Table 1. Coefficients of the logistic regressions for the different variables.
Reference | Estimate | Coefficient (β) | Standard Error | z value | p | Odds ratio |
---|---|---|---|---|---|---|
α (intercept) | -3.054 | 0.027 | -114.044 | <0.001 | ||
Distance | 0.046 | 0.001 | 167.857 | <0.001 | 1.047 | |
Face Mask | Angry | -0.754 | 0.022 | -34.712 | <0.001 | 0.47 |
Happy | -0.529 | 0.022 | -24.433 | <0.001 | 0.589 | |
Neutral | -0.544 | 0.022 | -25.106 | <0.001 | 0.581 | |
Neutral | Happy | 0.015 | 0.021 | 0.684 | ns | 1.015 |
Angry | -0.211 | 0.021 | -9.85 | <0.001 | 0.81 | |
Happy | Angry | -0.225 | 0.021 | -10.532 | <0.001 | 0.798 |
Female characters | Male characters | -0.114 | 0.015 | -7.532 | <0.001 | 0.892 |
No Covid-19 | Covid-19 | 0.128 | 0.024 | 5.285 | <0.001 | 1.136 |
Area risk level high | Area risk level low | 0.185 | 0.017 | 10.545 | <0.001 | 1.203 |
Odds ratios represent odds of answering “appropriate” when exposed to a Condition compared to the odds of answering “appropriate” when exposed to the Reference.