forecasting self-reported seizures is not synonymous with 

forecasting confirmed seizures. In a number of studies, incomplete recording of seizures was 

common,24 presumably due to impaired seizure perception. When compared to objective 

seizure detection, self-reported seizure diaries may account for <50%, on average, of the true 

seizure count.24 The only way to mitigate this limitation effectively would be to make use of 

a dataset comprising long-term objective seizure recordings (for all clinical seizure 

subtypes) from a large number of patients. Such data do not yet exist, but there are reasons 

to be optimistic.29

In addition, the present AI forecasts were limited to 24-hour blocks in the future. Obviously, 

patients with high seizure rates (>1 per day) would not benefit from the present AI system. 

Other forecasting horizons are possible, and may have value to patients. Moreover, this study 

used all available seizures, meaning that even seizures that would be considered “less 

burdensome” to some patients were treated equally with those that might be considered 

more severe. Similarly, seizures that would qualify as status epilepticus according to some 

definitions30,31 were treated no differently than others in this analysis. Patients who had very 

few or very many seizures were equally included in this study, without a minimum or 

maximum monthly seizure frequency requirement. Many of these design decisions were 

made to capture the largest possible group of patients to determine the feasibility of 

electronic diary-based forecasting. Future work is expected to benefit from subgroups 

enriched with patients most likely to benefit from more patient-specific forecasts.

The reason that RMR is able to achieve AUC > 0.50 in our data is that the cohort represents 

a mixture of patients, each with a different seizure rate (for additional information see 

https://tinyurl.com/y847tfxy). This is comparable to flipping a set of weighted coins, where 

each coin has a different weight to make heads more or less likely from a uniform 

distribution of weights between always heads and always tails. Here, a coin represents a 

patient, each coin flip represents 1 day, heads represents “seizure,” and tails represents “no 

seizure.” If one knew the exact bias of each coin and used that to make the analogous RMR 

forecast of every flip, the AUC would be expected to achieve the value reported here. 

Conversely, if all coins had the exact same bias, then the AUC would be expected to be 0.50. 
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Therefore, due to expected high AUC from the RMR estimate, we also incorporated other 

metrics to evaluate the AI forecast, such as F1 score, Brier score, and BSS.

The effect size of the AI forecaster could be conceptualized using various metrics, but each 

of them indicate that the system is not perfect. In contrast to what we have shown here, 

others have demonstrated a subset of about 20 to 30% of patients who have some powers of 

self-prediction.32,33 Here, we find that a much larger set of patients (57% of patients with 

AUCAI > AUCRMR) may benefit from the AI. What has been demonstrated here is not a 

perfect deployable system. Rather, the system outperforms a random system. We have 

shown that a majority of patients from a community sample could find benefit from the AI 

system. Other complementary systems may be required (eg, wearable or implantable 

devices) to improve the accuracy and utility of a forecaster based on diaries alone.

Left untested in the present work is the issue of clinical utility. Many questions arise based 

on the potential availability of a seizure forecasting tool. For instance, if a patient receives a 

forecast that has higher accuracy than a rate-matched chance forecast, will he or she actually 

benefit in their daily life? Will patients make different safety and medication choices based 

on the forecast results? As importantly, will patients truly want such forecasts? Moreover, is 

it safe to provide forecasts to patients when the forecasts are imperfect? These and related 

questions reveal fundamental limitations of retrospective review of seizure diaries for testing 

a forecasting system. Future studies should address these questions using a prospective 

cohort study design.

We look forward to the day when all people with epilepsy can use a reliable and accurate 

seizure forecasting system. As technology advances, the quality and quantity of objective 

data available for seizure diary collection and accuracy of training sets can be improved. 

Meanwhile, the present study offers hope that diary-based forecasting systems may be 

helpful.
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FIGURE 1: 
Illustration of training/testing data split. The entire seizure diary database was split based on 

the cutoff date of November 30, 2015. All diaries that began before that date that met 

eligibility criteria were included in the training set, but truncated at that date. All diaries that 

began after that date were included in the testing set. This scheme allowed for testing to 

occur on patients that the artificial intelligence was not exposed to during training.
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FIGURE 2: 
How forecasts were made. A moving window of time, comprising 3 months of history and a 

24-hour period, was slid across each patient’s seizure diary. For each position, the artificial 

intelligence (AI) and the rate-matched random (RMR) methods were used to produce one 

forecast. As shown, the AI method employed a preprocessing stage to generate an 84 × 3 

matrix for input, and the RMR method took the first row from that matrix as input. The AI 

then processed the input using 2 long short-term memory (LSTM) layers, and then 3 densely 

connected layers to produce a single output forecast. The RMR calculated the average daily 

seizure rate from the 3-month history to produce an estimate.
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FIGURE 3: 
Calibration and receiver operator characteristic (ROC). Calibration shows the relationship 

between actual recorded seizure probability and seizure forecast values. The rate-matched 

random (RMR) and artificial intelligence (AI) forecasters are shown in the left calibration 

curve with violin plots. On the right, the ROC plot compares both forecasters directly. For 

calibration plots, 5 bins of size 20% were used, meaning forecast values from 0–20, 20–40, 

40–60, 60–80, and 80–100 are summarized in the figure along the x-axis. The ideal 

calibration for a hypothetical perfect forecaster is shown as a dotted black line. The violin 

plots represent a histogram of values, allowing a clear representation of the spread of values 

observed. The wider the plot becomes, the more likely a given value was. For instance, when 

RMR forecasted 20–40%, the true risk often was 60–75%. The calibration curve intersects 

the median values from each violin plot. RMR shows very poor calibration, particularly at 

higher forecast values, whereas the AI shows good calibration (ie, close to the idealized 

calibration curve). Of note, RMR rarely forecasted high-valued (>80%) forecasts, but when 

it did the true risk was always very low. The ROC plot shows the AI consistently 

outperforms RMR for any given threshold. AUC = area under the ROC curve.
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FIGURE 4: 
Example patient diary. Shown here is a 19-day diary excerpt from one patient. The black line 

indicates the forecasts from each day. Red rectangles indicate seizure days, whereas blue 

rectangles indicate nonseizure days. The red dashed line shows the threshold that this 

particular patient can optimally use as a cutoff (based on the receiver operating characteristic 

over this patient’s entire 96-day diary). Optimal threshold was selected by finding the 

threshold that optimally trades off sensitivity and specificity. As seen here, most seizure days 

have forecasts above the optimal threshold, and most nonseizure days have forecasts below. 

AI = artificial intelligence.
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FIGURE 5: 
Individual level forecasting metrics for dichotomized forecasts. Taking the optimal threshold 

cutoff for each patient, forecasts were recasts as “high risk” versus “low risk.” In that 

context, the upper graph compares time in warning (TIW) to sensitivity, whereas the lower 

graph compares the accuracy of high-risk to low-risk forecasts. In both, the color of each 

marker indicates the seizure rate for that patient. The ideal for the upper figure would be 

very low TIW (which would depend on seizure rate) and extremely high sensitivity. The 
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ideal for the lower figure would be 0% seizures in low warning, and 100% seizures in high 

warning. sz = seizures.
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TABLE.

Characteristics of the Patient Diaries Included in the Training and Testing Sets

Characteristic Training Testing

Patients, n 3,806 1,613

Seizure frequency, per mo: median (min—max)
a 2.56 (0.04–503.63) 3.67 (0.09–882.63)

Diary duration, days: median (min—max) 364 (85–2,362) 329 (85–1,366)

Total number of seizures: median (min—max) 31 (3–23,838) 43 (3–19,873)

Gender, %, M/F/ unknown 47.3/50.6/2.1 49.0/48.2/2.8

Age, yr, median (min—max)
b 17.3 (0.6–84.5) 16.4 (0.9–87.6)

VNS usage, n (%) 643 (16.9%) 312 (19.3%)

Brain surgery, n (%) 112 (2.9%) 39 (2.4%)

Epilepsy type, %, focal/nonfocal/unknown
c 16.8/9.7/73.5 15.6/10.0/74.5

Numbers summarizing across patients are always given as median, and a range between the minimum (min) and maximum (max) value.

a
Twelve patients in the training set and 0 in the testing set had seizure frequencies < 1/yr, with the minimum rate being 1 seizure every other year.

b
Age on the last date of the exported dataset (training or testing).

c
Epilepsy type was defined based on user profiles in the Seizure Tracker database. Focal epilepsy = users who checked any of the list A items AND 

did not check any of the list B items. Nonfocal epilepsy = users who did not check any of the list A items AND did check any of the list B items. 
List A: brain tumors, brain trauma, brain hematoma, stroke, brain surgery, brain malformations, tuberous sclerosis. List B: Alzheimer disease, 
metabolic disorder, genetic abnormalities, electrolyte abnormalities, alcohol or drug abuse, Dravet syndrome, Angelman syndrome, 
neurofibromatosis, Down syndrome, Aicardi syndrome, Sturge–Weber syndrome, Rett syndrome, hypothalamic hamartoma.

F = female; M = male; VNS = vagal nerve stimulation.
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