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Novel plasma biomarkers improve 
discrimination of metabolic health 
independent of weight
Stephen Ellison1,4, Jawan W. Abdulrahim2,4, Lydia Coulter Kwee2, Nathan A. Bihlmeyer2, 
Neha Pagidipati3, Robert McGarrah2,3, James R. Bain2, William E. Kraus2,3 & Svati H. Shah2,3*

We sought to determine if novel plasma biomarkers improve traditionally defined metabolic health 
(MH) in predicting risk of cardiovascular disease (CVD) events irrespective of weight. Poor MH was 
defined in CATHGEN biorepository participants (n > 9300), a follow-up cohort (> 5600 days) comprising 
participants undergoing evaluation for possible ischemic heart disease. Lipoprotein subparticles, 
lipoprotein-insulin resistance (LP-IR), and GlycA were measured using NMR spectroscopy (n = 8385), 
while acylcarnitines and amino acids were measured using flow-injection, tandem mass spectrometry 
(n = 3592). Multivariable Cox proportional hazards models determined association of poor MH and 
plasma biomarkers with time-to-all-cause mortality or incident myocardial infarction. Low-density 
lipoprotein particle size and high-density lipoprotein, small and medium particle size (HMSP), 
GlycA, LP-IR, short-chain dicarboxylacylcarnitines (SCDA), and branched-chain amino acid plasma 
biomarkers were independently associated with CVD events after adjustment for traditionally 
defined MH in the overall cohort (p = 3.3 × 10−4–3.6 × 10−123), as well as within most of the individual 
BMI categories (p = 8.1 × 10−3–1.4 × 10−49). LP-IR, GlycA, HMSP, and SCDA improved metrics of model 
fit analyses beyond that of traditionally defined MH. We found that LP-IR, GlycA, HMSP, and SCDA 
improve traditionally defined MH models in prediction of adverse CVD events irrespective of BMI.

Claiming more lives in 2015 than the combined mortality of the second and third leading causes, cancer and 
chronic lower respiratory disease, respectively, cardiovascular disease (CVD) remains the leading cause of mor-
bidity and mortality within the United States1. Obesity, a known risk factor for a variety of negative health 
effects including CVD and adverse CVD-related events2, remains a major public health challenge; in fact, the 
age-adjusted percentage of adults greater than 20 years old with obesity in the US increased from 22.9% in 
1988–1994 to 37.8% in 2013–20143. The relationship between obesity and CVD has been partially attributed 
to the increased prevalence of intermediate risk factors including insulin resistance, type 2 diabetes mellitus 
(DM), dyslipidemia, and hypertension. However, the underpinnings remain incompletely elucidated and the 
heterogeneity of prevalence of these risk factors in obesity demonstrates the complexity of the relationship4.

Metabolic health (MH) has traditionally been defined by the presence or absence of a cluster of intermedi-
ate CVD risk factors known as metabolic syndrome5, while medical literature has also classically defined being 
overweight and having poor metabolic health as synonymous6. Metabolic syndrome is a known contributor to 
the epidemic of CVD7, however, a growing body of evidence suggests that weight is a poor metric of metabolic 
health4,8 even though obesity continues to be reported as a “major determinant of metabolic syndrome9”.

While intermediate CVD risk factors seen in metabolic syndrome are important, perhaps the most important 
metric for defining metabolic health should be its ability to associate with hard cardiovascular endpoints. Poor 
metabolic health as defined by metabolic syndrome is associated with increased risk of major adverse cardiovas-
cular events (MACE) in the overall population7, but evidence suggests the risk of MACE is not well correlated 
with BMI category10, often as a result of underestimating the risk of those patients who have components of 
metabolic syndrome but do not meet full criteria11,12.

In order to more effectively target interventions to improve metabolic health and prevent adverse CVD 
events, there is a need for better markers of metabolic health beyond traditionally defined MH that are predictive 
regardless of BMI. Plasma biomarkers reflect dysregulated systemic and tissue-specific metabolism, serving as 
downstream read-outs of genetic, transcriptomic and proteomic variation, and thus may serve as these better 
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markers. In fact, recent studies in our lab using metabolomic profiling have identified a number of biomark-
ers that are associated with obesity, insulin resistance, DM, CVD, and response to interventions, including 
low-density lipoprotein (LDL-P)13–15, lipoprotein-insulin resistance (LP-IR)16, GlycA17, sum of medium plus 
small high-density lipoprotein-particle subclass (HMSP)18, short-chain dicarboxylacylcarnitines (SCDA)19,20, 
and branched-chain amino acids (BCAA)20–22. Thus, we hypothesized that these novel plasma biomarkers can 
improve predictive capabilities for incident adverse CVD events across BMI categories and are better markers 
of metabolic health than traditional measures which often rely heavily on BMI.

Methods
CATHGEN biorepository participants (n > 9300), a follow-up cohort (> 5600 days) comprising participants 
undergoing evaluation for possible ischemic heart disease.

Study population.  Individuals undergoing cardiac catheterization between 2001 and 2010 for the indi-
cation of possible ischemic heart disease at Duke University Medical Center provided written consent and 
enrolled in the CATHGEN (CATHeterization GENetics) biorepository (n > 9300) as previously described23. 
For this follow-up cohort, longitudinal annual follow-up for recurrent events, hospitalizations, and vital status 
has been performed and confirmed through the National Death Index and the Social Security Death Index 
for > 5600 days from time of CATHGEN enrollment. CATHGEN is approved by the Duke University School of 
Medicine Institutional Review Board in accordance with the Declaration of Helsinki (Durham, NC, USA). Prior 
to administration of supplemental heparin, 50 mL of blood was collected at the time of arterial puncture from 
fasting, consented participants. Samples were immediately cooled to 4 °C, processed to separate plasma, and 
then frozen to − 80 °C. Clinical data including demographics, medical comorbidities, angiographic data, quanti-
tation of left ventricular ejection fraction (LVEF), and laboratory data were collected. For this study, participants 
were excluded if they were cardiac transplant recipients (n = 201), had undergone cardiac catheterization for the 
indication of pulmonary hypertension (n = 94), had a history of congenital heart disease (n = 27), had missing 
BMI (n = 1), had no longitudinal follow-up data (n = 8), had missing biomarker data (n = 115), or had incomplete 
data necessary for calculation of traditionally defined MH (n = 226).

Race was classified as white or non-white. LVEF was obtained by ventriculogram at the time of cardiac cath-
eterization or, if ventriculography was not performed, by an echocardiogram or cardiac magnetic resonance 
image (MRI). Coronary artery disease was determined by the physician performing the cardiac catheterization, 
and defined as present if a stenosis ≥ 50% was present in any major epicardial coronary vessel. For this study, 
the primary endpoint was defined as time-to-event for all-cause mortality or MI from CATHGEN enrollment.

Definition of BMI categories and traditionally defined poor MH.  Individuals were classified into 
three categories based on BMI at time of enrollment: lean (BMI < 25 kg/m2), overweight (BMI 25–30 kg/m2), or 
obese (BMI ≥ 30 kg/m2). Individuals were categorized as having traditionally defined poor MH if they had at least 
two out of four criteria for poor MH at baseline enrollment, and considered to have traditionally defined good 
MH if they met 0–1 criteria (modified slightly from the Adult Treatment Panel III (ATPIII) guidelines24 given 
lack of waist circumference data in CATHGEN): (1) fasting triglycerides (TG) ≥ 150 mg/dL, (2) HDL < 40 mg/
dL in men or < 50 mg/dL in women, (3) history of diabetes, insulin use, fasting glucose ≥ 100 mg/dL, or HOMA-
IR > 5.13, (4) blood pressure medication use or history of patient reported hypertension. Homeostatic model 
assessment of insulin resistance was calculated as follows: HOMA-IR = (fasting insulin in (µUI/mL) * glucose 
(mM)/22.521,25. A HOMA-IR threshold of > 5.13 (i.e., the 90th percentile) was selected and consistent with prior 
work21.

Metabolomic profiling.  Lipoprotein particle concentrations, sizes, and subclasses as well as GlycA, LP-IR, 
and creatinine were measured as previously described17,20,26. For this study, we used a composite sum of medium 
plus small HDL-particle subclass (diameters ≤ 9.4  nm, termed HMSP) because we have previously reported 
HMSP as more strongly associated with incident CVD events than individual HDL components17. GlycA is an 
inflammatory biomarker that consists of the NMR signal from the N-acetyl methyl groups of the N-acetylglu-
cosamine residues on enzymatically glycosylated acute phase proteins (primarily α1-antichymyotrypsin, α1-acid 
glycoprotein, haptoglobin, α1-antitrypsin, and transferrin)17. The LP-IR score is a measure of insulin resistance 
derived using the weighted sum of six NMR derived lipoprotein parameters16; the multiplex validated score 
ranges from 0 to 100 (where 100 is the most insulin resistant).

For measurement of acylcarnitines and amino acids, targeted metabolic profiling was performed using flow-
injection, tandem mass spectrometry (MS/MS) as previously reported27. Values below the lower limits of quan-
titation (LLOQ) were reported and analyzed as “0,” while plasma biomarkers with > 25% of values below the 
LLOQ were not analyzed.

Principal components analysis (PCA) with varimax rotation was used for reduction of metabolic data into 
identifiable factors, with those factors having an eigenvalue of ≥ 1.0 being retained, and plasma biomarkers with 
a factor load of ≥ 0.4 being reported as comprising a factor as previously described20,27,28. In our prior work, a 
PCA-derived factor composed of SCDA (glutaryl carnitine (C5-DC), 3-hydroxy-cis-5-octenoyl carnitine or 
hexenedioyl (C6:1-DC/C8:1-OH), octenedioyl carnitine (C8:1-DC), adipoyl carnitine (C6-DC), methylmalonyl 
carnitine or succinyl carnitine (Ci4-DC/C4-DC), 3-hydroxy-decanoyl carnitine or suberoyl carnitine (C10-OH/
C8-DC), 3-hydroxy-dodecanoyl carnitine or sebacoyl carnitine (C12-OH/C10-DC), and citrulline) is predictive 
of incident CVD events. Thus, that PCA factor was used in this study. Prior work has also shown a PCA-derived 
factor of BCAA and two aromatic amino acids is associated with CAD and adverse CVD events; thus, that 
PCA factor was also used in this study (composed of leucine/isoleucine, valine, phenylalanine, tyrosine, and 
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methionine)27. These PCA-factors for SCDA and BCAA are used as measures for the composite of SCDA and 
BCAA in this study.

Statistical methods.  Baseline clinical and demographic characteristics were compared between individ-
uals with and without traditionally defined poor MH using t-tests and chi-squared tests for continuous and 
categorical variables, respectively. Incident events were defined as all-cause mortality or MI (adjudicated by a 
central process within the Duke Databank for Cardiovascular Disease). Cox proportional hazards models were 
used to examine the independent and additive effects of plasma biomarkers on time-to-event, accounting for 
traditionally defined poor MH. Specifically, we tested three models for time-to-event, each adjusted for BMI 
category (lean, overweight, obese) in the full sample: (1) traditionally defined poor MH; (2) each individual 
plasma biomarker alone (LDL-P, LP-IR, GlycA, HMSP, BCAA, and SCDA), adjusted for traditionally defined 
poor MH; and (3) a full model inclusive of traditionally defined poor MH and all plasma biomarkers jointly. We 
also stratified the data by BMI category, and tested the same models to understand the potential heterogeneity 
of effects of the relationship of traditionally defined poor MH and novel plasma biomarkers across BMI catego-
ries. To evaluate medications as a confounder, we performed sensitivity analyses on a subset of individuals with 
available medication data, where time-to-event models were adjusted for statin use. Statin use was determined 
using EHR admission medications, i.e. an individual was considered to be on a statin if they were on a statin at 
admission either 365 days prior to or 10 days after the index cardiac catheterization. Finally, while our primary 
goal was to identify better markers of metabolic health compared to traditionally defined MH parameters (using 
association with incident events as the metric to determine “better”), in sensitivity analyses, we also created 
models that included traditional CVD risk factors (age, sex, race, smoking, ejection fraction, LDL-C, creatinine, 
family history of CAD, and presence/absence of CAD). The assumption of proportional hazards was tested for 
each model; when violated, we included a term in the model with a time-varying coefficient and compared the 
resulting inference to inference based on the original model. We used the Akaike Information Criterion (AIC) 
and area under the receiver operating characteristic curve (AUC) to compare model fit between different models 
and determine the incremental discriminative capability of novel plasma markers. AIC analyses were restricted 
to individuals who had data needed for all models of traditionally defined MH and for all biomarkers (n = 3222).

Results
Table 1 shows baseline characteristics of the overall study population (n = 8671 individuals) stratified by both 
metabolic health and BMI categories; 1921 (22.2%) individuals were classified as lean, 3068 individuals (35.4%) 
were overweight, and 3682 individuals (42.5%) were obese. Obese individuals tended to be younger than over-
weight or lean individuals (59.2 ± 11.2 years vs. 62.8 ± 11.7 years vs. 64.1 ± 13.1 years, respectively) and had greater 
prevalence of races other than white. Approximately 45% of obese and lean individuals were female compared 
with only 30% of overweight individuals.

Overall, there was a high prevalence of traditionally defined poor MH (71.3%). As expected, obese and 
overweight individuals had a greater prevalence of poor MH compared with lean individuals (81.5% vs. 69.1% 
vs. 55.3%), although the prevalence of poor MH was high even in the lean group. Concurrently, 18.5% of obese 
individuals were defined as having good MH by traditional parameters, further confirming the known disconnect 
between metabolic health and weight. The increasing prevalence of poor MH across increasing BMI categories 
was driven by all components of the metabolic health measure including higher prevalence of hypertension and 
diabetes, higher TG, and lower HDL. Interestingly, LDL was lower in poor MH individuals as compared with 
good MH individuals across each of the three BMI categories (96.0 vs. 102.9 mg/dL lean, 101.3 vs. 106.7 mg/dL 
overweight, 101.4 vs. 111.9 mg/dL obese, poor vs good MH individuals respectively).

In the overall cohort, individuals with poor metabolic health had a higher prevalence of a positive family 
history of CAD as compared with individuals with good metabolic health (34.4% vs. 29.9%, p < 0.001), which 
was also true in the overweight category (35.2% vs. 31.3%, p < 0.05). However, there were no significant differ-
ences in the lean and obese group.

Association of BMI and traditionally defined poor MH with incident CVD events.  There were 
3845 death or MI events (44.3% of individuals; 6.5% MI, 37.8% deaths) with a mean time to event of 2433 days 
(SD 1263 days). Traditionally defined poor MH was associated with time-to-death/MI in the overall cohort (HR 
1.38, 95% CI 1.28–1.49, p = 5.0 × 10−17, Fig. 1A). In the same models stratified by BMI category, traditionally 
defined poor MH was associated with a stepwise increase in HR for increasing BMI category: lean: HR 1.23, 
95% CI 1.08–1.39, p = 1.4 × 10−3; overweight: HR 1.45, 95% CI 1.28–1.64, p = 7.2 × 10−9; obese: HR 1.53, 95% CI 
1.32–1.77, p = 2.0 × 10−8. 1028 events occurred in the lean population (54% of lean individuals), with 411 events 
occurring in lean individuals with traditionally defined good MH.

Interestingly, after accounting for smoking history, obesity was protective for events, with higher BMI cat-
egories associated with a lower risk of events (overweight: HR: 0.71, 95% CI 0.65–0.77; obese: HR 0.65, 95% CI 
0.59–0.70, both compared to referent lean BMI category) (Fig. 1B).

Novel plasma biomarkers predict incident events independent of traditionally defined poor 
MH and across all BMI categories.  To understand the prognostic capability of novel plasma biomarkers 
independent of traditional metabolic health parameters, we analyzed Cox models for each plasma biomarker 
with time-to-death/MI, adjusting for traditionally defined poor MH (Table 2). In these analyses, each plasma 
biomarker was significantly associated with time-to-death/MI in the overall cohort; GlycA and SCDA were 
associated with decreased survival, while LDL-P, LP-IR, HMSP and BCAA were all associated with increased 
survival. In analyses stratified by BMI category, each individual plasma biomarker remained significantly pre-
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dictive of death/MI and with similar effect sizes across each BMI category except BCAA, which was associated 
with time-to-event only in obese individuals. Models for plasma biomarkers LDL-P, LP-IR, GlycA, and HMSP 
included 8385 individuals, and those for BCAA and SCDA included 3591 individuals.

Sensitivity analyses including individuals with medication data (N = 3,174 out of 8761 [36.2%]) were con-
ducted including statin use as a binary covariable (Supplementary Table 1). Overall, the magnitude and signifi-
cance of results remained the same in these analyses.

In a full Cox model inclusive of traditionally defined poor MH and all plasma biomarkers, each individual 
plasma biomarker remained independently significant with a similar magnitude of effect in the overall cohort 
(Supplementary Table 2). In similar full models stratified by BMI category, each plasma biomarker other than 
LP-IR and LDL-P also remained significantly predictive of events in one or more obesity categories, with GlycA, 
HMSP, and SCDA maintaining significance across all BMI categories (Supplementary Table 2).

The proportional hazards assumption was violated in our models for plasma biomarkers LP-IR, GlycA, and 
HMSP in the overall population and the BMI-stratified analyses. To examine the potential impact of non-propor-
tional hazards related to these plasma biomarkers, we conducted sensitivity analyses allowing for a time-varying 
coefficient in the model. All plasma biomarkers were still significantly associated with events in all tested models 
(p < 10−12). Estimates of the HR at various timepoints are given in Supplementary Table 3; these demonstrate 
that the magnitude of the estimated HR for each plasma biomarker increases when the time-varying coefficient 
is included in the model, compared to the results in Table 2. Therefore, for simplicity in the remaining analyses 
and with the understanding that this may lead to an underestimation of the effect sizes for LP-IR, GlycA, and 
HMSP, we utilized a Cox model without time-varying coefficients.

Novel plasma biomarkers independently predict events in full multivariable models addition-
ally adjusted for clinical risk factors.  While our primary goal was to understand novel plasma biomark-
ers as markers of metabolic health using event prediction as a benchmark for assessing importance, there are 
also other known clinical risk factors for incident CVD events that are not captured by models of traditionally 
defined poor MH; thus, we also created full multivariable models, including age, sex, race, LVEF, smoking, LDL-
C, creatinine, and presence/absence of CAD. In these models, which also adjusted for traditionally defined poor 
MH, each individual novel plasma biomarker except BCAA remained predictive of events in the overall popula-
tion (Table 2). In BMI category stratified analyses, LP-IR, GlycA, and HMSP plasma biomarkers were signifi-
cantly and consistently associated with incident CVD events across all BMI categories with a similar magnitude 

Table 1.   Baseline characteristics of the CATHGEN study population stratified by traditionally defined MH 
and BMI category. *p < 0.05, **p < 0.001 for comparison to good MH. All continuous variables reported as 
mean (SD). MH Traditionally defined metabolic health, BMI body mass index, HOMA-IR homeostatic model 
assessment-insulin resistance, LVEF left ventricular ejection fraction, CAD coronary artery disease, HDL high-
density lipoprotein, LDL low-density lipoprotein, TG triglycerides, MI myocardial infarction.

Stratified by BMI category

Overall Lean (BMI < 25) Overweight (BMI 25–30) Obese (BMI ≥ 30)

Good MH Poor MH Good MH Poor MH Good MH Poor MH Good MH Poor MH

n (%) 2486 (28.7) 6185 (71.3) 858 (44.7) 1063 (55.3) 947 (30.9) 2121 (69.1) 681 (18.5) 3001 (81.5)

Age (years) 61.4 (12.5) 61.6 (11.7) 62.5 (13.5) 65.4 (12.7)** 62.0 (11.8) 63.1 (11.6)* 59.1 (12.0) 59.3 (11.0)

Female (%) 40.7 37.3* 47.3 43.1** 30.8 29.7 46.3* 40.8*

BMI (kg/m2) 27.7 (6.2) 31.1 (7.4)** 22.2 (2.1) 22.6 (2.0)** 27.3 (1.4) 27.6 (1.4)** 35.2 (6.1) 36.7 (6.6)**

White (%) 78.8 73.2** 80.3 78.1 81.2 77.8* 73.6 68.2*

Hypertension (%) 42.4 90.3** 39.0 90.2** 43.7 88.3** 44.6 91.8**

Diabetes (%) 8.6 67.3** 8.0 57.9** 9.2 62.8** 8.5 73.7**

Glucose (mg/dL) 97.4 (21.8) 126.6 (53.7)** 95.7 (23.3) 117.6 (49.2)** 98.0 (20.2) 122.7 (50.0)** 98.7 (21.7) 132.5 (57.0)**

HOMA-IR 1.22 (1.30) 2.42 (2.65)** 0.84 (0.99) 1.50 (2.00)** 1.23 (1.34) 2.05 (2.25)** 1.70 (1.45) 3.03 (2.97)*

Smoking (%) 1112 (44.7) 2970 (48.0)* 412 (48.0) 530 (49.9) 422 (44.6) 1059 (49.9)* 278 (40.8) 1381 (46.0)*

LVEF% 57.0 (12.5) 54.4 (14.3)** 56.3 (13.0) 52.7 (15.9)** 57.4 (12.3) 54.2 (14.2)** 57.4 (12.3) 55.2 (13.8)**

CAD (%) 1229 (52.8) 4188 (70.2)** 384 (48.9) 740 (73.3)** 529 (58.6) 1541 (74.8)** 316 (49.5) 1907 (65.9)**

Family history of CAD 
(%) 744 (29.9) 2128 (34.4)** 247 (28.8) 343 (32.3) 284 (30.0) 730 (34.4)* 213 (31.3) 1055 (35.2)

HDL (mg/dL) 54.4 (18.0) 41.6 (13.0)** 59.5 (21.4) 44.3 (15.0)** 52.3 (15.7) 41.5 (12.5)** 50.9 (14.4) 40.8 (12.4)**

LDL (mg/dL) 106.7 (36.5) 100.4 (40.9)** 102.9 (34.9) 96.0 (39.8)* 106.7 (37.1) 101.3 (40.6)** 111.9 (37.2) 101.4 (41.3)**

Creatinine (mg/dL) 1.08 (1.03) 1.27 (1.34)** 1.11 (1.38) 1.36 (1.66)** 1.08 (0.80) 1.30 (1.37)** 1.06 (0.77) 1.22 (1.18)**

TG (mg/dL) 127.1 (92.5) 189.2 (193.8)** 106.9 (68.5) 151.1 (110.0)** 133.9 (92.9) 176.4 (141.8)** 144.1 (113.0) 211.0 (239.5)**

Follow-up

MI (%) 110 (4.4) 453 (7.3)** 36 (4.2) 59 (5.6) 46 (4.9) 177 (8.3)** 28 (4.1) 217 (7.2)*

Death (%) 883 (35.5) 2710 (43.8)** 398 (46.4) 594 (55.9)** 300 (31.7) 935 (44.1)** 185 (27.2) 1181 (39.4)**

Time to death/MI (days) 2526 (1278) 2450 (1307)** 2305 (1287) 2231(1341)** 2539 (1228) 2438 (1268)** 2630 (1185) 2458 (1239)**
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Figure 1.   Unadjusted Kaplan–Meier plots for relationship between time-to-death or incident MI and metabolic 
health (A) and BMI category (B).

Table 2.   Hazard ratios, confidence intervals, and p values for death or incident MI prediction for traditionally 
defined poor MH and novel plasma biomarkers in the overall cohort and stratified by BMI category. *MH 
models included 8671 samples; LDL-P, LP-IR, GlycA, and HMSP models included 8385 samples; BCAA and 
SCDA models included 3591 samples. **Clinical covariates include: age, sex, race, LVEF, CAD, family history 
of CAD, smoking, LDL-C, and creatinine.

Model*

Overall cohort Lean Overweight Obese

HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value HR (95% CI) p value

Unadjusted model

MH 1.38 (1.28–1.49) 4.5 × 10−17 1.23 (1.08–1.39) 1.4 × 10−3 1.45 (1.28–1.64) 7.2 × 10−9 1.53 (1.32–1.77) 2.0 × 10−8

MH + LDL-P 0.91 (0.88–0.94) 2.5 × 10−8 0.91 (0.85–0.97) 5.3 × 10−3 0.88 (0.83–0.94) 3.3 × 10−5 0.93 (0.88–0.98) 8.1 × 10−3

MH + LP-IR 0.78 (0.75–0.81) 3.1 × 10−40 0.75 (0.70–0.82) 3.3 × 10−12 0.79 (0.74–0.84) 2.5 × 10−14 0.79 (0.75–0.83) 1.3 × 10−17

MH + GlycA 1.27 (1.24–1.31) 2.9 × 10−59 1.28 (1.21–1.35) 6.2 × 10−19 1.32 (1.26–1.39) 2.8 × 10−27 1.23 (1.17–1.29) 2.4 × 10−16

MH + HMSP 0.66 (0.64–0.68) 3.6 × 10−123 0.67 (0.63–0.72) 9.6 × 10−34 0.63 (0.60–0.67) 1.4 × 10−49 0.67 (0.63–0.71) 1.1 × 10−44

MH + BCAA​ 0.91 (0.86–0.96) 3.3 × 10−4 0.94 (0.85–1.04) 0.23 0.93 (0.85–1.02) 0.13 0.87 (0.80–0.94) 6.3 × 10−4

MH + SCDAs 1.25 (1.20–1.30) 5.1 × 10−29 1.15 (1.06–1.24) 6.9 × 10−4 1.3 (1.23–1.38) 3.7 × 10−19 1.31 (1.22–1.41) 2.5 × 10−13

Fully adjusted model**

MH + clinical covari-
ates** 1.21 (1.11–1.31) 5.3 × 10−6 1.04 (0.9–1.19) 0.61 1.22 (1.07–1.40) 3.6 × 10−3 1.53 (1.3–1.81) 4.4 × 10−7

MH + LDL-P + clini-
cal covariates** 0.8 (0.73–0.87) 7.2 × 10−7 0.72 (0.6–0.87) 4.6 × 10−4 0.71 (0.61–0.83) 1.5 × 10−5 0.97 (0.84–1.12) 0.66

MH + LP-IR + clini-
cal covariates** 0.83 (0.80–0.87) 1.1 × 10−18 0.8 (0.73–0.87) 8.7 × 10−7 0.84 (0.78–0.90) 4.6 × 10−7 0.84 (0.78–0.89) 3.2 × 10−8

MH + GlycA + clini-
cal covariates** 1.27 (1.23–1.31) 1.6 × 10−49 1.25 (1.18–1.33) 9.1 × 10−14 1.3 (1.24–1.38) 1.1 × 10−21 1.24 (1.18–1.31) 2.0 × 10−16

MH + HMSP + clini-
cal covariates** 0.71 (0.68–0.74) 1.4 × 10−70 0.68 (0.63–0.73) 2.7 × 10−24 0.71 (0.66–0.76) 2.2 × 10−25 0.72 (0.68–0.77) 4.0 × 10−25

MH + BCAA + clini-
cal covariates** 0.94 (0.89–1.00) 0.051 0.92 (0.81–1.03) 0.14 0.97 (0.88–1.08) 0.62 0.95 (0.87–1.04) 0.29

MH + SCDAs + clini-
cal covariates** 1.24 (1.14–1.34) 9.2 × 10−7 1.23 (1.06–1.41) 4.7 × 10−3 1.36 (1.19–1.55) 6.2 × 10−6 1.05 (0.87–1.28) 0.61
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of effect in each category, suggesting they are important biomarkers regardless of BMI. Traditionally defined 
poor MH remained predictive overall and in the overweight and obese categories, but was not significant in its 
prediction of events in the lean group (Table 2).

In full multivariable models inclusive of traditionally defined poor MH, CVD clinical risk factors, and all 
plasma biomarkers, four plasma biomarkers were significant in the overall cohort: GlycA (HR 1.23, 95% CI 
1.17–1.29, p = 3.6 × 10−18); HMSP (HR 0.76, 95% CI 0.71–0.81, p = 2.0 × 10−18); BCAA (HR 0.93, 95% CI 0.88–0.99, 
p = 0.01); and SCDA (HR 1.17, 95% CI 1.08–1.28, p = 2.7 × 10−4). In analyses stratified by BMI category, only 
GlycA and HMSP remained significantly predictive of events across all BMI categories (Supplementary Table 4).

Novel plasma biomarkers incrementally improve CVD event prediction.  To further assess the 
incremental predictive capabilities of each novel plasma biomarker, we compared models using the AIC and 
AUC. These models demonstrated modest improvement of model fit with addition of any individual novel 
plasma biomarker to traditionally defined poor MH in the overall cohort: traditionally defined poor MH (AIC 
20,240, AUC 0.58), LDL-P (AIC 20,222, AUC 0.59), LP-IR (AIC 20,179, AUC 0.61), GlycA (AIC 20,162, AUC 
0.63), HMSP (AIC 20,051, AUC 0.64), BCAA (AIC 20,232, AUC 0.61), SCDA (AIC 20,155, AUC 0.62) (Table 3). 
BMI stratified categories showed similar improvement of model fit with addition of any individual novel plasma 
biomarker other than LDL-P (Table 3). When all plasma biomarkers are included, there is greater improvement 
in model fit than with any single variable alone in the overall cohort (AIC 19,919, AUC 0.69) and within each 
BMI category (Table 3).

In models inclusive of clinical covariates, we found modest improvement of model performance beyond that 
of traditionally defined poor MH, with further improvement in performance with addition of any individual 
plasma biomarker other than LDL-P in the overall cohort: traditionally defined poor MH (AIC 19,674, AUC 
0.74), LDL-P (AIC 19,673, AUC 0.74), LP-IR (AIC 19,658, AUC 0.74), GlycA (AIC 19,598, AUC 0.75), HMSP 
(AIC 19,560, AUC 0.75), BCAA (AIC 19,672, AUC 0.75), SCDA (AIC 19,649, AUC 0.75) (Table 3). BMI strati-
fied categories showed improvement of model fit with addition of GlycA, HMSP, BCAA, and SCDA. Similar to 
prior, the greatest improvement in model performance occurs in the model inclusive of traditionally defined 
poor MH, all plasma biomarkers, and clinical covariates (AIC 19,481, AUC 0.77) (Table 3).

We also explored the potential association between the plasma biomarkers and family history of CAD (Sup-
plementary Table 5) and found significant correlations between LP-IR (β = 0.20, p = 1.18 × 10−17), LDLP (β = 0.07, 
p = 0.002) and HMSP (β = 0.12, p = 7.49 × 10−7) in the overall cohort. In the lean group, only LP-IR (β = 0.25, 
p = 1.82 × 10−8) and HMSP (β = 0.16, p = 0.002) were associated with family history of CAD.

Discussion
In this large cardiovascular cohort study, we demonstrate that novel plasma biomarkers discovered through 
prior studies of CVD may serve as better markers of poor metabolic health as determined by their ability to 
predict risk of adverse cardiovascular events across all BMI categories, independent of, and incremental to, tra-
ditionally defined poor MH parameters. Our most striking results include: (1) traditionally defined poor MH 

Table 3.   Comparison of model fit characteristics overall and stratified by BMI category. *AIC analyses were 
restricted to individuals who had data needed for all models of traditionally defined MH and for all biomarkers 
(n = 3222). Clinical covariates include: age, sex, race, LVEF, CAD, family history of CAD, smoking, LDL-C, and 
creatinine.

Modela

Overall Lean Overweight Obese

AIC* AUC​ AIC* AUC​ AIC* AUC​ AIC* AUC​

Without clinical covariates

MH 20,240 0.58 4343 0.55 5846 0.56 7038 0.54

MH + LDL-P 20,222 0.59 4343 0.55 5837 0.57 7032 0.55

MH + LP-IR 20,179 0.61 4332 0.59 5831 0.60 7006 0.59

MH + GlycA 20,162 0.63 4315 0.62 5821 0.63 7016 0.60

MH + HMSP 20,051 0.64 4300 0.63 5782 0.65 6952 0.62

MH + BCAA​ 20,232 0.61 4344 0.57 5846 0.61 7032 0.59

MH + SCDA 20,155 0.62 4329 0.57 5807 0.62 7010 0.59

MH + all plasma biomarkers 19,919 0.69 4269 0.68 5745 0.69 6907 0.67

With clinical covariates*

MH + clinical covariates 19,676 0.75 4241 0.71 5645 0.76 6780 0.75

MH + LDL-P + clinical covariates 19,675 0.75 4243 0.72 5643 0.76 6782 0.75

MH + LP-IR + clinical covariates 19,660 0.75 4239 0.72 5644 0.76 6771 0.75

MH + GlycA + clinical covariates 19,599 0.76 4210 0.74 5619 0.78 6761 0.76

MH + HMSP + clinical covariates 19,561 0.76 4207 0.73 5613 0.77 6728 0.76

MH + BCAA + clinical covariates 19,674 0.75 4241 0.72 5647 0.76 6781 0.75

MH + SCDA + clinical covariates 19,651 0.75 4236 0.72 5630 0.76 6781 0.75

MH + all plasma biomarkers + clinical covariates 19,482 0.77 4180 0.75 5588 0.78 6711 0.77



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21365  | https://doi.org/10.1038/s41598-020-78478-w

www.nature.com/scientificreports/

does not predict CVD events in lean individuals in full multivariable models, but the majority of novel plasma 
biomarkers do; (2) GlycA and HMSP plasma biomarkers had strong predictive capabilities in the overall cohort 
and across all BMI categories even after adjusting for traditionally defined poor MH and other clinical risk fac-
tors, and with the greatest improvements in AUC on top of traditionally defined poor MH; (3) adding all novel 
plasma biomarkers to traditionally defined poor MH improved the AUC from 0.58 to 0.69 in the overall cohort, 
and with a similar magnitude of improvement in lean and overweight BMI categories where metabolic health 
is perhaps the most heterogeneous.

In our study, 55.3% of lean individuals met criteria for poor MH, while 18.5% of obese individuals met cri-
teria for having good MH. Furthermore, of the 3845 total events, 24.3% occurred in individuals with good MH 
and 26.7% occurred in lean individuals. These highlight the disconnect between traditionally defined poor MH, 
weight, and risk of morbidity and mortality.

We used hard outcomes of death or incident MI to determine utility of traditional and novel risk factors. 
Overall, all of the novel plasma biomarkers assessed in this study other than BCAA were found to be predictive of 
incident CVD events, even after adjusting for traditionally defined poor MH and additional clinical risk factors. 
This predictive capability held true in analyses stratified by BMI category for plasma biomarkers LP-IR, GlycA, 
and HMSP. Furthermore, GlycA and HMSP were strongly predictive of events in the lean group, which is classi-
cally felt to be of lesser adverse cardiovascular event risk but may actually have a higher risk. Importantly, novel 
plasma biomarkers also improved model fit on top of traditionally defined poor MH and additional clinical risk 
factors, suggesting that they have incremental risk-predictive capabilities beyond what is easily assessed clinically.

Serum concentrations of GlycA, a novel inflammatory biomarker that is an aggregate measure of enzymati-
cally glycosylated, acute-phase proteins, have been shown to independently predict incident CVD events in the 
MESA study (HR 1.33, 95% CI 1.24–1.42) and in the JUPITER trial (HR 1.33, 95% CI 1.21–1.45)29,30, and with 
presence and extent of CAD17. The biologic relevance of elevations in GlycA seen in these studies may be due to 
effects on glycosylation of HDL components resulting in impaired function17.

In full multivariate models, a factor composed of SCDA was robust for prediction of death or MI in the overall 
cohort as well as in lean and overweight individuals. These plasma biomarkers have been shown to be associated 
with increased risk of adverse CVD related events in the CATHGEN cohort19,20, and appear to be reporting on 
dysregulated endoplasmic reticulum stress28,31.

The role of HDL cholesterol in CVD is complex; studies have demonstrated an inverse relationship of HDL-C 
with CVD, but pharmacologic intervention to increase HDL-C have failed to show improved outcomes32. A 
growing number of studies, however, are showing that NMR-derived lipoprotein particle number more closely 
correlates with risk of adverse CVD outcomes than traditional LDL-C and HDL-C measures18,33. The cardio-
protective effects of HMSP seen in the current study likely depend on specific HDL subparticle characteristics 
that are not well accounted for by traditional HDL-C, which is preferentially affected by larger, cholesterol rich 
particles32; similar to that seen in a recent study showing that the sum of medium- and small-size HDL particles 
was the strongest predictor of mortality18.

In the current study, higher LDL-P levels were protective against death or MI. From prior work with the 
CATHGEN population, we have seen evidence of a similar lipid paradox13–15,20. The etiology of this phenomenon 
remains incompletely elucidated and may be related to medication use (e.g. patients with higher LDL levels are 
treated earlier and for longer with statins) but new evidence might suggest that nutritional status plays a key 
role34.

Unexpectedly, while HOMA-IR was higher with increasing BMI, higher LP-IR levels were protective of death 
or MI. This might be related to the observed obesity paradox in our secondary prevention dataset, i.e. because 
obesity is protective of adverse outcomes and obese individuals have higher HOMA-IR.

In addition, individuals with poor metabolic health had a higher prevalence of a positive family history of 
CAD as compared with individuals with good metabolic health which was also true in the overweight category. 
However, there were no significant differences in the lean and obese group, suggesting that this more simple 
screening tool would not be sufficient for defining CVD risk. Moreover, we found correlations between LP-IR, 
LDLP and HMSP and family history of CAD in the overall cohort. In the lean group, only LP-IR and HMSP 
were associated with family history of CAD. This is as predicted given the known heritability of these markers.

Regarding the clinical utility of our findings and testing for these plasma biomarkers, it is relatively quick, 
reproducible, and of course, by their nature, non-invasive35. Also, mass spectrometry is currently already in use 
for new-born screening and more severe metabolic phenotypes (e.g. phenylketonuria, maple-syrup urine dis-
ease, etc.). Although the use of some of these plasma biomarkers is still in its infancy, there is a growing body of 
evidence that supports their clinical utility in cardiovascular disease35. Of note, the NMR-derived lipoproteins 
are commonly used in clinical practice already.

Several strengths of our study deserve mention including the relatively large sample size, availability and 
length of follow-up data for hard CVD outcomes, fasting samples collected under a rigorous and similar protocol, 
and the breadth of clinical variables available. Importantly, many prior studies of metabolic health measures do 
not have a “gold standard” to tag improvement of models to; the use of a clinically relevant outcome of death or 
MI is an important metric that we were able to use to compare models. However, since this is a cross-sectional, 
observational study, we were unable to account for chronic dietary and environmental variations in plasma 
biomarker levels, nor did we have sufficient medication data to enable adjustment for medication use (although 
previous work showed such adjustments had minimal influence on plasma biomarker levels)27. Finally, although 
the model of metabolic health improved with the addition of clinical covariates to the plasma biomarkers, the 
increase was modest, which suggests that clinical covariates contribute more to the models rather than the 
biomarkers. However, we note that the greatest improvement was seen in the lean group, a group that is often 
dismissed clinically as having low CVD risk, and as such, biomarkers may have the greatest clinical utility for 
identifying higher risk individuals in this group.
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In conclusion, with growing evidence of the discordance between metabolic health and BMI, it is crucial to 
improve clinical models for early recognition and characterization of individuals at high risk for CVD events, 
and thus at greatest need for early intensive therapeutic intervention. We found plasma biomarkers had the 
potential to improve clinical models, to better classify overall metabolic health, and to independently predict 
events, irrespective of obesity stratum. This was especially striking given that traditionally defined MH models 
were unable to predict events in the lean group, while novel plasma biomarkers were successful in prediction 
of events; this suggests that novel plasma biomarkers may be better markers of metabolic health in this patient 
population than current standard clinical models.
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