Skip to main content
. 2020 Nov 17;16(11):e1009153. doi: 10.1371/journal.pgen.1009153

Fig 1. Multivariable prediction of educational achievement.

Fig 1

Panel A = repeated 10-fold cross validation in training set, for the environmental (E), multi-polygenic score (G), joint (G+E), and interaction (G*E) prediction models. Panel B = Hold-out set prediction of EA for best models obtained via repeated cross validation in training set. Error bars are 95% bootstrapped confidence intervals. Panel C = G+E model used in hold-out set prediction. Figure shows variables selected via repeated cross-validation in the training set, and relative importance. Panel D = Comparison of prediction accuracy for models tested as bootstrapped R2 difference between nested models in the hold-out set. Distributions represent independent (non-mediated) genetic effects (G+E−E), environmental effects (G+E−G), and G*E effects (G*E–G+E). Note. PGS = polygenic scores, ENV = Environmental measures. ASD = Autism Spectrum Disorder, BIP = Bipolar Disorder, BMI = Body Mass Index, EA3 = Educational Attainment, IQ3 = Intelligence, OCD = Obsessive Compulsive Disorder, PTSD = Post-Traumatic Stress Disorder, SCZ = Schizophrenia.