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Abstract

Causal parameters may not be point identified in the presence of unobserved confounding. 

However, information about non-identified parameters, in the form of bounds, may still be 

recovered from the observed data in some cases. We develop a new general method for obtaining 

bounds on causal parameters using rules of probability and restrictions on counterfactuals implied 

by causal graphical models. We additionally provide inequality constraints on functionals of the 

observed data law implied by such causal models. Our approach is motivated by the observation 

that logical relations between identified and non-identified counterfactual events often yield 

information about non-identified events. We show that this approach is powerful enough to recover 

known sharp bounds and tight inequality constraints, and to derive novel bounds and constraints.

1 INTRODUCTION

Directed acyclic graphs (DAGs) are commonly used to represent causal relationships 

between random variables, with a directed edge from A to Y (A → Y) representing that 

A “directly causes” Y. Under the interventionist view of causality, this relationship is taken 

to mean that Y may change if any set of variables S that includes A is set, possibly contrary 

to fact, to values s. The operation that counterfactually sets values of variables is known as 

an intervention and has been denoted by the do(s) operator in [12].

The variable Y after an intervention do(a) is performed is denoted Y(a), and is referred 

to as a potential outcome, or a counterfactual random variable [10]. Distributions over 

counterfactuals such as P(Y(a)) may be used to quantify cause-effect relationships by means 

of a hypothetical randomized controlled trial (RCT). For example, the average causal effect 
(ACE) is defined as E[Y (a)] − E Y a′  and is a comparison of means in two arms of a 

hypothetical RCT, with the arms defined by do(a) and do(a′) operations.

Since counterfactuals are not observed directly in the data, assumptions are needed to 

link counterfactual parameters with the observed data distribution. These assumptions are 

provided by causal models (often represented by DAGs), which are substantively justified 

using background knowledge or learned directly from data [19].
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Under some causal models, counterfactual distributions P(Y(a)) may be identified exactly 

(expressed as functionals of the observed data distribution) [20, 18, 6]. However, when 

causally relevant variables are not observed, counterfactual distributions may not be 

identified.

The ideal approach for dealing with non-identified parameters is additional data collection 

that would “expand” the observed data distribution by rendering previously unobserved 

variables observable, and thus a previously non-identified parameter identifiable.

If additional data collection is not possible, the alternative is to impose additional parametric 

assumptions on the causal model which would imply identification, or retreat to a weaker 

notion of identification, where the observed data distribution is used to obtain bounds on the 

non-identified parameter of interest. The existence of such bounds may yield substantively 

significant conclusions, for instance by indicating that the causal effect is present (if the 

corresponding parameter is bounded away from 0).

A well known example of a causal model with a non-identified causal parameter with non-

trivial bounds is the instrumental variable (IV) model [1, 9, 17]. The original sharp bounds 

for the causal parameter in the IV model were derived using a computationally intensive, 

and difficult to interpret, convex polytope vertex enumeration approach [1]. Subsequent 

work [13] has extended this approach to other scenarios where a counterfactual objective can 

be expressed as a linear function of the observed data law. These approaches are limited both 

by computational complexity and by the required linear form of the objective.

Bounds on causal parameters are related to inequality constraints on the observed 

data law implied by hidden variable DAGs, as demonstrated by the derivation of the 

original IV inequalities [1], and subsequent work on inequality constraints [4, 7]. The 

approach developed in [22] for deriving such inequality constraints is very general and is 

conjectured to be able to recover all constraints implied by a hidden variable DAG, but is 

computationally challenging to evaluate, and has no bounded running time.

In this paper, we present a new approach for deriving bounds on non-identified causal 

parameters that directly uses restrictions implied by a causal model, rules of probability 

theory, and logical relations between identified and non-identified counterfactual events. We 

then build on this approach to present a new class of inequality constraints on the observed 

data law.

The paper is organized as follows. We introduce notation and relevant concepts in Section 

2. We provide an intuitive introduction to our method by re-deriving known sharp bounds 

in the binary IV model [1] in Section 3. In Section 4, we present results important to 

our approach, and provide a general algorithm for obtaining bounds on causal parameters. 

Section 5 demonstrates how our approach may be used to derive generalized instrumental 

variable inequalities, of which the original IV inequalities and Bonet’s inequalities [3] are 

special cases. Finally, in Section 6 we make use of these results to provide novel bounds and 

inequality constraints for two sample models.
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2 PRELIMINARIES

We let G denote a DAG with a vertex set V such that each element of V 

corresponds to a random variable. The statistical model of G is the set of joint 

distributions P(V) that are Markov relative to the DAG G. Specifically, it’s the set 

P(V):P(V) = ∏V ∈ VP V ∣ paG(V ) , where paG(V ) is the set of parents of V in G.

The causal model of a DAG is also a set of joint distributions, but over counterfactual 

random variables. A counterfactual Y(a) denotes the random variable Y in a counterfactual 

world, where A is exogenously set to the value a.

Such a causal model can be described by a set of structural equations 

fV paG(V ), ϵV ∣ V ∈ V , where each fV can be thought of as a causal mechanism that maps 

values of paG(V ) (parents of V) and the exogenous noise term ϵV to a value of V. For a given 

set of values a of paG(V ), variation of ϵV yields the counterfactual random variable V(a) as 

the output of fV(a, ϵV).

Other counterfactuals can be defined through recursive substitution [15], as follows:

Y (a) =
aY  if Y ∈ A
fY V (a) ∣ V ∈ paG(Y ) , ϵY  otherwise  (1)

This definition, following from the structural equation model view of the causal model of a 

DAG, allows the effects of exogenous intervention to propagate downstream to the outcome 

of interest. Under this view, only the noise variables in the set {ϵV : V ∈ V} are random. The 

distributions of the observed data and of counterfactual random variables can be thought of 

as the distributions of different functions of {ϵV : V ∈ V} as described in (1).

As a notational convention, given any set {Y1, …, Yk} ≡ Y, and a set of treatments A set to 

a, we will denote a set of counterfactuals {Y1(a), …, Yk(a)} defined by (1) by the shorthand 

Y(a). We will sometimes denote single variable events Y(a) = y via the shorthand y(a) for 

conciseness, similarly multivariable events Y(a) = y will sometimes be denoted as y(a).

One consequence of (1) is that some counterfactuals Y (a) only depend on a subset of values 

in a, specifically those values that make an appearance in one of the base cases of the 

definition. Restrictions of this sort are sometimes called exclusion restrictions.

The recursive substitution definition above implies the following generalized consistency 
property, which states that for any disjoint subsets A, B, Y of V,

B(a) = b implies Y(a, b) = Y(a) . (2)

If all variables V in a causal model represented by a DAG G are observed, every 

interventional distribution P(Y(a)), where A ⊆ V, Y ⊆ V \ A, is identified from P(V) via the 
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following functional: ∑V\(Y ∪ A) ∏V ∈ V\(Y ∪ A)P V ∣ paG(V ) A = a, known as the g-formula 

[16].

In practice, not all variables in a causal model may be observed. In a hidden variable causal 

model, represented by a DAG G(V ∪ H), where no data is available on variables in H, not 

every counterfactual distribution is identified.

Reasoning about parameter identification is often performed via an acyclic directed mixed 

graph (ADMG) summary of G(V ∪ H) called a latent projection G(V) [21]. The latent 

projection keeps vertices corresponding to V, and adds two kinds of edges between these 

vertices. A directed edge (→) between any Vi, Vj ∈ V is added if there exists a directed path 

from Vi to Vj in G(V ∪ H) and all intermediate vertices on the path are in H. A bidirected 

edge (↔) between any Vi, Vj ∈ V is added if there exists a path from Vi to Vj which starts 

with an edge into Vi, ends with an edge into Vj, has no two adjacent edges pointing into the 

same vertex on the path, and has all intermediate elements in H. See Fig. 1 (a) and (b) for a 

simple example of this construction for the IV model.

If P(Y(a)) is identified from P(V) in a causal model represented by a hidden variable DAG 

G(V ∪ H), then its identifying functional may be expressed using G(V) via the ID algorithm 

[20]. See [14] for details.

If P(y(a)) is not identified from P(V) in a causal model given by G(V ∪ H), bounds may 

nevertheless be placed on this distribution. Before describing our approach for obtaining 

bounds in full generality, we illustrate how it may be used to obtain known sharp bounds for 

a non-identified counterfactual probability in the binary IV model.

3 BOUNDS IN THE BINARY INSTRUMENTAL VARIABLE MODEL

The instrumental variable model is represented graphically in Fig. 1 (a), with its latent 

projection shown in Fig. 1 (b). We are interested in the counterfactual probability P(y(a)), 

which is known not to be identified without parametric assumptions. In this section, we 

demonstrate that known sharp bounds on P(y(a)) can be recovered by reasoning causally 

about the structure of this graph and the associated counterfactual distributions.

The Instrumental Variable Thought Experiment

We consider the binary IV model in Fig. 1 (a) in the setting of clinical trials with 

non-compliance. We interpret Z to indicate treatment assignment, A to indicate treatment 

actually taken, and Y to indicate a clinical outcome of interest. Unobserved factors, such 

as personality traits, may influence both treatment decision and outcome, and thus act as 

confounders.

Suppose we intervene to assign some subject to treatment arm z. We observe that after this 

intervention, our subject takes treatment a and has outcome y. Thus, in this subject, we 

observe the event A(z) = a ∧ Y (z) = y.
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Now suppose we are interested in intervening directly on treatment for the same subject. We 

would like to set A = a, leaving Z (arm assignment) to the physician’s choice. Under the 

model, the outcome Y depends only on A and the noise term ϵY, representing in this case 

subject-specific personality traits. Because these traits are unchanged by intervention on A 
or Z, and A is set to the same value it took under our first intervention, we must conclude 

that under this second intervention we would observe the same outcome as under the first, 

denoted by the event Y(a) = y.

This thought experiment demonstrates that an event in one hypothetical world, under one 

intervention, can imply an event under another intervention. We call this phenomenon 

“cross-world implication,” and it is formalized in proposition 2. We now develop the 

intuition further to recover sharp bounds for the IV model with binary random variables.

Sharp Bounds in the Binary IV Model

In the following derivation of sharp bounds for P(y(a)) in the binary IV model, we will 

denote values 1 for all variables by lower case (e.g. a), and values 0 by a lower case with a 

bar (e.g. a).

Our strategy will be to partition the event Y(a) = y into smaller, more manageable events:

A(z) = a ∧ Y (z) = y (3)

A(z) = a ∧ A(z) = a ∧ Y (z) = y (4)

A(z) = a ∧ A(z) = a ∧ Y (a) = y . (5)

Note that events in (4) and (5) are related to the compliers and never-takers principal strata 

[5].

To see that these events form a partition (i.e. are mutually exclusive and exhaustive) of 

the event Y(a) = y, we first observe that by the exclusion restriction in the model, and 

generalized consistency, Y (z) and Y(z) in equations (3) and (4) respectively will be equal to 

Y(a). Then we can see that (3) covers the portion of Y(a) = y where A(z) = a, (4) covers the 

portion where A(z) = a ∧ A(z) = a, and (5) covers the portion where A(z) = A(z) = a.

Because these events partition Y(a) = y, the sum of their probabilities will be equal to P(Y(a) 

= y), and a sum of lower-bounds on their probabilities will yield a lower bound on P(Y(a) = 

y). A general form of partitions of this sort for counterfactual events under models with an 

exclusion restriction will be given in Proposition 5.

The event (3) represents a single world event with an identified probability, that therefore 

does not need to be bounded. We will see that we can recover sharp bounds without 

bounding the probability of (5).
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We therefore turn our attention to event (4). This event can be understood as a conjunction 

of events in two worlds. First, A(z) = a in the world in which Z is set to z. Then, A(z) = a 
∧ Y(z) = y in the world in which Z is set to z. As a cross world event, (4) does not have an 

identified density. Our goal will be to provide lower bounds for this event that are identified.

First, we find some event E1 under the intervention Z = z that entails A(z) = a. We can then 

identify outcomes under the (conflicting) intervention Z = z that are compatible with E1, 

i.e. that would not be ruled out by observing E1 under intervention Z = z. We denote such 

events by ψz(E1). Now, by definition:

P E1 − P E1, ¬(A(z) = a ∧ Y (z) = y)
= P E1, (A(z) = a ∧ Y (z) = y) . (6)

We note that E1 ⇒ ψz(E1) by construction, as E1 rules out all outcomes in the sample space 

not in ψz(E1), so P(E1, ﹁(A(z) = a ∧ Y(z) = y)) is bounded from above by P(ψz(E1), 

﹁(A(z) = a ∧ Y(z) = y)).

Substituting this bound into equation (6) yields:

P E1 − P ψz E1 , ¬(A(z) = a ∧ Y (z) = y)
≤ P E1, (A(z) = a ∧ Y (z) = y) . (7)

Because E1 was chosen to entail A(z) = a, the probability of event (4) is bounded from below 

by P(E1, (A(z) = a ∧ Y(z) = y)). Therefore by equation (7), the probability of event (4) is 

also bounded from below by:

P E1 − P ψz E1 , ¬(A(z) = a ∧ Y (z) = y) . (8)

Through exactly analogous reasoning, we can obtain another lower bound on the probability 

of event (4) by starting with some event E2 under Z = z that entails A(z) = a ∧ Y(z) = y:

P E2 − P ψz E2 , ¬(A(z) = a) . (9)

To apply these bounds, we must select events that satisfy the criteria for E1 and E2. We 

start by examining potential events E1. We note that there are only three options: A(z) = a, 

A(z) = a ∧ Y (z) = y, and A(z) = a ∧ Y (z) = y. It turns out that we need only consider the latter 

two of these (see Proposition 10 in Appendix C).

First, we take E1 to be A(z) = a ∧ Y (z) = y. Then we note ψz(A(z) = a ∧ Y (z) = y) is:

(A(z) = a ∧ Y (z) = y)

∨ (A(z) = a ∧ Y (z) = y)
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∨ (A(z) = a ∧ Y (z) = y) .

The only outcome under the intervention Z = z excluded from this event is 

A(z) = a ∧ Y (z) = y. Any subject who experienced this event could not have experienced 

A(z) = a ∧ Y (z) = y, due to the exclusion restriction in the IV model.

According to (8), to obtain a bound we will need to subtract from the mass of E1 the mass of 

the portion of ψz(E1) where A(z) = a ∧ Y(z) = y does not hold. This will be the mass of the 

first two events in the disjunction above.

Using this value of E1, we therefore obtain the following lower bound on the probability of 

(4):

P(A(z) = a, Y (z) = y) −
P((A(z) = a, Y (z) = y) ∨ (A(z) = a, Y (z) = y)) . (10)

We now consider the bound induced by using A(z) = a ∧ Y (z) = y as the event E1. Following 

an analogous procedure, we produce the lower bound:

P(A(z) = a, Y (z) = y) − P (A(z) = a, Y (z) = y) ∨ A(z) = a1, Y (z) = y . (11)

Next, we consider possible values of E2. In this simple case, there is only one such 

possibility, A(z) = a ∧ Y(z) = y, which of course entails itself. We observe that 

ψz E2 ∧ ¬(A(z) = a) is equivalent to A(z) = a ∧ Y (z) = y, yielding the following lower bound 

by expression (9):

P(A(z) = a, Y (z) = y) − P(A(z) = a, Y (z) = y) .

We now have all the pieces we need to obtain a sharp lower bound on P(y(a)). We make use 

of the fact that distributions of potential outcomes after interventions on Z are identified as 

the distribution of the corresponding observed random variables conditioned on Z (since Z is 

randomized in the IV model). Noting that the density of the event (4) is also bounded from 

below by 0, we add the identified density of the event (3) to the best of the lower bounds we 

have obtained for (4). Then

P(y(a)) ≥ P(a, y ∣ z) + max

0
P(a, y ∣ z) − P(a, y ∣ z) − P(a, y ∣ z)
P(a, y ∣ z) − P(a, y ∣ z) − P(a, y ∣ z)
P(a, y ∣ z) − P(a, y ∣ z) .

This is the sharp lower bound obtained by Balke [1]. P(y(a)) may be bounded from above 

by 1 less the lower bound on P(y(a)). In the binary case, bounds on the ACE may simply be 

represented as differences between appropriate bounds on P(y(a)) and P(y(a)). Each of these 

bounds bounds is sharp for the binary IV model. However, characterizing models for which 
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bounds derived by the procedure we propose, described in the next section, are sharp is an 

open problem.

4 BOUNDS ON COUNTERFACTUAL EVENTS

In this section we provide a graphical criterion for the presence of an implicative 

relationship between counterfactual events, which we call cross-world implications, and 

demonstrate its use in bounding non-identified probabilities of counterfactual events. We 

then show how these bounds can be aggregated to bound non-identified counterfactual 

events of primary interest. Proofs of all claims are found in Appendix A.

Causal Irrelevance, Event Implication and Event Contradiction

In deriving bounds on a counterfactual event under the IV model, we made use of the 

exclusion restriction Y(z, a) = Y(a). We begin this section by providing a general graphical 

criterion for when such restrictions appear in causal models.

Proposition 1 (Causal Irrelevance). If all directed paths from Z to Y contain members of A, 
then

Y(Z = z, A = a) = Y(A = a) .

In such cases, we say Z is causally irrelevant to Y given A, because after intervening on 

A, intervening on Z will not affect Y. If in addition the joint distribution P(Y(z), A(z)) is 

identified, Z is said to be a generalized instrument for A with respect to Y. If the set A 
can be partitioned into A1 and A2 such that A1 is causally irrelevant to Y given A2, then 

any such A1 is said to be causally irrelevant to Y in A. See also rule 3* in [8], and the 

discussion of minimal labeling of counterfactuals in [15]. As noted earlier, constraints in a 

causal model corresponding to the existence of causally irrelevant variables are sometimes 

called exclusion restrictions.

In the following proposition, we observe that whenever an exclusion restriction appears 

in the graph, there exists a logical implication connecting counterfactual events across 

interventional worlds.

Proposition 2 (Cross-world Implication). Let Z be causally irrelevant to Y given A. Then

A(z) = a ∧ Y(z) = y Y(a) = y .

We define a collection of events to be compatible if none of them implies the negation of 

any other event in the collection. We define a collection of events to be contradictory if it 

is not compatible. Conceptually, events in different hypothetical worlds are contradictory if, 

under the model, no single subject can experience all of the events under their corresponding 

interventions. For example, in the IV model though experiment, we saw that no single 

subject can experience both the event A(z) = a ∧ Y(z) = y and the event Y(a) ≠ y, rendering 

them contradictory.
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It will be of use to be able to determine whether events are contradictory through reference 

to the graphical model. To that end, we provide a recursive graphical criterion that is 

sufficient to establish that events are contradictory.

Proposition 3 (Contradictory Events). Two events X(a) = x and Y(b) = y are contradictory if 
there exists Z ∈ X ∪ Y such that Z(a) ≠ Z(b), and all of the following hold:

i. Variables in the subsets of both X ∪ A and Y ∪ B causally relevant for Z are set 
to the same values in x, a, and y, b.

ii. Let C ∈ {X ∪ A} \ {Y ∪ B} be any variable that is causally relevant to Z in X∪A 
and causally relevant to Z given Y ∪ B, with C set to c in x, a. Then X(a) = x and 
Y(b) = y ∧ C(b) = c′ are known to be contradictory by this proposition if c ≠ c′.

iii. Let C ∈ {Y∪B} \ {X∪A} be any variable that is causally relevant to Z in Y∪B 
and causally relevant to Z given X ∪ A, with C set to c in y, b. Then Y(b) = y 
and X(a) = x ∧ C(a) = c′ are known to be contradictory by this proposition if c ≠ 

c′.

Propositions 2 and 3 provide graphical criteria for implication and contradiction, based on 

paths in the causal diagram. Both criteria are stated in terms of exclusions restrictions in the 

graph. It should be noted that not all exclusion restrictions can be represented graphically; 

for example, some exclusions may obtain only for certain levels of the variables in the graph, 

and not universally. If such context-specific exclusion restrictions arise, they may lead to 

implications or contradictions not captured by these criteria. However, in the absence of 

exclusion restrictions not represented by the graphical model, the graphical criteria provided 

by these propositions are necessary and sufficient. See Appendix B for details.

Bounds Via a Single Cross-World Implication

In this section, we describe a lower bound on P(y(a)) induced by a single cross-world 

implication, of the sort described by Proposition 2. We will demonstrate that this line of 

reasoning can be used to recover the bounds for the IV model in [9, 17], and produce a new 

class of bounds on densities of counterfactual events where the density is identified under 

intervention on a subset of the treatment variables.

We begin with a simple result from probability theory, which can broadly be viewed as 

stating that supersets will always have weakly larger measure than their subsets.

Proposition 4. Let E1, E2 be any events in a causal model such that E1 ⇒ E2. Then P(E1) ≤ 

P(E2).

In the case of the IV model, we have noted the exclusion restriction between Z and Y 
given A. Due to the implication established by the IV thought experiment and formalized 

in Proposition 2, Proposition 4 then yields P(Y (a) = y) ≥ P(A(z) = a, Y(z) = y) for any 

value of z. Noting that Z has no parents in the model, and that therefore the interventional 

distribution is identified as the conditional, we can write this as maxz P(A = a, Y = y | Z = z), 

which is equivalent to the binary IV bounds in [9, 17].
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We now present new bounds on causal parameters, based on the observation that the empty 

set may act as a generalized instrument for any treatment set A with respect to any outcome 

Y. This observation allows us to combine Propositions 2 and 4 to obtain the following 

Corollary.

Corollary 1. For any sets of variables Y, A,

P(y(a)) ∈ [P(Y = y, A = a), 1 − P(Y ≠ y, A = a)] .

A consequence of this Corollary is that for discrete variables, densities of counterfactual 

events can be nontrivially bounded for any causal model, though we do not expect these 

bounds to be informative in general.

Finally, we present bounds on densities of counterfactuals when a subset of the treatment set 

can act as a generalized instrument for the remainder.

Corollary 2. Let A and A partition A, such that the density P(Y(a), A(a)) is identified, where 

a is the subset of a corresponding to A. Then

P(Y(a) = y, A(a) = a) ≤ P(Y(a) = y)

1 − P(Y(a) ≠ y, A(a) = a) ≥ P(Y(a) = y),

where a is the subset of a corresponding to A.

Example 1 (Sequential Treatment Scenario). In the model depicted in Fig. 2, the A variables 
represent treatments and the Y variables represent outcomes. This model may be applicable 
if the initial treatment A1 is selected by the subject – and is therefore confounded with the 
outcomes through the subject’s unobserved traits H – but the second treatment A2 is selected 
solely on the basis of the first-stage outcome, Y1.

We may be interested in P(Y2(a1, a2)) – the distribution of the second stage outcome under 
intervention on both treatments. This distribution is not identified. However, since P(A1(a2) 

= a1, Y2(a2) = y2) is identified as ∑y1
P a1, y1, a2, y2

P a2 ∣ y1
, Corollary 2 yields the bounds:

∑
y1

P a1, y1, a2, y2
P a2 ∣ y1

≤ P Y a1, a2 = y2

1 − ∑
y1, y2 ≠ y2

P a1, y1, a2, y2
P a2 ∣ y1

≥ P Y a1, a2 = y2 .
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Bounds Via Multiple Cross-World Implications

In this section, we show how information from multiple cross-world implications may be 

used to obtain bounds. We begin by describing a partition of the event of interest, where 

the partition is defined by cross-world potential outcomes. We then develop a method for 

bounding the density of the cross-world events in the partition, and aggregate the bounds. 

This section generalizes the procedure used to obtain sharp bounds for the binary IV model 

in Section 3.

Partitioning the Event of Interest

We denote our event of interest as Y(a1) = y. We are interested in providing a lower bound 

for the non-identified probability P(Y(a1) = y). We begin by defining a partition of the event 

to interest. We will work with these partition sets for the remainder of the section.

Proposition 5 (Partition Sets). Let Z be causally irrelevant to Y given A. Assume Z, A are 
discrete, and take levels z1, ⋯, zM and a1, ⋯, aN respectively.

Then the following events are a partition of Y(a1) = y:

Y a1 = y ∧ ∀z A(z) ≠ a1 (12)

A z1 = a1 ∧ Y z1 = y (13)

and, for k = 2, ⋯, N,

A z1 = ak ∧ ∃z A(z) = a1 ∧ Y(z) = y . (14)

We now develop lower bounds on the density of each of the partition events, which we can 

then use to lower bound the density of the target event Y(a1) = y.

Bounding Partition-Set Densities

Event (13) is a single world event with identified density, so there is no need to find a lower 

bound. Subjects that experience event (12) will never experience Y(z) = y ∧ A(z) = a1 under 

any intervention Z = z with an identified distribution. Because our strategy uses information 

from identified distributions to bound unidentified densities, we cannot provide bounds on 

the density of this partition event.

We now turn our attention to events of the form of (14). We let Ek denote the event of the 

form of (14) where the first term is A(z1) = ak. Then we note Ek can be represented as the 

disjunction Vj = 1
M γjk, where γjk denotes the event:

γjk ≜ A z1 = ak ∧ A zj = a1 ∧ Y zj = y . (15)

Because γjk ⊆ Ek, we know γjk Ek. It follows from Proposition 4 that
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P Ek ≥ max
j

P γjk . (16)

Unfortunately P γjk  is also not point-identified, and must be bounded from below itself.

The event γjk conjoins statements about potential outcomes under two different interventions. 

Its density is the portion of the population who would experience A(z1) = ak under Z = z1, 

and A(zj) = a1 ∧ Y(zj) = y under Z = zj. We know the exact proportion of the population 

who would experience either, because Z is a generalized instrument, but we do not know the 

exact portion of the population that would experience both.

To address this problem, we first consider the problem of bounding the density of an event 

conjoining potential outcomes under two different interventions in general terms, in the 

following Proposition. This result can then be directly applied to lower bound the density of 

γjk.

Proposition 6 (Cross-World Lower Bounds). Let ψc(E) represent the disjunction of all 
outcomes in the sample space under intervention C = c that do not contradict the event E, 
such that E ⇒ ψc(E).

Let Ex be any event that implies X(a) = x, and Ey be any event that implies Y(b) = y. Then P 
(X(a) = x, Y(b) = y) is bounded from below by each of:

P Ex − P ψb Ex , Y(b) ≠ y

P Ey − P ψa Ey , X(a) ≠ x .

Proposition 6 is useful because, in each of the bounds provided, each of the densities 

involved are in terms of events under a single intervention. If densities under those 

interventions are identified, the bounds can be calculated exactly.

We return to our goal of bounding P γjk  from below. In the case of γjk, the two interventions 

we are interested in are on the same set of variables, Z. As described above, we are 

interested in the proportion of patients who experience A(z1) = ak under the intervention Z 
= z1, and A(zj) = a1 ∧ Y(zj) = y under the intervention Z = zj. Substituting these values for 

X(a) = x and Y(b) = y into Proposition 6 immediately yields the following Corollary.

Corollary 3 (Lower bounds on P γjk . Let E1 be an event under intervention Z = z1 that 

entails A(z1) = ak, and E2 be event under intervention Z = zj that entails A(zj) = a1 ∧ Y(zj) = 

y.

Then P(A(z1) = ak ∧ A(zj) = a1 ∧ Y(zj) = y) is bounded from below by each of:

Finkelstein and Shpitser Page 12

Proc Mach Learn Res. Author manuscript; available in PMC 2020 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



P E1 − P ψzj E1 ∧ ¬ A zj = a1 ∧ Y zj = y

P E2 − P ψz1 E2 ∧ A z1 ≠ ak .

With this result in hand, we can we can modify (16) to obtain the following bound on P(Ek) 

in terms of the observed data law. Let ξ(·) represent the set of lower bounds on the density 

P(·) obtained through Corollary 3 for all possible values of E1 and E2. Then

P Ek ≥ max
j

maxξ γjk . (17)

Recalling that P(Y(a1) = y) can be bounded from below by the sum of lower bounds on 

densities of its partition sets, we obtain the lower bound

P A z1 = a1, Y z1 = y + ∑
k = 2

N
max

j
maxξ γjk ,

where the first term corresponds to the density of event (13) and the second term is a sum is 

over lower bounds on the densities of the events of the form of (14).

Algorithm 1 summarizes how the results described in this section can be used to calculate 

these bounds.

5 GENERALIZED INSTRUMENTAL INEQUALITIES

In this section, we develop generalized instrumental inequalities and show that the IV 

inequalities, and Bonet’s inequalities [3], are special cases. To begin, we bound the sum of 
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probabilities of events in terms of the size of the largest subset thereof that is made up of 

compatible events.

Proposition 7. Let E1, ⋯, EN be events under arbitrary interventions such that at most k of 
the events are compatible. Then

∑
i = 1

N
P Ei ≤ k .

This result is a consequence of the fact that by construction, no value of ϵV can lead to 

contradictory events. If such a value did exist, observing one of the events leaves open the 

possibility that ϵV takes that value, in which case we would observe the other event under 

the appropriate intervention, and the events would not be contradictory. It follows that if we 

are adding the densities of events of which at most k are compatible, no set in the domain of 

ϵV may have its measure counted more than k times.

We make use of this result, in combination with our existing results about causal irrelevance, 

to obtain the following class of inequality constraints.

Corollary 4 (Generalized Instrumental Inequalities). Let Z be causally irrelevant to Y given 
A, and let S be any set of triples (z, a, y) which represent levels of Z, A, Y. Then

∑
(z, a, y) ∈ S

P(A(z) = a, Y(z) = y) ≤ Φ(S)

where

Φ(S) = max Q Q ⊆ S ∧ ∀(z, a, y), z′, a′, y′ ∈ Q
¬ z = z′ ∧ a ≠ a′ ∨ a = a′ ∧ y ≠ y′ .

This result makes use of the fact that by Proposition 3, if Z is causally irrelevant to Y given 

A and (z = z′ ∧ a ≠ a′) ∨ (a = a′ ∧ y ≠ y′), then A(z) = a ∧ Y(z) = y and A(z′) = a′ ∧ Y(z′) 

= y′ are contradictory. Φ(S) can therefore be interpreted as the size of largest compatible 

subset of S.

The IV inequalities derived in [11], which can be written ∀a∑y maxz P(Y(z), A(z)) ≤ 1, are 

a special case of the generalized instrumental inequalities with k = 1. For each selection of 

a, the sum is over densities of events with different values of y, rendering them pairwise 

contradictory. We now review the inequality derived in [3].

Example 2 (Bonet’s Inequalities). Bonet [3] presents the following constraint for the IV 
model, where treatment and outcome are binary and the instrument is ternary:

P a1, y2 ∣ z2 + P a1, y1 ∣ z3 + P a1, y2 ∣ z1
+P a2, y2 ∣ z2 + P a2, y1 ∣ z1 ≤ 2
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These densities are respectively equal to the densities of the following events, through 
the fact that densities under intervention on variables with no parent are identified as the 
conditional distribution:

A z2 = a1 ∧ Y z2 = y2 (18)

A z3 = a1 ∧ Y z3 = y1 (19)

A z1 = a1 ∧ Y z1 = y2 (20)

A z2 = a2 ∧ Y z2 = y2 (21)

A z1 = a2 ∧ Y z1 = y1 . (22)

It can easily be confirmed that no subset of size 3 or greater is mutually compatible. For 
example, event (18) is compatible with events (20) and (22), but these are incompatible with 
each other, due to Z taking the same value in both but A taking a different value in each. The 
same pattern follows for all events; each event is compatible with two others which in turn 
are not compatible with each other.

It follows from Corollary 4 that the sum of the densities of these events must be bounded 
from above by 2.

6 EXAMPLE APPLICATIONS

In this section, we derive bounds and inequality constraints for the ADMGs presented in Fig. 

3 using the results presented in Sections 4 and 5. We are not aware of any existing methods 

that can obtain the bounds presented below. Code used to obtain these results, as well as a 

general implementation of the methods described in this paper, is publicly available1.

Due to space constraints, we denote the identified distribution under intervention on Z = z 
as Pz(·). In addition, we do not consider more complicated scenarios, e.g. involving multiple 

instruments Z and treatments A, instruments with challenging identifying functionals, or 

non-binary variables. However, bounds and constraints in such scenarios may be obtained 

using our software.

The IV Model With Covariates

We first consider the model represented by Fig. 3 (a). In the traditional IV model, the 

instrument must be randomized with respect to the treatment and outcome. In practice, it can 

be difficult to find such instruments. The IV model with covariates allows for the instrument 

to be conditionally randomized.

1 https://noamfinkelste.in/partial-id 
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In the social sciences, exogenous shocks are often used as instrumental variables. For 

example, suppose an earthquake damages a number of school buildings, increasing class size 

at nearby schools. An economist studying the effect of class size on test scores might use 

school closure due to the earthquake as an instrument for class size.

This instrument may not be entirely plausible. Families with more resources may be able 

to avoid living in areas at risk of earthquake damage, and wealthier school districts may 

be better able to build robust school buildings. In this case, the instrument would be 

confounded with the treatment and outcome. Observed baseline covariates for the school 

districts, including information on tax revenue, may be sufficient to account for this kind of 

confounding. In settings of this kind, the IV model with covariates is appropriate, whereas 

the traditional IV model is not.

We present the following lower bound on P(Y (a) = y) under this model when variables are 

binary:

Pz(a, y) + max

0
Pz(a, y, c) − Pz(c, a, y)
Pz(a, c, y) − Pz(c, a, y) + Pz(c, a, y)
Pz(a, c, y) − Pz(c, y)
Pz(a, y) − Pz(a, y)
Pz(a, y) − Pz(y)
Pz(a, y) − Pz(a, y) + Pz(a, y)
Pz(a, c, y) − Pz(c, y)
Pz(a, y, c) − Pz(c, a, y)
Pz(a, c) − Pz(c, y) + Pz(c, a, y)
Pz(a, c) − Pz(c, a, y) + Pz(c, y)
Pz(a, c, y) − Pz(c, a, y) + Pz(c, a, y) .

A derivation of these bounds is provided in Appendix E.

We can use Corollary 4 to obtain inequality constraints on the observed data law implied 

by the model. Such constraints cannot easily be concisely expressed. Two representative 

expressions, each bounded from above by 1, are as follows:

max
(c, a) ≠ c′, a′

∑
y ≠ z

P(a, c, y, z)
P(z ∣ c) + ∑

y = z
P a′, c′, y, z

P z ∣ c′

max
c ≠ c′, z ≠ z′

∑
a, y

P(a, c, y, z)
P(z ∣ c) + P a, c′, y, z′

P z′ ∣ c′ .

Front-Door IV Model With Confounding

This model, illustrated in Fig. 3 (b), is appropriate when the effect of treatment is only 

through an observed mediator, which is itself confounded with the outcome. In such cases, 
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the traditional IV model can be applied by ignoring data on M, but tighter bounds can be 

obtained when the mediator is considered. When all variables are binary, our method yields 

the following lower bound on P(Y (a) = y):

Pz(a, y) + max

0
Pz(a, y, m) − Pz(a, m, y)
Pz(a, y) − Pz(a, y)
Pz(a, m, y) − Pz(m, y) + Pz(a, m, y)
Pz(a, m, y) − Pz(m, y) + Pz(a, m, y)
Pz(a, y) − Pz(a, y) + Pz(a, y)
Pz(a, m) − Pz(a, m, y) + Pz(m, y) + Pz(a, m, y)
Pz(a, y, m) − Pz(a, m, y)
Pz(a, m, y) − Pz(a, m, y) + Pz(a, m, y)
Pz(a, m, y) − Pz(a, m, y) + Pz(a, m, y)
Pz(a, y) − Pz(y)
Pz(a, m) − Pz(m, y) + Pz(a, m, y) + Pz(a, m, y) .

Finally, we present two functionals of the observed data law that, under the model, are 

bounded from above by 1. Each is representative of a class of constraints that does not have 

a concise general formula.

P(a, m, y ∣ z) + P(a, m, y ∣ z) + P(a, m, y ∣ z) + P(a, m, y ∣ z)

∑
a′

P a′, m, y ∣ z + ∑
y′

P a, m, y′ ∣ z + P(a, m, y ∣ z) .

7 CONCLUSION

The methods pursued in this work take advantage of identified counterfactual distributions 

to bound causal parameters that are not identified, and provide inequality constraints on 

functionals of the observed data law. These bounds expand the class of causal models under 

which counterfactual random variables may be meaningfully analyzed, and the inequality 

constraints facilitate falsification of causal models by observed data. Characterizing the 

conditions under which these bounds and inequalities are sharp remains an open question. 

We also leave open application of these ideas to other areas of study interested in 

counterfactual parameters, such as missing data, dependent data, and policy learning.

A: Proofs

Proof of Proposition 1 Under these conditions, V(·) is never evaluated in the recursive 

evaluation of Y(Z = z, A = a) by equation (1) for any V ∈ {Z \ A}. □

Proof of Proposition 2 By generalized consistency, A(z) = a implies Y(z, a) = Y(z), and by 

causal irrelevance Y(z, a) = Y(a). □
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Proof of Proposition 3 We will show that conditions (i), (ii), (iii) require that Z(a) = Z(b) 

for all Z ∈ X ∪ Y. It follows that if there exists Z ∈ X ∪ Y such that Z(a) ≠ Z(b), there 

is no single value of ϵV that leads to X(a) = x and to Y(b) = y, and the events must be 

contradictory.

Let C1 be all variables that are causally relevant to Z in both X ∪ A and Y ∪ B, let C2 be all 

variables that are causally relevant to Z in {X ∪ A} \ {Y ∪ B}, and that are causally relevant 

to Z given Y ∪ B, and let C3 be all variables that are causally relevant to Z in {Y ∪ B} \ {X 
∪ A} and that are causally relevant to Z given X ∪ A.

We note that condition (i) specifies that C1(a) = C1(b). Then, condition (ii) requires that 

C2(a) = C2(b); otherwise there would be a contradiction between X(a) = x and Y(b) = y ∧ 
C2(b) = c2. In other words, there are no values of ϵV that lead to X(a) = x that do not lead 

to Y(b) = y ∧ C2(b) = C2(a). For an analogous reason, condition (iii) requires that C3(a) = 

C3(b),

We next note that by construction, no variable D ≠ Z in {X ∪ Y ∪ A ∪ B} \ {C1 ∪ C2 ∪ C3} 

causally relevant to Z given C1 ∪ C2 ∪ C3.

Under conditions (i); (ii); (iii), by consistency Z(a) = Z(c1, c2, c3, a, x\{z}). By causal 

irrelevance of all variables D ≠ Z in A ∪ X not in C1 ∪ C2 ∪ C3 given C1 ∪ C2 ∪ C3 

we have Z(c1, c2, c3, a, x\{z}) = Z(c1, c2, c3). For the same reasons, Z(b) = Z(c1, c2, c3, 

b, y\{z}) = Z(c1, c2, c3). This yields Z(a) = Z(b), completing the proof. This recursive 

definition of contradiction between events must resolve because each recursive call expands 

the number of variables specified in one of the events, and there are a finite number of 

variables in the graph. □

Proof of Proposition 5 Each event in the partition either directly specifies Y(a1) = y, or 

specifies an event that implies Y(a1) = y by Proposition 2, so we know the disjunction of 

these events is a subset of Y(a1) = y.

Now we show that all sets are disjoint. Event (13) and all events of the form of (14) are 

pairwise disjoint, as each requires a different event under the intervention Z = z1. These 

events are all disjoint from event (12), as the former each specifies a value of z′ for which 

A(z′) = a, and the latter specifies that no such z′ can exist.

Finally, we show that the events are exhaustive. In addition to the requirement that Y(a1) = 

y specified above, a disjunction of the partition set events requires that A(z1) take a value 

in a1, ⋯, aN, which is tautological. It also requires that ∀z′(A(z′) ≠ a1) or ∃z′(A(z′) = a1), 

which is likewise tautological. No other requirements are present. □

Proof of Proposition 6 Ex ∧ Y(b) ≠ y ⇒ ψb(Ex) ∧ Y(b) ≠ y. Therefore P(Ex, Y(b) ≠ y) ≤ 

P(ψb(Ex), Y(b) ≠ y).

P(Ex) = P(Ex, Y(b) = y) + P(Ex, Y(b) ≠ y), which, in combination with the preceding, yields 

P(Ex, Y(b) = y) P(Ex) − P(ψb(Ex), Y(b) ≠ y).
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By construction, Ex ⇒ X(a) = x, yielding the first bound. A symmetric argument yields the 

second. □

Proof of Proposition 7 The inclusion-exclusion formula states that 

∑i = 1
N P Ei = P ∪i = 1

N Ei + ∑i < jP Ei ∩ Ej . Under the conditions of the Proposition, ∑i<j 

P(Ei ∩ Ej) ≤ k − 1, as any set of values of ϵV may imply at most k − 1 of the events in {Ei ∩ 
Ej | i < j}, and the set of all possible values of ϵV has measure 1. Noting that P ∪i = 1

N Ei ≤ 1

by definition, we have P ∪i = 1
N Ei + ∑i < jP Ei ∩ Ej ≤ k. □

Proof of Corollary 2 A is causally irrelevant to Y given A, so the lower bounds follow 

directly from Propositions 2 and 4. The upper bounds follow because, by the same 

reasoning, P(Y(a) ≠ y, A(a) = a) ≤ P(Y(a) ≠ y). □

Proof of Corollary 4 Proposition 3 tells us that if Z is a generalized instrument for A with 

respect to Y, two events of the form A(z) = a ∧ Y(a) = y and A(z′) = a′ ∧ Y(z′) = y′ 
are contradictory if : ﹁((z = z′ ∧ a ≠ a′) ∨ (a = a′ ∧ y ≠ y′)). Therefore Φ(S) provides 

the size of the largest subset of events that are mutually compatible. The result then follows 

immediately from Proposition 7. □

B: Equivalence Class Completeness

In this appendix we introduce an assumption we call equivalence class completeness. 

Following [2], we say two values in the domain of ϵV are in the same equivalence class 

if they will produce the same results through equation (1) for every variable under every 

intervention.

Assumption 1 (Equivalence Class Completeness). Every equivalence class of ϵV is non-
empty in the domain of ϵV.

We note that this assumption precludes the possibility of vacuous edges (edges that reflect 

no causal influence) in the graph. In the case of a vacuous edge X → V, for example, 

there will be no values of ϵV that produce V = v for some setting of X = x and V = v′ 
for another setting of X = x′, because V is not a function of X. This would mean that the 

equivalence class of values of ϵV that lead to V = v under intervention X = x and V = v′ 
under intervention X = x′ is empty, violating the assumption.

For the same reason, this assumption precludes the possibility of context-specific exclusion 

restrictions. If there is an edge X → V such that for some level of the other parents of V, 

denoted by Y = y, V is not a function of X, then there will exist no value of ϵV that leads to 

V = v under intervention X = x, Y = y but to V = v′ under intervention X = x′, Y = y.

We now show that under this assumption, the criteria in Propositions 2 and 3 for cross-

world implication and event contradiction respectively are necessary as well as sufficient. 

It follows that unless there exists background knowledge that the equivalence class 

completeness assumption is violated, due for example to deterministic causal relationships, 
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all implications and contradictions relevant for deriving bounds and inequality constraints 

can be obtained using these criteria.

Proposition 8. Under the equivalence class completeness assumption, Z is causally 
irrelevant to Y given A if and only if:

A(z) = a ∧ Y(z) = y Y(a) = y .

Proof. Sufficiency is given by proposition 2. We demonstrate necessity as follows. Assume 

Z is not causally irrelevant to Y given A, i.e. there is a path from Z to Y not through A. Then 

by equivalence class completeness, there must be values of ϵV for which Y is a function of Z 
when A is exogenously set and Z does not take the value z under no intervention. Therefore, 

there will exist values of ϵV such that Y(a, z) ≠ Y(a). By generalized consistency A(z) = a ∧ 
Y(z) = y ⇒ Y(a, z) = y, which contradicts A(z) = a∧Y(z) = y ⇒ Y(a) = y. □

Proposition 9. Under the equivalence class completeness assumption, two events X(a) = x 
and Y(b) = y are contradictory if and only if there exists Z ∈ X ∪ Y such that Z(a) ≠ Z(b), 
and all of the following hold:

i. Variables in the subsets of both X ∪ A and Y ∪ B causally relevant for Z are set 
to the[same values in x, a, and y, b.

ii. Let C ∈ {X ∪ A} \ {Y ∪ B} be any variable that is causally relevant to Z in X ∪ 
A and causally relevant to Z given Y ∪ B, with C set to c in x, a. Then X(a) = x 
and Y(b) = y ∧ C(b) = c′ are contradictory when c ≠ c′.

iii. Let C ∈ {Y ∪ B} \ {X ∪ A} be any variable that is causally relevant to Z in Y ∪ 
B and causally relevant to Z given X ∪ A, with C set to c in y, b. Then Y(b) = y 
and X(a) = x ∧ C(a) = c′ are contradictory when c ≠ c′.

Proof. Sufficiency is given by Proposition 3. To see the necessity of condition (i), we note 

that if variables causally relevant in X ∪ A and in Y ∪ B took different values in x, a and y, 

b, then if Z(x, a) ≠ Z(y, b), there must be an equivalence class that leads to these two results 

under their respective interventions. By the equivalence class completeness assumption it 

will be non-empty. Therefore there exists a value of ϵV that leads to both events, and they are 

not contradictory.

We now demonstrate the necessity of condition (ii). If (ii) does not hold, there must be a 

variable D that is causally relevant to Z in X ∪ A and given Y ∪ B that can take different 

values under equivalence classes of ϵV that lead to X(a) = a and Y(b) = y under their 

respective interventions. Because D is causally relevant given both the remainder of X ∪ 
A, and given all of Y ∪ B, and can for single value of ϵV take different values under the 

relevant interventions, it is possible for that value of ϵV to yield different values of Z under 

the two interventions. By equivalence class completeness, an ϵV leading to this result must 

exist, leading to a lack of contradiction between the two events. Condition (iii) is necessary 

by an analogous argument. □
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C: Redundant Lower Bounds

We present results that establish the redundance of lower bounds induced by certain events 

E1 and E2 through Corollary 3.

We first observe that the event chosen for E1 in Proposition 6 should be compatible with 

the event Y(b) = y. If it is not, ψb(E1) ∧ Y(b) ≠ y is equivalent to ψb(E1). Because E1 ⇒ 
ψb(E1), by Proposition 4 any such E1 will induce a negative lower bound, which is of course 

uninformative. An analogous argument can be made for E2.

We next consider a proposition that explains why we did not need to consider the bound 

induced by E1 ≜ A(z) = a to obtain sharp bounds in Section 3.

Proposition 10. Let E1 imply X(a) = a and let Y(b) ≠ y imply ψb(E1). Then the event E2 ≜ 
Y(b) = y induces, through Proposition 6, a weakly better bound than does E1. An analogous 
claim holds for E2.

Proof. P(ψb(E1), Y(b) ≠ y) = P(Y(b) ≠ y), as Y(b) ≠ y ⇒ ψb(E1) by assumption.

The lower bound induced by E1, given by Proposition 6 as P(E1) − P(ψb(E1), Y(b) ≠ b), can 

now be expressed as P(Y(b) = y) − P (﹁E1).

We now note ψa(Y(b) = b)) ∧ X(a) ≠ x ⇒ ﹁ E1, as E1 ⇒ X(a) = x by construction. 

Therefore P(﹁E1) ≥ P(ψa(Y(b) = b) ∧ X(a) ≠ x), and the bound induced by E2 ≜ Y(b) = y, 

given by Proposition 6 as P(Y(b) = y) − P(ψa(Y(b) = b)) ∧ X(a) ≠ x), must be better than 

that induced by E1. □

In the binary IV case described in Section 3, every event under intervention Z = z is 

compatible with the event A(z) = a. This means that in particular ψz(A(z) = a) is implied by 

﹁(A(z) = a ∧ Y (z) = y). The lower bound on event (4) induced by E1 ≜ A(z) = a is therefore 

redundant given the bound induced by E2 ≜ A(z) = a ∧ Y(z) = y.

Next, we identify an additional condition under which bounds induced by particular valid 

choices of E1 and E2 are irrelevant. This condition does not appear in the IV model.

Proposition 11. If two candidates for events E1 (E2), under Proposition 6 are each 
compatible with the same events under B = b (A = a), the candidate event with larger 
density will induce a better bound.

Proof. The bound in Proposition 6 is expressed as the density of E1 (E2) less a function of 

the events compatible with E1 (E2). If the two candidate events are compatible with the same 

set of events, the negative quantity in the bound will be the same. The bound with the larger 

positive quantity – the density of E1 (E2) – must be larger. □

Proposition 12. Under the equivalence class completeness assumption, an event Y(a) = y ∧ 
X(a) = x is compatible with the same events under intervention A = a′ as is X(a) = x if and 
only if Y, and all descendants of Y in X to which Y is causally relevant given the remainder 
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of X, have at least one causally relevant ancestor in A that takes different values in a than in 
a′.

Proof. If an event does not contradict Y(a) = y ∧ X(a) = x, it will not contradict the less 

restrictive event X(a) = x.

We consider an event compatible with X(a) = x. By Proposition 9, if it is to contradict X(a) 

= x ∧ Y(a) = y under the equivalence class completeness assumption, then there must be a 

variable Z satisfying the conditions of that proposition. This Z cannot be in Y, or any of its 

descendants in X to which it is causally relevant given the remainder of X, by the condition 

that they each have a causally relevant ancestor in A that differs between a and a′. If it is 

any variable to which Y is not causally relevant, then the causally relevant ancestors are the 

same in X(a) = x ∧ Y(a) = y as in X(a) = x, so the event must also be compatible with X(a) 

= x ∧ Y(a) = y if it is compatible with X(a) = x.

Finally, we demonstrate the necessity of these conditions. If they failed to hold, some 

variable in Y ∪ X in Y or to which Y is causally relevant given the remainder of X would 

have no causally relevant ancestor in A that differed under the two interventions. We call 

such a variable Z, and say it takes value z. Then we construct the event X′(a′) = x′ ∧ Y′(a′) 

= y′ ∧ Z(a′) ≠ z, with X′, Y′ denoting X \ {Z}, Y \ {Z}. This event contradicts Y(a) = y ∧ 
X(a) = x but does not contradict X(a) = x by Proposition 9.

We note that because the bounds derived by Corollary 3 do not make use of any 

additional implications that may result from violations of the equivalence class completeness 

assumption, these results lead directly to the following Corollary:

Corollary 5. Let the event E ≜ Y(a) = y ∧ X(a) = x be compatible with the same events under 

A = a′ as X(a) = x by Proposition 12, and be a valid candidate for E1 (E2). Then by 
Proposition 11, any event X(a) = x ∧ W(a) = yw, with W ⊂ Y, that is also a valid candidate 
for E1 (E2) will induce a better bound through Corollary 3 than E.

D: Numerical Examples of Bound Width

In this section, we provide numerical examples of bounds in two models. These examples 

demonstrate that bounds tend to be most informative when the instrument and treatment 

are highly correlated. It is our hope that they will provide some intuition about when these 

bounds will be of use.

Consider the causal model described by the graph in Fig. 4. Suppose all variables are binary 

and we are interested in the probability P(Y(A1 = 1, A2 = 1) = 1). If we observe the 

following probabilities,

P A1 = 1, A2 = 1, Y = 1 = .01

P A1 = 1, A2 = 1, Y = 0 = .08,
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we can use Corollary 1 to obtain the bounds

.01 ≤ P Y A1 = 1, A2 = 1 = 1 ≤ .92.

These bounds are quite wide, and unlikely to be informative. Now suppose that we observe 

the following conditional probability

P A2 = 1 ∣ A1 = 1 = .1. (23)

Noting that P(A1(a2) = a1, Y(a2) = y) is identified as 
P a1, a2, y
P a2 ∣ a1

, we can now use Corollary 2 

to obtain the bounds

.1 ≤ P Y A1 = 1, A2 = 1 = 1 ≤ .2.

These bounds are much tighter, and exclude .5, which may be important in some cases. If 

instead we observe the conditional probability

P A2 = 1 ∣ A1 = 1 = .5, (24)

then Corollary 2 yields the much less informative bounds

.02 ≤ P Y A1 = 1, A2 = 1 = 1 ≤ .84.

In this example A2 is used as a generalized instrument for A1, as discussed in Section 

4. The tightness of the bounds therefore depends on the relationship between the two, as 

demonstrated by the differences in bounds under the conditional probabilities (23) and (24).

We now consider the IV Model with Covariates, depicted in Fig. 3 (a), and discussed in 

Section 6. To build an understanding of the utility of our bounds, we randomly generated 

distributions from the model. These distributions were generated by sampling the parameter 

for each observed binary random variable, conditional on each setting of its parents, from 

a symmetric Beta distribution, with parameters equal to 1. The unobserved variable U was 

assumed to have cardinality 16, to allow for every possible equivalence class [2], and its 

distribution was drawn from a symmetric Dirichlet distribution with parameters equal to 0.1.

We then calculated the correlation between A and Z, as well as bounds on the ACE, E[Y(A 
= 1) − Y (A = 0)], for each distribution. The results are presented in Fig. 5.

We observe that, as expected, greater correlation between the generalized instrument and 

the treatment is associated with tighter bounds. This pattern persisted across simulations for 

additional models, and across various approaches to sampling distributions from the model.

The marginal distributions of correlation and bound width, shown as histograms in Fig. 

5 seem to be sensitive to the approach used to sample distributions from the model. For 

distributions sampled as described above, and used to generate Fig. 5, the mean width of 
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bounds on the ACE was 0.77, with a standard deviation of 0.12. In 4% of the distributions, 

the bounds excluded 0. We find that these values are also sensitive to changes in how 

distributions were sampled.

E: Bounds on P(Y (a) = y) in the IV Model With Covariates

The remainder of this section is a LaTeX friendly printout of the steps taken by our 

implementation of the algorithm described in this work when applied to bounding P(y(a)) in 

the IV model with covariates, as described in Section 6.

To begin, we partition y(a) as described in Proposition 5:

y(a) ∧ a(z) ∧ a(z)

a(z) ∧ y(z)

(a(z) ∧ (a(z) ∧ y(z))) .

As before, no lower bound is provided for the first event in the partition, and the second has 

an identified density. We now consider the last event in the partition a(z) ∧ (a(z) ∧ y(z)).

The following events imply a(z) and can therefore be used as E1 events in Corollary 3:

a(z) ∧ y(z)

a(z) ∧ y(z)

a(z) ∧ c(z)

a(z) ∧ c(z)

a(z) ∧ y(z) ∧ c(z)

a(z) ∧ y(z) ∧ c(z)

a(z) ∧ y(z) ∧ c(z)
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a(z) ∧ y(z) ∧ c(z) .

Likewise, the following events imply a(z) ∧ y(z) and can therefore be used as E2 events in 

Corollary 3:

a(z) ∧ y(z)

a(z) ∧ y(z) ∧ c(z)

a(z) ∧ y(z) ∧ c(z)

By Proposition 10, a(z), which implies a(z), and therefore would be a candidate for use as an 

E1 event, is redundant.

We now iterate through each potential event for E1 and E2, examining the resulting bound.

The event a(z) ∧ y(z) is compatible with y(z) ∨ (a(z) ∧ y(z)). Therefore to compute the bound 

induced by using it as an E1 event, we must subtract from its density the portion of 

this compatible event that does not entail the negation of a(z) ∧ y(z). This portion is 

(a(z) ∧ y(z)) ∨ (a(z) ∧ y(z)), yielding the bound Pz(a, y) − Pz(a, y) + Pz(a, y) .

The event a(z) ∧ y(z) is compatible with (a(z) ∧ y(z)) ∨ y(z). Therefore to compute the bound 

induced by using it as an E1 event, we must subtract from its density the portion of this 

compatible event that does not entail the negation of a(z) ∧ y(z). This portion is y(z), yielding 

the bound Pz(a, y) − Pz(y).

The event a(z) ∧ c(z) is compatible with (a(z) ∧ c(z)) ∨ c(z). Therefore to compute 

the bound induced by using it as an E1 event, we must subtract from its 

density the portion of this compatible event that does not entail the negation of 

a(z) ∧ y(z). This portion is (a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z)) ∨ (y(z) ∧ c(z)), yielding the bound 

Pz(a, c) − Pz(a, y, c) + Pz(a, y) + Pz(y, c) .

The event a(z) ∧ c(z) is compatible with c(z) ∨ (a(z) ∧ c(z)). Therefore to compute 

the bound induced by using it as an E1 event, we must subtract from its 

density the portion of this compatible event that does not entail the negation of 

a(z) ∧ y(z). This portion is (y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ c(z)), yielding the bound 

Pz(a, c) − Pz(y, c) + Pz(a, y, c) + Pz(a, c) .

The event a(z) ∧ y(z) ∧ c(z) is compatible with 

(a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)) ∨ (y(z) ∧ c(z)). Therefore to compute the bound induced 

by using it as an E1 event, we must subtract from its density the portion of this 
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compatible event that does not entail the negation of a(z) ∧ y(z). This portion is 

(a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z)), yielding the bound Pz(a, y, c) − Pz(a, y, c) + Pz(a, y) .

The event a(z) ∧ y(z) ∧ c(z) is compatible with 

(y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)). Therefore to compute the bound induced 

by using it as an E1 event, we must subtract from its density the portion of this 

compatible event that does not entail the negation of a(z) ∧ y(z). This portion is 

(a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z)), yielding the bound Pz(a, y, c) − Pz(a, y, c) + Pz(a, y) .

The event a(z) ∧ y(z) ∧ c(z) is compatible with 

(a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)) ∨ (y(z) ∧ c(z)). Therefore to compute the bound induced 

by using it as an E1 event, we must subtract from its density the portion of this 

compatible event that does not entail the negation of a(z) ∧ y(z). This portion is 

(a(z) ∧ y(z) ∧ c(z)) ∨ (y(z) ∧ c(z)), yielding the bound Pz(a, y, c) − Pz(a, y, c) + Pz(y, c) .

The event a(z) ∧ y(z) ∧ c(z) is compatible with 

(y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)). Therefore to compute the bound induced 

by using it as an E1 event, we must subtract from its density the portion of this 

compatible event that does not entail the negation of a(z) ∧ y(z). This portion is 

(y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)), yielding the bound Pz(a, y, c) − Pz(y, c) + Pz(a, y, c) .

The event a(z) ∧ y(z) is compatible with y(z) ∨ (a(z) ∧ y(z)). Therefore to compute the bound 

induced by using it as an E2 event, we must subtract from its density the portion of this 

compatible event that does not entail the negation of a(z). This portion is (a(z) ∧ y(z)), 
yielding the bound Pz(a, y) − Pz(a, y).

The event a(z) ∧ y(z) ∧ c(z) is compatible with 

(y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)). Therefore to compute the bound induced 

by using it as an E2 event, we must subtract from its density the portion of this compatible 

event that does not entail the negation of a(z). This portion is (a(z) ∧ y(z)), yielding the bound 

Pz(a, y, c) − Pz(a, y).

The event a(z) ∧ y(z) ∧ c(z) is compatible with 

(a(z) ∧ y(z) ∧ c(z)) ∨ (a(z) ∧ y(z) ∧ c(z)) ∨ (y(z) ∧ c(z)). Therefore to compute the bound induced 

by using it as an E2 event, we must subtract from its density the portion of this compatible 

event that does not entail the negation of a(z). This portion is (a(z) ∧ y(z)), yielding the bound 

Pz(a, y, c) − Pz(a, y).

This concludes the derivation of the bounds presented for the IV model with covariates in 

Section 6.
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Figure 1: 
(a) The classic instrumental variable model, and (b) its latent projection.
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Figure 2: 
A Sequential Treatment Scenario
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Figure 3: 
(a) The IV model with covariates, and (b) the confounded frontdoor IV model.
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Figure 4: 
The Inclusive Frontdoor Model
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Figure 5: 
Each point represents a randomly generated distribution in the IV model with covariates, 

depicted in Fig. 3 (a). This plot shows informally that correlation between the generalized 

instrument Z and the treatment A is associated with tighter bounds on the ACE, E[Y(A = 

1) − Y (A = 0)]. The histograms show the marginal distributions of correlation and bound 

width.
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