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Abstract

The dynamics of the human brain span multiple spatial scales, from connectivity asso-

ciated with a specific region/network to the global organization, each representing

different brain mechanisms. Yet brain reconfigurations at different spatial scales are

seldom explored and whether they are associated with the neural aspects of brain

disorders is far from understood. In this study, we introduced a dynamic measure

called step-wise functional network reconfiguration (sFNR) to characterize how brain

configuration rewires at different spatial scales. We applied sFNR to two indepen-

dent datasets, one includes 160 healthy controls (HCs) and 151 patients with schizo-

phrenia (SZ) and the other one includes 314 HCs and 255 individuals with autism

spectrum disorder (ASD). We found that both SZ and ASD have increased whole-

brain sFNR and sFNR between cerebellar and subcortical/sensorimotor domains. At

the ICN level, the abnormalities in SZ are mainly located in ICNs within subcortical,

sensory, and cerebellar domains, while the abnormalities in ASD are more widespread

across domains. Interestingly, the overlap SZ-ASD abnormality in sFNR between cer-

ebellar and sensorimotor domains was correlated with the reasoning-problem-solving

performance in SZ (r = −.1652, p = .0058) as well as the Autism Diagnostic Observa-

tion Schedule in ASD (r = .1853, p = .0077). Our findings suggest that dynamic

reconfiguration deficits may represent a key intersecting point for SZ and ASD. The

investigation of brain dynamics at different spatial scales can provide comprehensive

insights into the functional reconfiguration, which might advance our knowledge of

cognitive decline and other pathophysiology in brain disorders.
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1 | INTRODUCTION

Evaluating resting-state brain connectivity from functional magnetic

resonance imaging (fMRI) signals has expanded our knowledge of the

brain function and neurophysiological mechanisms (Biswal, Zerrin

Yetkin, Haughton, & Hyde, 1995; Fornito & Bullmore, 2012;

Friston, 2009; Greicius, Krasnow, Reiss, & Menon, 2003). Convention-

ally, the analysis of resting-state functional connectivity is based on

the assumption that connectivity within a scan session is static, which

unfortunately neglects the potential variations of the brain (Hutchison

et al., 2013). Research using high-temporal-resolution imaging tech-

niques, such as electrophysiological recordings of single cells, local

fields, and surface electroencephalograms (EEGs) have observed sig-

nificant fluctuations of neural activity and connectivity (Lehmann

et al., 1998), which indicates that human brain might coordinate dif-

ferent neural populations across multiple spatiotemporal scales to

adapt to the internal and external demands (Buzsáki, 2009; Hutchison

et al., 2013). Previous studies have reported a wide range of func-

tional connectivity dynamics at different spatial scales, where the spa-

tial scale indicates how the functional organization to be constructed.

Those dynamic patterns include temporal variations in local regional

homogeneity or specific functional connectivity pairs (Chang &

Glover, 2010; Deng, Sun, Cheng, & Tong, 2016), zone of instability of

functional networks or domains (Allen et al., 2014; Zalesky, Fornito,

Cocchi, Gollo, & Breakspear, 2014), and dynamic graphs and global

dynamism of whole-brain functional connectivity (Fu et al., 2019;

Miller et al., 2016; Yu et al., 2015). However, previous work typically

used different metrics to investigate the temporal characteristics of

different functional organizations. For example, Allen et al. used a

metric called zone of instability of functional networks to separate

components into groups with more variable functional connectivity

(Allen et al., 2014). Global dynamism measures were defined in Miller

et al. (2016) for evaluating the dynamic range and fluidity of the

whole-brain. There is a need for a unified measure that can evaluate

dynamic patterns of functional brain organizations constructed by dif-

ferent functional connectivity groups. Understanding how functional

brain changes at different spatial scales provides more comprehensive

information about the macro- and micro-scale spatiotemporal archi-

tecture of the brain that is potentially related to human behaviors and

brain disorders.

Schizophrenia (SZ) and autism spectrum disorder (ASD) are

among many psychiatric and neurological disorders that share over-

lapping clinical features and similar brain alterations (Konstantareas &

Hewitt, 2001). They are both associated with cognitive problems,

social withdrawal, and communication impairment, neurodevelopment

alterations, and genetic mutations (Association AP, 2013). Early on,

they were regarded as the same disorder but in different stages, with

ASD manifesting as an earlier phase of SZ (Eisenberg &

Kanner, 1956). Individuals with ASD are more likely to have a family

history of SZ (Sullivan et al., 2012) and also have increased liability for

psychosis (Kincaid, Doris, Shannon, & Mulholland, 2017). Although

current diagnostic approaches maintain a nosological distinction

between SZ and ASD, their underlying relationship, and neural origins

are far from clear. Functional connectivity derived from fMRI is one of

the powerful neuroimaging techniques that allow brain configuration

abnormalities to be assessed in mental disorders. Studies of brain con-

nectivity have yielded many reliable indicators of brain disorders, with

the potential to support early diagnosis and treatment (Arbabshirani,

Plis, Sui, & Calhoun, 2017; Greicius, 2008; Koshino et al., 2005; Liu

et al., 2008; Whitfield-Gabrieli et al., 2009). Both SZ and ASD have

functional connectivity abnormalities as core disease features

reported in previous studies. However, only a few works favor both

diseases within a single study, showing most of the common and

divergent connectivity alterations in default mode, salience, and motor

networks (Chen, Uddin, et al., 2017; Mastrovito, Hanson, &

Hanson, 2018; Yoshihara et al., 2020). These studies also have limita-

tions, given that they are based on static connectivity which unfortu-

nately represents a gross oversimplification (Allen et al., 2014).

Considering the dynamic nature of the brain, the time-varying charac-

teristics of functional connectivity are believed to unveil pathophysi-

ology in brain disorders ignored by its static counterpart. Indeed,

several existing studies have implied potential similar abnormalities in

brain dynamics between SZ and ASD. For example, Damaraju et al.

showed that SZ patients have significantly longer dwell times in

sparse-connected states and disrupted thalamocortical connectivity in

a state-specific manner (Damaraju et al., 2014). Similarly, an ASD

study found that individuals with ASD have longer dwell time in the

weak-connected states and transient increased thalamic-sensory con-

nectivity within dynamic states (Fu et al., 2019). The larger variations

of dynamic functional connectivity were identified in both SZ (Ma,

Calhoun, Phlypo, & Adali, 2014; Yue et al., 2018) and ASD (Chen,

Nomi, Uddin, Duan, & Chen, 2017; Harlalka, Bapi, Vinod, &

Roy, 2019), showing strong correspondence with the disease-related

hypoconnectivity. The temporal patterns in functional connectivity

were suggested to help distinguish SZ from ASD and controls in a

recent study (Rabany et al., 2019). The above-mentioned findings sup-

port that studying the dynamic brain reconfiguration for these two

disorders, especially from different spatial perspectives is important

for clarifying the relationship between SZ and ASD in their brain

dynamics, behavioral aspects, and cognitive deficits.

In this study, we first introduce a dynamic measure called step-

wise functional network reconfiguration (sFNR), which is capable of

characterizing step-wise changes in different functional organizations

between adjacent time points. The novelty of the current study is

twofold. First, our study used the cosine similarity to evaluate the

changes in dynamic functional connectivity and then introduced the

sFNR based on the step-wise changes, a unified measure for quantify-

ing the overall temporal characteristics of different functional brain

organizations. Second, we applied the sFNR to two diseases' datasets

with a large sample size for the exploration of the dynamic abnormali-

ties in different brain organizations that are related to SZ and ASD.

We hypothesize that SZ and ASD would have similar but also specific

dynamic abnormalities, which are associated with diseases' traits. We

adopt a novel analytical framework call Neuromark (Du et al., 2020),

combined with sliding-window correlation and sFNR to two indepen-

dent datasets, namely the Function Biomedical Informatics Research
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Network (FBIRN) and the Autism Brain Imaging Data Exchange

(ABIDE) to study the abnormal dynamic patterns in SZ and ASD. The

relationships between abnormal dynamic reconfiguration and cogni-

tive performance/symptoms are also investigated. The results from

the two datasets are then compared to highlight similar and unique

changes between SZ and ASD.

2 | MATERIALS AND METHODS

2.1 | Datasets

Written informed consent is obtained from all participants of the two

independent datasets under protocols approved by the Institutional

Review Board. The chracteristics of these two datasets are provided

in Table 1. The first dataset is a SZ dataset from the FBIRN. Partici-

pants were scanned during the eyes-closed rest condition. All resting-

state fMRI data were acquired using a standard gradient-echo echo-

planar imaging (EPI) sequence with TE = 30 ms, TR = 2 s, FA = 77�,

slice thickness = 4 mm, slice gap = 1 mm. The duration of each

resting-state scan was 5 min 24 s. Subject inclusion criteria require all

participants with head motion <=3� and <=3 mm, and with functional

data providing near full brain successful normalization (by comparing

the individual mask with the group mask. Details are provided in the

supplementary materials). These criteria yield 160 healthy controls

(HCs) (average age: 37.04 ± 10.86; range: 19–59 years; 45/115:

female/male) and 151 patients with SZ (average age: 38.77 ± 11.63;

range: 18–62 years; 36/115: female/male). HCs and SZs are matched

by age and gender (age: p = .1758; gender: p = .3912). HCs do not

have any past or current psychiatric illness based on SCID assessment

or a first-degree relative with a diagnosis of an Axis-I psychotic disor-

der. SZs are clinically stable at the time of scanning. Most of the par-

ticipants are measured by a neuropsychological battery that includes

six neurocognitive domain tests (speed processing, attention/vigi-

lance, working memory, verbal learning, visual learning, and problem-

solving) called Computerized Multiphasic Interactive Neurocognitive

System (CMINDS) (van Erp et al., 2015). CMINDS is a reliable system

to evaluate cognitive performance from different angles.

The second dataset is from the release 1.0 of the ABIDE1, a pub-

licly available database sharing resting-state fMRI data from individ-

uals with ASD and HCs. Before dataset acquisition, consortium

members agreed on a “base” phenotypic protocol by identifying over-

laps in measures across sites, which include age, sex, IQ, and other

diagnostic information. Since in this study, we focus on dynamic varia-

tions on functional network connectivity (FNC), we only select sub-

jects with TR = 2 s to avoid inducing confounding effects from

different temporal resolutions. The other subject inclusion criteria

include criteria for controlling the head motion and normalization

quality of data, which are similar to those for the FBIRN dataset. In

total 314 HCs (average age: 17.04 ± 7.00; range: 6.47–56.20 years;

65/249: female/male) and 255 individuals with ASD (average age:

17.05 ± 7.74; range: 7.00–55.40 years; 31/224: female/male) from

10 sites are selected in this study. HCs and ASD are matched by age

(age: p = .9901). Previous literature has demonstrated sexual differen-

tiation for ASD which is far more prevalent in males than in females.

There is gender difference (p = .0067) on selected HCs and ASD and

we thus control for the gender by adding it as a covariate in the statis-

tical analysis.

2.2 | Preprocessing

The fMRI data were preprocessed using the statistical parametric

mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) package in

MATLAB 2016 environment. The first five scans were removed for

the signal equilibrium and participants' adaptation to the scanner's

noise. We performed rigid body motion correction using the toolbox

in SPM to correct subject head motion, followed by the slice-timing

correction to account for timing difference in slice acquisition. The

fMRI data were subsequently warped into the standard Montreal

Neurological Institute space using an EPI template and were slightly

resampled to 3 × 3 × 3 mm3 isotropic voxels. The resampled fMRI

data were further smoothed using a Gaussian kernel with a full width

at half maximum = 6 mm. After the preprocessing, the FBIRN subjects

have 157 scans and the ABIDE1 subjects have 145 scans used in the

following analysis.

2.3 | Functional network extraction

To obtain the same functional network structure for both datasets, a

set of network priors were first extracted by the Neuromark

TABLE 1 Demographics FBIRN and ABIDE1 datasets

Characteristics

FBIRN ABIDE1

SZ (n = 151) HCs (n = 160) ASD (n = 255) HCs (n = 314)

Age (years) 38.77 ± 11.63 37.04 ± 10.86 17.05 ± 7.74 17.04 ± 7.00

Gender (female/male) 45/115 36/115 31/224 65/249

Problem-solving −0.85 ± 1.22 0.04 ± 0.97 NA NA

ADOS NA NA 12.10 ± 3.88 (n = 188) 1.25 ± 1.43 (n = 28)

Abbreviations: ABIDE1, release 1.0 of the Autism Brain Imaging Data Exchange; ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum

disorder; FBIRN, Function Biomedical Informatics Research Network; HC, healthy control; SZ, schizophrenia.
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framework (Du et al., 2020). In this framework, spatial group ICA was

performed on two independent datasets with a large sample of HCs

(Human Connectome Project [HCP, 823 subjects after the subject

selection] and Genomics Superstruct Project [GSP, 1005 subjects

after the subject selection]). We choose these two datasets with dif-

ferent temporal resolutions and preprocessed by different pipelines

because we would like to identify network priors that are consistent

and reproducible across various conditions.

For each dataset, principal component analysis was performed to

reduce the subject-specific data into 120 principal components (PCs)

which preserve more than 95% variance of the original data. The

120 PCs of each subject were concatenated across subjects and then

reduced into 100 PCs at the group level. The infomax ICA algorithm

was conducted to decompose the 100 PCs into 100 independent

components (ICs) and such procedure was repeated 10 times in

ICASSO, in which the best run was selected to ensure the estimation

stability. The estimated ICs from the two datasets were then matched

by comparing their corresponding group-level spatial maps. A spatial

similarity matrix S (size: 100 × 100) was obtained by computing the

absolute value of Pearson correlation coefficients between spatial

maps of ICs from GSP and that from HCP. Based on the matrix S, the

pair of ICs with the maximum correlation value was selected and con-

sidered as the first-matched components pair. If their original correla-

tion value was negative, one of the ICs was sign-flipped. After

identifying a matched ICs pair, the correlation values related to them

in matrix S were set to zero, resulting in a new similarity matrix Snew.

As such, the matching procedure was repeated continually on the

updated correlation matrices, until the final matched IC pair was

found. IC pairs were considered to be reproducible if they show a

higher spatial correlation than a given threshold. Previous studies

have shown that a correlation threshold = 0.25 indicates a significant

correspondence (p < .005, corrected) between components

(Beckmann, DeLuca, Devlin, & Smith, 2005; Beckmann, Mackay,

Filippini, & Smith, 2009). In our study, we used a larger threshold

(=0.4) which promoted higher correspondence between the matched

ICs from HCP and GSP. We characterized a subset of these matched

ICs as ICNs, as opposed to physiological, movement-related, or imag-

ing artifacts. Components were evaluated by three experts' votes,

which are based on the expectations that ICNs should have their acti-

vation peaks fell on gray matter and low spatial over-lap with known

vascular, ventricular, motion and some other artifacts, and should

have dominant low-frequency fluctuations on their corresponding

time-courses (TCs).

We used the less noisy ICNs captured from the GSP dataset (note

that there are 53 ICNs from HCP which have similar spatial patterns)

as the spatial network priors applied group-information-guide ICA

(gig-ICA) to back-reconstructed subject-specific spatial maps and TCs

for the FBIRN and ABIDE1 datasets. Via using the Neuromark frame-

work, the identified ICNs from FBIRN and ABIDE1 are corresponding,

leveraging the feasibility of obtaining the same network structure

across datasets. After extracting ICNs and their corresponding TCs for

each dataset, ICN TCs underwent additional postprocessing to

remove the remaining noise. These procedures included

(a) detrending linear, quadratic, and cubic trends; (b) multiple regres-

sion of the six realignment parameters and their derivatives,

(c) removal of detected outliers, and (d) low-pass filtering with a cutoff

frequency of 0.15 Hz.

2.4 | Dynamic functional network connectivity

For each subject, dynamic FNC (dFNC) was estimated by a sliding

window approach. A tapered window, created by convolving a rectan-

gle (width = 20 TRs = 40 s, TR = 2 s) with a Gaussian (σ = 3 TRs), was

used to segment the TCs. We slid the window in steps of 1 TR,

resulting in total W = 137 windows for the FBIRN subjects and

W = 125 for the ABIDE subjects. It is suggested that window size

between 30 s and 1 min produces reliable dynamic functional connec-

tivity estimates (Hutchison et al., 2013). Robust dynamic functional

connectivity patterns have been well identified using the sliding win-

dow approach with a similar window (Allen, Damaraju, Eichele, Wu, &

Calhoun, 2018; Fiorenzato et al., 2019; Fu et al., 2019; Hutchison

et al., 2013; Tu et al., 2019; Zalesky et al., 2014). To further show the

reliability of our results, we also calculated the dFNC using a wide

range of window sizes (16–24 TRs) and provided the results in the

supplementary materials. Considering that the short time segment

may not have sufficient information to characterize the full covariance

matrix, we estimate covariance from the regularized precision matrix,

which is calculated via the graphical LASSO method (Friedman,

Hastie, & Tibshirani, 2008) on the windowed data. The regularization

parameter was optimized for each subject by using a cross-validation

framework.

2.5 | Calculation of sFNR

Consider two matrices A and B with dimension N × M, where each

entry represents the link between nodes. The distance between these

two matrices can be defined as:

δ A,Bð Þ=1−ϑ A,Bð Þ: ð1Þ

where ϑ is the cosine similarity function calculating as (Han &

Goetz, 2019):

ϑ A,Bð Þ= J A ∘Bð ÞJT
Ak kF Bk kF

, ifN=M;

ϑ A,Bð Þ= A :ð Þ ∘ B :ð Þ
Ak kE Bk kE

, ifN≠M: ð2Þ

here J is a 1 × N vector with 1 for each element and ∘ is the Hadamard

product. kkF is the Frobenius norm and kkE is the Euclidean norm.

Therefore, if A presents a network of previous time point (t-1) and

B represents a network of current time point (t), the sFNR of this time

point (t) can be measured by the distance between them. The sFNR δ
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is calculated for each time point to evaluate how the functional net-

work reconfigures time by time (so called step-wise). In addition, sFNR

is within the scope 0–1, allowing us to compare it across different net-

works and across groups, where a larger value of δ indicates the

greater network reconfiguration.

The dFNC of each window were concatenated to form a

C × C × W array (C: number of ICNs; W: number of windows), rep-

resenting the changes in brain connectivity as a function of time. We

calculated sFNR of brain for: (a) whole-brain, based on C × C × W

dFNC array; (b) domain, based on Ci × Cj × W dFNC array, where

Ci × Cj of each time window presents FNC between domains i and j or

within domain i if i = j; and (c) ICN, based on 1 × (C-1) × W dFNC

array, where 1 × (C-1) represents FNC between a given ICN and the

other ICNs. For each subject, the outputs of this procedure are a (W-

1) × 1 sFNR vector for the whole-brain, a L × (W-1) sFNR array for

the domain level where L = (D + 1) × D � 2 (D denotes the number of

domain), and a C × (W-1) sFNR array for the ICN level. The output

sFNR is then averaged across windows (W-1) to obtain the overall

FNR during the resting-state. sFNR is then averaged across windows

for further analysis. A general linear model (GLM) was applied to exam-

ine whether the average sFNR shows differences between SZ and HC,

controlling for age and gender. The GLM was also applied to examine

the group difference between ASD and HC on the average sFNR, con-

trolling for age, gender, and site. Different from the FBIRN data that

were scanned using the same structural and functional scan parame-

ters (e.g., data length, TR/TE, and slice order), the data from ABIDE are

scanned using different protocols which could result in more system-

atic differences between subjects from different sites. Therefore, for

controlling for the multisites effect, we generated a Subject × (N-1)

array as the input covariate in the GLM analysis, where the N is sup-

posed to be the total number of sites in this data. For each column

i = 1, 2, …, N-1, if a subject is from site i, the entry (sub, i) of this array

is set as 1, otherwise, the entry would be set as 0. To further show

that the site information in the FBIRN data would not influence our

findings, we also controlled for the site effect in the statistical analysis

between SZ and HCs and provided the results in the supplementary

materials. To further investigate the associations between the atypical

sFNR and cognitive performance and symptoms, the GLM was used to

examine the association between abnormal sFNR and CMIND scores

for the FBIRN dataset and the association between abnormal sFNR

and the Autism Diagnostic Observation Schedule (ADOS) for the

ABIDE1 dataset, controlling for additional diagnosis effect. Statistical

results were corrected using Bonferroni correction (Dunnett, 1955) or

false discovery rate (FDR) correction (Benjamini & Hochberg, 1995).

3 | RESULTS

3.1 | Neuromark ICNs

Then, 53 ICNs were identified by the Neuromark pipeline, with the acti-

vation peaks fell on the majority of subcortical and cortical gray matter.

According to prior functional and anatomical information, ICNs are

arranged into seven functional domains: subcortical (SC), auditory (AUD),

visual (VS), sensorimotor (SM), cognitive-control (CC), default-mode (DM),

and cerebellar (CB) domains. The spatial maps, component labels, and

peak coordinates of ICNs are provided in the supplementary material.

3.2 | Increased sFNR in SZ

Compared with HC, SZ has increased sFNR of the brain at different

scales. Specifically, sFNR of the whole-brain significantly increases in

SZ (p = 1.26 e-4; Figure 1). Within-domain sFNR is smaller than

between-domain sFNR, suggesting more nonstationary properties in

the FNC between different functional modules. Greater sFNR are

identified between SC and SM/VS/CB domains, between CB and

SM/CC/DM domains and within CB domains (***significance p < .01,

Bonferroni corrected; Figure 1) in SZ. The SC, SM, and CB domains

are the dominant functional modules that are associated with

increased sFNR in SZ. For the sFNR at the ICN level, ICNs within CC

domain are less stable while the ICNs within sensory domains (AUD,

SM, and VS) are more stationary. However, it could be also observed

increased sFNR in several sensory ICNs, indicating more non-

stationary relationships between them and the other ICNs. For exam-

ple, the postcentral gyrus (PoCG) and the middle temporal gyrus

(MTG) have a relatively higher degree of sFNR (Figure 2). ICNs within

SC domain (including caudate, subthalamus, thalamus), AUD domain

(including superior temporal gyrus [STG]), SM domain (including

PoCG, paracentral lobule [ParaCL], superior parietal lobule [SPL]), VS

domain (calcarine gyrus), and CB domain show greater sFNR in SZ

(**significance p < .05, Bonferroni corrected; Figure 2). Most abnor-

malities are concentrated in SC, CB, and sensory domains.

3.3 | Increased sFNR in ASD

Similar sFNR changes are identified in ASD. Specifically, individuals

with ASD show a higher degree of whole-brain sFNR (p = 4.04 e-4;

Figure 3). The whole-brain sFNR is associated with ADOS (p = .0136).

At the domain level, within-domain sFNR is relatively smaller than

between-domain sFNR, which is consistent with the findings from

FBIRN. Individuals with ASD show similar alterations in sFNR

between CB and SC/SM domains, but the significance level is weaker

(*significance p < .05, FDR corrected; Figure 3). ASD also has specific

sFNR changes, mainly between SM and AUD/VS and between CC

and DM (*significance p < .05, FDR corrected; Figure 3). Similar to SZ,

the SM and CB are the most affected functional domains. However,

the SC domain is less affected in ASD. The sFNR of ICNs shows simi-

lar distribution patterns in both FBIRN and ABIDE1 datasets. For

instance, ICNs within CC have relatively higher sFNR. PoCG and MTG

have higher sFNR compared with the other ICNs within the sensory

domains (Figure 4). Different from the SZ, individuals with ASD have

altered sFNR widespread across domains. ICNs within SC domain

(thalamus), SM domain (precentral gyrus [PreCG], PoCG, and ParaCL),

VS domain (MTG, middle occipital gyrus [MOG], and inferior occipital
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gyrus [IOG]), CC domain (inferior parietal lobule [IPL]), DM domain

(posterior cingulate cortex) and CB domain show greater sFNR in ASD

(*significance p < .05, FDR corrected; Figure 4).

3.4 | Associations between sFNR and cognitive
deficits and autistic traits

We further found significant associations between atypical sFNR and

cognitive performance in the FBIRN dataset. The score of reasoning-

problem-solving is negatively correlated with the sFNR between SM

and CB domains and the sFNR of SPL (*significance p < .05, FDR

corrected; Figure 5), indicating that the poorer cognitive performance

in SZ is accompanied with the larger sFNR. An interesting patterns

between SZ and ASD is that the sFNR between SM and CB domains is

also positively correlated with ADOS in ASD (*significance p < .05,

FDR corrected; Figure 5). We also found a significant association at the

ICN level (ADOS is associated with the sFNR of thalamus, *significance

p < .05, FDR corrected), as compared with the findings in SZ (cognitive

performance is associated with the sFNR of SPL). We also correlated

the abnormal sFNC measures with the head motion parameter as mea-

sured by the mean framewise displacement and there is no significant

correlation between them (p > .05), indicating that such abnormalities

are not due to the potential confounding effects from head motion.

F IGURE 1 sFNR abnormalities in SZ. (a) Difference in the whole-brain sFNR between HCs and SZ. (b) Average within/between-domain sFNR
across all subjects. (c) Difference in within-domain sFNR between HC and SZ. (d) Difference in between-domain sFNR between HC and
SZ. Boxplots display the mean sFNR across subjects (red line), the 95% confidence interval for the mean (green area), and the SD (orange area).
***Significance p < .01, Bonferroni corrected. HC, healthy control; sFNR, step-wise functional network reconfiguration; SZ, schizophrenia
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3.5 | Overlapping and unique abnormalities in SZ
and ASD

At the whole-brain level, both SZ and ASD show increased functional

reconfiguration compared with HCs. At the within/between-domain

level, SZ and ASD have overlapping abnormalities as increased functional

reconfiguration between CB and SC domains, and between CB and SM

domains. SZ has unique abnormal sFNRbetween SC and SM/VSdomains,

between CB and CC/DM domains, and within CB domain. ASD has

unique abnormalities in sFNR between SM and AUD/VS domains and

between CC and DM domains. At the ICN level, although the abnormali-

ties in ASD are more wide-spread, SZ and ASD share overlapping sFNR

abnormalities related to the ICNs mainly located in the SC, SM, and CB

domain, consistent with the results at the domain level. Increased sFNR

identified in both diseases is involved in thalamus, left and right PoCG,

ParaCL, and cerebellum. SZ shows a unique increase in sFNR related to

caudate, subthalamus, STG, SPL, and calcarine gyrus while ASD shows a

unique increase in sFNR related to PreCG,MTG,MOG, IOG, and left IPL.

F IGURE 2 sFNR abnormalities for ICNs in SZ patients. (a) sFNR across ICNs. (b) Highlighted ICNs with sFNR difference between HCs and SZ
patients. (c) Exemplar ICNs with sFNR difference from five different functional domains. Boxplots display the mean sFNR across subjects (red

line), the 95% confidence interval for the mean (green area), and the SD (orange area). **Significance p < .05, Bonferroni corrected. HC, healthy
control; ICN, intrinsic connectivity network; sFNR, step-wise functional network reconfiguration; SZ, schizophrenia
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4 | DISCUSSION

In this study, we found that the functional brain reconfiguration signif-

icantly differs between groups, being higher in ASD and SZ patients.

Functional domains with a higher degree of reconfiguration are mainly

associated with sensorimotor and cerebellar systems. Interestingly,

the increased reconfiguration in both diseases is associated with more

sever symptom traits as well as poorer cognitive performance.

Collectively, our findings suggest that characterizing the brain

reconfiguration at different spatial scales might be a crucial piece in

providing a comprehensive picture of brain dynamics.

4.1 | Abnormal whole-brain network
reconfiguration

Network rewiring measures have been successfully employed to mul-

tiple networks and detect reliable network reconfigurations (Han &

F IGURE 3 sFNR abnormalities in ASD. (a) Difference in the whole-brain sFNR between HCs and individuals with ASD. (b) Average within/
between-domain sFNR across all subjects. (c) Difference in between-domain sFNR between HC and ASD. Boxplots display the mean sFNR across
subjects (red line), the 95% confidence interval for the mean (green area), and the SD (orange area). *Significance p < .05, FDR corrected. ASD,
autism spectrum disorder; FDR, false discovery rate; HC, healthy control; sFNR, step-wise functional network reconfiguration
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Goetz, 2019). Existing approaches, like Dynamic Graphical Model

(DGM) (Schwab et al., 2018) and Group Iterative Multiple Model Esti-

mation (GIMME) (Gates & Molenaar, 2012), have been widely used in

fMRI studies to capture the connectivity structure during the resting-

state. However, there are two major differences between our method

and these approaches. First, DGM and GIMME are used to describe

instantaneous directed relationships between brain regions. They are

more focusing on effective connectivity, which indicates the causal

relationships between brain regions with systematic lags. Instead, our

method is focusing on the undirected functional connectivity, which is

represented by the statistical dependence between brain regions

without any lags. Second, DGM and GIMME do not consider any

time-varying experimental conditions or designed input and favor only

constant or consistent relationships between brain regions during the

F IGURE 4 sFNR abnormalities for ICNs in ASD patients. (a) sFNR across ICNs. (b) Highlighted ICNs with sFNR difference between HCs and
individuals with ASD. (c) Exemplar ICNs with sFNR difference from six different functional domains. Boxplots display the mean sFNR across
subjects (red line), the 95% confidence interval for the mean (green area), and the SD (orange area). *Significance p < .05, FDR corrected. ASD,
autism spectrum disorder; FDR, false discovery rate; HC, healthy control; ICN, intrinsic connectivity network; sFNR, step-wise functional network
reconfiguration
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whole scan. In contrast, our method evaluates how a group of func-

tional connectivity varies time by time and is capable of quantifying

the temporal characteristics of different functional brain organiza-

tions. Multiple lines of evidence suggest the existence of covarying

patterns in functional connectivity (Allen et al., 2014; Liu &

Duyn, 2013; Liu, Zhang, Chang, & Duyn, 2018), which indicates that

measuring the dynamics in each functional connectivity independently

and simply averaging them across functional connectivity might not

enough to capture the real dynamic fluctuations of a functional orga-

nization constructed by a group of functional connectivity. Compared

with the metrics like the SD of sliding-window correlation and non-

stationarity test statistic in (Zalesky et al., 2014), the sFNR evaluates

the changes of a group of functional connectivity simultaneously and

is capable of capturing the global dynamism of functional organization

directly. The sFNR also shows advantages to the clustering-based

approaches, which assume that certain connectivity patterns may

reoccur over time and are present in numerous subjects (Allen

et al., 2014). The difference between the number of clusters and even

between the brain state patterns due to the use of the clustering-

based approaches makes it difficult to compare findings across studies

or diseases. In contrast, by combining with the Neuromark framework,

the sFNR can be easily applied to different data with the feasibility of

comparing findings from different datasets without the need for

matching the dynamic brain states. In addition, the sFNR can evaluate

F IGURE 5 Correlations between sFNR and reasoning-problem-solving score/ADOS. Two sFNR calculations show negative correlations with
reasoning-problem-solving and two sFNR calculations show positive correlations with ADOS: (a) sFNR between SM and CB domains in SZ;
(b) sFNR of SPL in SZ; (c) sFNR between SM and CB domains in ASD; and (d) sFNR of thalamus in ASD. Each dot represents the value of each
subject and the black line represents the relationship between sFNR and score. *Significance p < .05, FDR corrected. ADOS, the Autism
Diagnostic Observation Schedule; ASD, autism spectrum disorder; CB, cerebellar domain; sFNR, step-wise functional network reconfiguration;
SM, sensorimotor domain; SPL, superior parietal lobule; SZ, schizophrenia
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the dynamic properties at different spatial scales, while the clustering-

based approaches are typically used to capturing the dynamic charac-

teristics of the whole-brain.

Using the average sFNR, we found that SZ has larger whole-brain

reconfiguration. Functional dysconnectivity has been widely reported

in SZ but the root cause is still unclear. The finding of larger functional

network variability indicates temporal disorganization of sequentially

expressed dynamic connectivity, which might be a potential cause of

the formulations of dysconnectivity (Breakspear & Stam, 2005). Our

observed increased relatively high-frequency (step-wise) network

reconfiguration might be supported by a previous study from a high-

temporal resolution technique magnetoencephalography

(Siebenhühner, Weiss, Coppola, Weinberger, & Bassett, 2013). They

showed that during a two-back working memory task, SZ patients

exhibit more network topology variability across trials. Resting-state is

a unconstrained condition which might contain different mental pro-

cesses associating with different connectivity patterns (Allen

et al., 2014; Marusak et al., 2017). Each mental process can be reg-

arded as a single activity trail and SZ patients might also have increased

network reconfiguration/variability in the resting-state as they did in

the memory task. Similar dynamic patterns are observed in an EEG

study, in which an increased entropy of high-frequency connectivity

are identified in SZ (Schoen, Chang, Lee, Bob, & Mashour, 2011).

Larger whole-brain reconfiguration in ASD is observed in our study as

well, indicating overlapping dynamic abnormalities between ASD and

SZ. Higher temporal variability of pair-wise functional connectivity has

been previously identified in ASD (Chen, Nomi, et al., 2017; Falahpour

et al., 2016). Our results are consistent with these findings and further

indicate an increased global reconfiguration of functional brain. The

greater network reconfiguration might provide evidence that the over-

all brain network is not actually “disrupted” in both diseases but exhibit

more unstable patterns over time.

The increased whole-brain reconfiguration in SZ and ASD can

also be explained by the excessive neural variability in brain disorders

(Markram & Markram, 2010; Simmons et al., 2009). Excessive trial-to-

trial variability of brain responses is widely observed in both diseases,

which are suggested to be strong evidence of excessive neural vari-

ability in brain disorders (Dinstein et al., 2010; Dinstein et al., 2012;

Siebenhühner et al., 2013). We argue that the larger brain network

reconfiguration might be an alternative representation of excessive

neural variability. The highly fluctuated brain organization would

result in unstable communications between brain areas, so that influ-

ences the perception of the environment (Dinstein, Heeger, &

Behrmann, 2015). As such, patients may have difficulties to interact

with external stimuli and therefore exhibit specific behavioral symp-

toms and cognitive decline.

4.2 | Abnormal network reconfiguration in
functional domains and ICNs

Abnormal functional reconfiguration was identified in functional

domains and ICNs in both disorders. Specifically, SZ shows increased

reconfiguration within and between subcortical, sensory and cerebel-

lar domains. The more nonstationary patterns in the functional con-

nectivity between subcortical and cortical regions in SZ might indicate

the inability of the brain to sustain the connections between

subcortical-sensory-cerebellar domains necessary for healthy cogni-

tive function, which might empirically result in the fragmentation of

cortical and subcortical networks seen in patients (van den Berg,

Gong, Breakspear, & van Leeuwen, 2012).

Abnormal brain connectivity is one of the major pathophysiologi-

cal mechanisms of SZ (Bullmore, Frangou, & Murray, 1997). Numerous

brain regions involved in temporal, parietal, subcortical, and cerebellar

networks and the associated functional connectivity have been linked

to SZ and their alterations are suggested to play vital roles in the path-

ophysiology of this disease (Jafri, Pearlson, Stevens, & Calhoun, 2008;

Jones et al., 2012; Ma et al., 2014). Our results provide supports for

these findings and further suggest the importance of evaluating the

temporal changes in these brain networks and their connectivity.

Increased spatial diversity and complexity of the functional organiza-

tion are also key abnormities in SZ, being highly sensitive to the dis-

ease state (Bassett, Nelson, Mueller, Camchong, & Lim, 2012; Lynall

et al., 2010). The higher network reconfiguration observed in our

study might be complementary results to these previous findings by

revealing the increased temporal diversity of functional organization

in SZ. Besides, the observed greater network reconfiguration between

a single ICN and the rest of the brain seems compatible with the

reduced homogeneity of regional activity found in SZ (Liu

et al., 2006), given that the regions with dissimilar activities might

have weaker and more nonstationary connectivity, resulting in higher

network variability.

Similar but weaker brain alterations were identified in ASD in our

study. Our results are in line with the observations that both SZ and

ASD displayed atypical temporal patterns, but the SZ showed more

pervasive abnormalities (Rabany et al., 2019). The domain level sFNR

abnormalities in ASD are mainly associated with sensorimotor and

cerebellar domains. The increased cerebral activity but decreased cer-

ebellar activity in ASD has been documented in literature (Mostofsky

et al., 2009; Müller, Kleinhans, Kemmotsu, Pierce, &

Courchesne, 2003). One possible explanation of such cerebral-

cerebellar dissociation can be the underconnectivity between those

brain regions (Mostofsky et al., 2009). Our findings suggest that the

more variable connectivity between these functional domains might

be another potential cause of such cerebral-cerebellar dissociation.

That is, given the more unstable communication between the cerebel-

lum and sensorimotor areas, their information exchange will be less

reliable. Therefore, it may be more efficient for ASD to utilize these

regions as independent processors, rather than having them working

together (Mostofsky et al., 2009). The results of ICN sFNR indicate

different patterns of abnormalities between SZ and ASD. Compared

with SZ, ASD has atypical reconfiguration on ICNs widespread

domains. We speculated that is because ASD influences more variety

of brain systems, which might be related to the more diverse social

skill, attention switching and communication problem in this disease

(Spek & Wouters, 2010).
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4.3 | Correlation between network reconfiguration
and cognition/symptoms

In this study, we characterized convergent and divergent brain abnor-

malities in SZ and ASD which are associated with the cognitive

decline and autistic symptoms. On the one hand, higher network

reconfiguration between sensorimotor and cerebellar domains in both

diseases is correlated with reasoning problem-solving from the SZ

dataset and ADOS from the ASD dataset. Although the sensory and

cerebellar domains were previously regarded to be involved in sensory

and motor functions, there is a wide recognition that they are also

associated with cognitive processing and behaviors (Cerliani

et al., 2015; Schmahmann & Caplan, 2006). Cerebellum, which was

considered as a coordinator of motor function for many years, has

been shown to also play an important role in cognitive functions and

emotion processing based on the evidence from anatomical, clinical,

and neuroimaging data (Schmahmann & Caplan, 2006;

Stoodley, 2012). The functional connectivity abnormalities in sensory

networks are also suggested to be linked to the difficulties in

inhibiting repetitive behaviors in ASD (Cerliani et al., 2015). Anatomi-

cal and physiological studies show that the cerebellum receives infor-

mation from the sensory systems, indicating a strong interaction

between the cerebellar and sensorimotor domains. SZ and ASD are

well-recognized as disorders with deficits in cognitive and sensory

processing (Javitt & Freedman, 2015; Sinclair, Oranje, Razak, Siegel, &

Schmid, 2017), representing by hyporesponsiveness or hyper-

responsiveness to sensory stimuli (Acevedo, Aron, Pospos, &

Jessen, 2018). Our results are compatible with the idea of relation-

ships between cognitive/sensory processing and sensory/cerebellum

abnormalities and provide further evidence supporting that the cere-

bellum and sensory systems are highly involved in cognition and

behaviors. We speculated that the impaired cognitive and sensory

processing in both diseases might be stem from deficits in sensory

gating in patients. These deficits appear to be rooted in the similar

unstable information flow between the cerebellum and sensorimotor

cortex, as reflected by greater network reconfiguration between these

functional domains.

On the other hand, sFNR at the ICN level shows divergence

between SZ and ASD. Although the reconfiguration of thalamus-

connectivity increases in both SZ and ASD, it is only correlated with

ADOS, not with the reasoning-problem-solving. Thalamus is a brain

hub that receives and delivers information from-to the whole-brain.

Atypical thalamocortical connectivity has been reported in both SZ

and ASD, suggesting an overall impairment of thalamic pathways in

two diseases (Andreasen, Paradiso, & O'Leary, 1998; Cerliani

et al., 2015). Our findings are consistent with these observations but

provide additional information that the thalamus alteration in SZ and

ASD might underly different mechanisms, given that it is only associ-

ated with autistic traits in ASD, not with cognitive deficits in SZ.

The identified correlations between network reconfiguration and

cognition/symptoms in this study are not voodoo due to the following

reasons. First, we did not calculate the mean of those high correla-

tions resulted from the nonindependent analysis, which is assumed as

the major biased analysis that produces high correlations (Vul et al.,

2009). Second, when performing the correlation analysis, we carefully

controlled for age, gender, site, and diagnosis to make sure the results

are not biased by these potential confounding effects. Our results

were also replicated by using only the adult subjects from the ABIDE1

dataset. Third, we repeated our analysis using different window sizes

(16–24 TRs) and the correlations were consistently observed within a

wide range of window sizes.

4.4 | Limitation and future direction

There are several limitations to this study. First, the drowsiness levels

of participants might a potential confounding effect on the group dif-

ferential functional network variability (Allen et al., 2018). Patients

with SZ and ASD may have different levels of vigilance during the

resting-state scan, which might introduce unpredictable influence on

our observations. Future studies can include cardiac, respiratory, and

eye-tracking techniques to monitor vigilance conditions during the

scans. The medication history would be another confounding effect of

the analysis. In our present study, we correlated the abnormal

dynamic features in SZ and chlorpromazine, an antipsychotic medica-

tion used to treat psychotic disorders such as SZ and there is no sig-

nificant correlation between them. More analysis on the influence of

medication would be favored in our future studies.

Second, our study used two independent datasets that are col-

lected from different databases. They have significantly different gen-

der proportions and age ranges. Although the analysis was carefully

performed on the patients and controls respectively, these con-

founding effects such as age, gender, and scanners might still poten-

tially influence the results. In future work, our results should be

validated by using the dataset with HCs, ASD patients, and SZ

patients' data matched by age, gender, and scanners. We can also

make direct comparisons between SZ and ASD, which will help to bet-

ter elucidate the relationship between them.

Third, our study only focused on the behavioral and cognitive def-

icits in ASD and SZ. In addition to these deficits, impairments in motor

function are also identified in ASD and SZ patients, which are typically

interpreted as secondary phenomena for diagnosis (Huston, Shakow, &

Riggs, 1937; Jansiewicz et al., 2006; Manschreck, 1981; Miller,

Chukoskie, Zinni, Townsend, & Trauner, 2014; Shakow &

Huston, 1936). Motor deficits and their relationship with abnormal

dynamic functional connectivity as well as the treatment effects could

be an interesting point and should be evaluated by future studies with

the motor performance recorded.

It can be also an interesting point to investigate the transient het-

erogeneity/homogeneity of functional connectivity within a functional

organization with atypical temporal patterns. In the future, by combin-

ing with the clustering-based analysis (Allen et al., 2014; Allen

et al., 2018; Fu et al., 2018; Fu et al., 2019), we can investigate

whether a functional organization with atypical sFNR is associated

with the transient increased or decreased functional connectivity

within this functional organization in a specific brain state.
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