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Abstract
Purpose Estimation of the amount of waste to be generated in the coming years is critical for the evaluation of existing waste
treatment service capacities. This study was conducted to evaluate the performance of various mathematical modelingmethods to
forecast medical waste generation of Istanbul, the largest city in Turkey.
Methods Autoregressive Integrated Moving Average (ARIMA), Support Vector Regression (SVR), Grey Modeling (1,1) and
Linear Regression (LR) analysis were used to estimate annual medical waste generation from 2018 to 2023. A 23-year data from
1995 to 2017 provided from the Istanbul Metropolitan Municipality’s affiliated environmental company ISTAC Company were
utilized to examine the forecasting accuracy of methods. Different performance measures such as mean absolute deviation
(MAD), mean absolute percentage error (MAPE), root mean square error (RMSE) and coefficient of determination (R2) were
used to evaluate the performance of these models.
Results ARIMA (0,1,2) model with the lowest RMSE (763.6852), MAD (588.4712), and MAPE (11.7595) values and the
highest R2 (0.9888) value showed a superior prediction performance compared to SVR, Grey Modeling (1,1), and LR analysis.
The results obtained from the models indicated that the total amount of annual medical waste to be generated will increase from
about 26,400 tons in 2017 to 35,600 tons in 2023.
Conclusions ARIMA (0,1,2) model developed in this study can help decision-makers to take better measures and develop
policies regarding waste management practices in the future.
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Introduction

The rapid increase in population and industrialization, and
consequently developing economy and urban growth have
led to an increase in the number of hospitals, clinics, and other
health facilities [1]. This increase in the number of health
institutions causes large amounts of medical waste (MW).
Although MW constitutes a small part of all waste, it is haz-
ardous in terms of its potential for damaging living things. It

can cause several health problems such as infectious diseases.
For example, equipment such as syringes or needles used for
life-threatening diseases such as typhoid, cholera, hepatitis,
and AIDS can lead to the spread of these epidemic diseases.

According to theWorld Health Organization (WHO), 15% of
MW is accepted as hazardous waste that must be handled care-
fully and need to be managed properly [2, 3]. The proper treat-
ment and management of MW are critical for human health and
the environment [4–7]. Inefficient and inappropriate MW man-
agement can cause serious environmental pollution such as un-
pleasant odor, and growth and multiplication of various micro-
organisms [8]. Thus, MW must be properly processed and dis-
posed of in order to prevent potential risks. In this context, plan-
ning the future capacity of the treatment facilities and the deter-
mination of proper strategies are very important for managing the
amount of waste to be generated. This can only be achieved with
the estimation of the MW amount that will occur in the future.
Also, the accurate estimation of theMWgeneration can be useful
in the planning of recycling, storage, transportation, and disposal
operation capacities.
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In previous studies, various mathematical tools such as time
series models, data mining, and artificial intelligence techniques
were used to estimate the amount of MW to be generated in the
future (Table 1). For example, in order to determine the genera-
tion rates and physical properties of MW, Bdour et al. (2007)
evaluated the quantity and quality of waste produced in the Irbid
city of Jordan. The statistical analysis of the study demonstrated
that the number of bed-patient (occupancy rate) at the hospital,
kind and size of departments, and type of specialization are the
most important factors affecting the generation rates [9]. Sabour
et al. (2007) developed a mathematical model to predict the
composition and generation of hospital waste using the number
of hospitals and the number of active beds in Iran [10].
Jahandideh et al. (2009) used the artificial neural network
(ANN) and multiple linear regression (MLR) models to predict
theMWgeneration rate in Iran [11]. Eleyan et al. (2013) used the
System Dynamics Model for hospital waste characterization and

generation using data from Jenin District hospitals, Palestine
[12]. Idowu et al. (2013) evaluated the management practices
for MW in selected healthcare facilities in Lagos, Nigeria. The
results of the study indicated that the current MW management
practices and strategies in Lagos are weak. As a result of the
study, they stated that low volume MW was generated from
health institutions in Lagos and this was probably due to the poor
management of MW streams [13]. Karpušenkaitė et al. (2016)
evaluated and compared the performance of partial least squares,
support vector machines, ANN, MLR and four non-parametric
regression methods to estimate Lithuania’s annual MW genera-
tion [14]. Tesfahun et al. (2016) developed predictive models for
the estimation of a healthcare waste generation rate [15]. Al-
Khatib et al. (2016) developed three different MLR models to
estimate the daily total hospital waste, general hospital waste, and
total hazardous waste in Nablus City using the number of inpa-
tients, number of total patients, and number of beds [16].

Table 1 The performance of the previous studies on the prediction of MW generation

Author(s) Province(s)/
Country

Methods Best Model Performance (R, R2)

Bdour et al. [9] Irbid, Jordan MLR R2 = 0.918

Sabour et al. [10] Gilan, Iran Linear Regression Not available

Jahandideh et al. [11] Fars, Iran MLR, ANN R2 = 0.990 (ANN)

Eleyan et al. [12] Jenin, Palestine System Dynamics Models Not available

Idowu et al. [13] Lagos, Nigeria MLR Models R2 = 0.998

Karpušenkaite et al. [14] Lithuania ANN, MLR, SVM, and different
non-parametric regression methods

R2 = 0.905 (with GANPR using
regional dataset)

R2 = 0.986 (with SSNPR using long annual
dataset)

Tesfahun et al. [15] Ethiopian Mathematical predictive models
from the available literatures.

R2 = 0.965 (with the number of inpatients)
R2 = 0.424 (with the number of outpatients)

Al-Khatib et al. [16] Nablus, Palestine MLR R2 = 0.984

Chauhan and Singh [17] Uttarakhand, India ARIMA models R2 = 0.832 with ARMA(1,1) model

Minoglou and Komilis
[18]

41 Countries MLR and Principal Component
Analysis (PCA)

R2 = 0.8473

Adamović et al. [19] European
countries

General Regression Neural Network
(GRNNs) Models

R2 = 0.999 (for the prediction of chemical
hazardous waste)

R2 = 0.975 (for healthcare and biological
hazardous waste)

Karpušenkaitė et al. [20] Lithuania Time Series Moving Average, Time Series Holt’s
Exponential Smoothing, Hybrid Model

Not available

Thakur and Ramesh [21] Uttarakhand, India MLR, ANN, and Polynomial
Regression

R2 = 0.954 (ANN for total waste)

Golbaz et al. [22] Karaj, Iran MLR and several Neuron and Kernel based
machine
earning methods

R2 = 0.82 – 0.86 (Kernel-based models)
R2 = 0.68 – 0.74
(Neuron-based models)

Hao et al. [23] Shanghai, China GM (1,1), Triple Exponential Smoothing (TES),
Particle Swarm Optimization (PSO)
Optimized Back
Propagation (BP) Neural Network,
and Hybrid Model

Not available

Çetinkaya et al. [24] Aksaray, Turkey MLR R2 = 0.979

*SSNPR: Smoothing splines non-parametric regression

*GANPR: Generalized additive non-parametric regression
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Chauhan and Singh (2017) tested different autoregressive inte-
grated moving average (ARIMA) models to predict MW gener-
ation of the Garhwal region of Uttarakhand, India. Based on the
results based on statistical parameters, they realized that the
ARMA(1,1) model is the best model for estimation MW [17].
Minoglou and Komilis (2018) investigated the correlation be-
tween socio-economic factors and the MW generation rate using
theMLR and principal component analysis [18]. Adamovic et al.
(2018) used general regression neural network models to esti-
mate the annual amounts of dangerous chemicals and healthcare
waste for various European Union countries. They utilized vari-
ous social, economic, industrial and agricultural indicators as
input variables [19]. Karpušenkaitė et al. (2018) proposed a
time-series-based hybrid mathematical model to predict the an-
nual automotive waste amount, including hazardous types [20].
Thakur and Ramesh (2018) investigated the composition and
production rates of biomedical waste usingMLR andANN tech-
niques in selected hospitals in Uttarakhand, India. As a result of
the analysis, they noticed that the amount ofMWdepends on the
seasons of the year [21]. Golbaz et al. (2019) used MLR and
several Neuron-and Kernel-based machine learning methods
were employed to the estimation of MW generation rates of
Karajmetropolis. According to the results of the study, they found
that the performance of Neuron and Kernel-based machine learn-
ing methods is satisfactory and the number of staff and hospital
ownership variables are the most effective variables in predicting
the MW generation rate [22]. Hao et al. (2019) addressed the
problem of predicting multiple factors for the recycling of
healthcare waste in Shanghai, China. In order to improve the
accuracy of healthcare waste recovery prediction, they proposed
a hybrid neural network based on the grey model, triple expo-
nential smoothing, and particle swarm optimization [23].
Çetinkaya et al. (2019) developed a regression model to esti-
mate the amount of MW generated by the hospitals in Aksaray
city, Turkey. They used the number of patients in three different
age classes (0–15; 15–65; 65 +) and gross domestic product per
capita as input variables [24]. Al-Khatib et al. (2020) analyzed
and evaluated the current status of MW management in Jenin
city in light of MW control regulations proposed by the WHO.
The results of the study showed that the average hazardous
MW generation rate range from 0.54 to 1.82 kg/bed/day with
a weighted average of 0.78 kg/bed/day [25].

Megacity Istanbul is the main economy and social activity
center of Turkey. It is also the most populous city with a popu-
lation of over 15 million. In Istanbul, MW is collected regularly
from around different points of the city by ISTAC company.
Approximately 22,000 tons ofMWhave collected annually with
the latest technology equipment and special garments. In addi-
tion, waste with epidemic disease risks such as infectious and
pathological is eliminated by incineration instead of sterilization.
It is important to accurate estimation of the amount of MW to
effectively manage this hazardous waste generated to
determine appropriate disposal methods and to improve waste

management [26]. Thus, the main aim of this study is to apply
and compare different techniques to achieve an accurate estima-
tion of the MW amount will be generated in the near future of
Istanbul, Turkey. For this purpose, Grey Modeling (1,1),
Autoregressive Integrated Moving Average (ARIMA), and
Support Vector Regression (SVR)models were used as powerful
forecasting techniques. Few studies have focused on regional
health waste management in Turkey. Istanbul with an increasing
population must be investigated closely due to possible critical
impacts on both health and the environment. However, most of
the studies on estimating the generated MW quantities in the
literature are based on temporary surveys, questionnaires and
field works [9, 12, 21, 25]. This can cause differences in estimat-
ed MW generation rates. Therefore, in order to fulfill a more
accurate, robust, and consistent forecasting study, it is necessary
to focus on the actual quantities of MW generated in hospitals
and healthcare institutions rather than data obtained from sur-
veys, questionnaires. In this context, a 23-year historical dataset
for the MW amount collected from about 9000 healthcare points
such as hospitals and healthcare institutions in Istanbul was used.

Materials and methods

Data collection

A 23-year MW data was supplied from ISTAC Company, which
is one of the leading waste management companies in Turkey
(www.istac.com.tr). ISTAC is the solely responsible company
for the MW collection and waste treatment company in Istanbul.
It provides services to approximately 307 health institutions and
8000 MW health points in Istanbul. The trend of MW data
generated between the years 1995–2017 is shown in Fig. 1. It is
clear that the amount of MW has increased consistently.

Grey modeling (1,1)

Grey system theory (GST), an interdisciplinary approach, was
introduced by Deng in the early 1980s as an alternative method
to digitize uncertainty [27]. GST is designed to examine uncer-
tain systems that focus on incomplete information caused by
small samples [28, 29]. The GST is classified according to the
“colors” of the systems. Black indicates unknown information
and white indicates known information, while grey indicates
partially known information. GST has been successfully applied
in many areas such as agriculture, industry, traffic, economics,
and engineering and etc. Several grey prediction models have
been developed in previous studies. GM (1,1) is the basis of other
grey predictionmodels and has a different principle than classical
methods for estimating time series. In the GM (1,1) model, a
system is easily identified by a first-order differential equation,
and the template is updated whenever new data is available. GM
(1,1) model has many advantages such as high accuracy,
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simplicity and easy calculation even in small datasets (usually 5–
10 samples). Therefore, it can be used for short-term prediction
activities. However, like other forecasting models, the GM (1,1)
model also has some limitations. The GM (1,1) model has a
prerequisite for modeling that follows themonotonic exponential
prediction approach [30]. In addition, it models and predicts all
data, but ignores new information and cannot accurately reflect
the characteristics of the current situation. Also, the model can
only be used for positive values and time series must have the
same frequency as daily, weekly, monthly and yearly.

There are four main steps for the calculation of the GM
(1,1) model. A brief summary of the GM (1,1) model is rep-
resented below:

Step 1. The positive original data sequence and accumu-
lated generating operation (AGO) time series with n sam-
ples are given in Eq. (1,2):

x0 ¼ x01; x
0
2; x

0
3;…; x0n

� �
; x0t ; t ¼ 1; 2; 3;…; n; n≥4
� � ð1Þ

x1 ¼ x11; x
1
2; x

1
3;…; x1n

� �
; x1t ; t ¼ 1; 2; 3;…; n; n≥4
� �

: ð2Þ

Here,

x1k ¼ ∑k
t¼1x

0
t ; t; k ¼ 1; 2; 3;…; n

� � ð3Þ

Step 2. A first -order grey differential equation is formed
to obtain the GM (1,1) forecasting model:

x0t þ aZ1
t ¼ b; t ¼ 2; 3;… ð4Þ

where,

Z1
t ¼ θx1t þ 1−θð Þx1t−1 t ¼ 2; 3;…:; n ð5Þ

where t is time point, θ is horizontal adjustment coefficient,
which takes a value between 0 and 1. Choosing the right value
of θ minimizes the estimation error. In Eq. (6), a is the devel-
opment coefficient, b is the control variable. These are two
parameters of the GM (1,1) model, and they can be predicted
by using the least square method given below:

A ¼ a
b

� �
¼ BT B

� �−1
BTYn ð6Þ

where,

B ¼
−z12 1
−z13 1
… 1
−z1n 1

2
664

3
775; Y ¼ BA ¼

x02
x03
…
x0n

2
664

3
775 ð7Þ

The whitenization is shown in Eq. (8):

dx1t
dt

þ ax1t ¼ b ð8Þ

Step 3:After calculating the a and b parameter values, the
predicted values of the accumulated sequence are obtain-
ed by using Eq. (9):

bx1tþ1¼ x01−
b
a

� �
e−at þ b

a
; t ¼ 0; 1; 2;… ð9Þ

where bx denotes AGO prediction of x(t).
Step 4: In order to reverse the forecasting value, the inverse

accumulated generation operation (IAGO) is used. This is
because the grey prediction model is formulated using AGO
data instead of the original data set.

x0tþ1 ¼ x1tþ1−x
1
t ð10Þ

Eq. (11) is obtained using Eqs. (10) and (9):

bx0tþ1¼ 1−eað Þ x01−
b
a

� �
e−at ; t ¼ 0; 1; 2;… ð11Þ

The reliability of GM (1,1) models needs to be checked
with various criteria to confirm whether they satisfy
the accuracy requirements. In the literature, two popular test
criteria, such as posterior error rate (C) and small error prob-
ability (p) are generally used to test the precision of the GM
(1,1) model. The test criteria are determined by the following
equations:

The posterior error ratio;C ¼ S2
S1

ð12Þ
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Fig. 1 Annual MW generation of Istanbul (ISTAC Company)
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x ¼ 1

n
∑n

k¼1x
0
k ð13Þ

S12 ¼ 1

n
∑n

k¼1 x0k−x
� 	2

ð14Þ

where x0k is the sequence of actual data, S1
2 is the variance of

the x0, and x̄ is the mean value of x0.

ε ¼ 1

n
∑n

k¼1ε
0
k ð15Þ

S22 ¼ 1

n
∑n

k¼1 ε0k−ε
� 	2

ð16Þ

where S2
2 is the variance of errors and ε is the mean error.

Small error probability; p ¼ εk−ε



 


 < 0:6745S1

n o
ð17Þ

Table 2 gives the reference values of the forecasting accu-
racy levels. As far as C and p stay in the allowed scope, the
GM (1,1) model can be used for estimation. Small C value
means that the discreteness of the prediction errors is small,
while a higher p value indicates a higher probability of small
error. Therefore, the low value of the C value and the high
value of the p value means that the developed model has
higher precision.

Autoregressive integrated moving average (ARIMA)

The general Autoregressive Integrated Moving Average
(ARIMA) model was introduced by Box and Jenkins [31].
ARIMA is a popular and widely applied stochastic time series
model in the literature. It predicts the future values of a time
series using a linear combination of past values and a series of
errors. This method performs well when the data is stationary
or non-stationary. ARIMA is suitable for all kinds of data such
as level/trend/seasonality/cyclicality. The main advantages of
the ARIMAmodel can be said as its simplicity and systematic
structure to search for a suitable model [32]. However, the
model has some drawbacks that limit its scope of application.
For example, the model considers that there is a linear rela-
tionship between the dependent and independent variables,
but the actual data are generally non-linear.

ARIMA model can be denoted with three parameters;
ARIMA (p, d, q); where p is the order of the autoregressive
components, d is the order of the differencing, and q is the
order of the moving average term. A zero value can be applied
to the parameter that will not be used in the model. This way,
the ARIMAmodel can bemodified to fulfill the function of an
ARMA model, and also a simple AR, I, or MA model.
Briefly, the general form of the ARIMA model can be
expressed with backward operator B which runs on the time
index of a data value such as BjYt = Yt − j. Using this operator,
the model becomes as given in the below Eqs. (18–20):

∅ Bð Þ 1−Bð ÞdZt ¼ Θ Bð Þat: ð18Þ
1−Bð Þd 1−∅1−…∅p

� �
Zt ¼ 1þ υ1 þ…υq

� �
at ð19Þ

1−Bð Þd Zt−∅1 Zt−1−∅2 Zt−2…∅pZt−p
� �

¼ at þ υ1at−1 þ υ2at−2…υqat−q ð20Þ

where Zt = Yt − μ and a1 represents random error at time t.
∅ (B) and Θ(B) shows the polynomials as expressed in Eqs.
(21) and (22):

∅ Bð Þ ¼ 1−ϕ1−ϕ2−…−ϕp: ð21Þ
Θ Bð Þ ¼ 1þ θ1 þ θ2 þ…þ θq: ð22Þ

SVR model with the sequential minimal optimization
(SMO) algorithm

Support vector machine (SVM) was first introduced by Cortes
and Vapnik in 1995 [33]. SVM can be used to solve many
complex problems in engineering, including prediction (or
regression analysis), decision making (or classification tasks)
processes, and real-life engineering problems. When used for
classification problems, the SVMmodel is called support vec-
tor classification (SVC) and when used for regression prob-
lems, the SVM model is called support vector regression
(SVR). SVR is a useful method, even if there is no prior
knowledge about the data [34]. It is also advantageous com-
pared to traditional models such as linear regressions due to its
robustness to prevent overfitting.

Table 2 Prediction accuracy levels of GM (1,1) model

Accuracy Level Accuracy Class Test Criteria

Posterior Error Ratio, C Small Error Probability, p

1st level Excellent C ≤ 0.35 p ≥ 0.95
2nd level Qualified 0.35 <C ≤ 0.50 0.95 > p ≥ 0.80
3rd level Marginal 0.50 <C ≤ 0.65 0.80 > p ≥ 0.70
4th level Unqualified 0.65 <C 0.70 > p
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The solution for regression problems using SVR can be per-
formed by a recursive algorithm named as Sequential Minimal
Optimization (SMO). SMO is a simple and effective algorithm
that solves the smallest possible optimization problem at each
step with two Lagrange multipliers [35]. The calculation speed
and ease of application are positive features of this algorithm. Its
main advantage is that it is based on the principle of structural
risk minimization [36–38]. Furthermore, it provides a unique
solution and predicts the regression using a set of basic functions
defined in a high-dimensional area.

The regularization constant (called box constraint or cost
function) and insensitive loss function are the main parameters
of the SVR model. The regularization constant (C) and the in-
sensitive loss function (ε) are used to determine and control the
complexity of the model. The accurate selection of these values
can increase the performance of the model. However, it is not
always easy to choose a suitable SVR parameter to achieve high
accuracy. Because, an excessively large value for parameters in
the SVR causes overfitting, while a very small value causes
underfitting. Therefore, different parameter settings can cause
significant differences in performance [39, 40].

In addition, the kernel function directly affects the perfor-
mance of the SVRmodel. The kernel function enables needed
computations to be carried out directly in the input space. The
selection of a kernel function to convert the non-linear input
space into a linear space depends on the characteristics of the
data. Therefore, to provide a necessary adaptation for many
data types, different kernel functions should be searched and
their parameters adjusted appropriately. Some common kernel
functions are listed in the Eqs. (23–26):

& Linear

K xi; x j
� � ¼ xiT x j

� � ð23Þ

& (Polynomial)

K xi; x j
� � ¼ xiT x j þ 1

� �d ð24Þ

& Radial Basis Function (RBF):

K xi; x j
� � ¼ exp −γ xi−x j

�� ��2� 	
ð25Þ

& Pearson VII kernel function (PUK):

K xi; x j
� � ¼ 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x jk k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1=ωð Þ−1
p

2

q
σ

0
@

1
A

2
2
64

3
75
ω ð26Þ

where K(xi, xj) is the kernel function, d is the polynomial de-
gree, γ is the width of RBF kernel, ω and σ are the actual
shape and the width of the PUK function, respectively.

LR analysis

The simple linear regression applies the least-squares method
to search the line of best fit for a set of data. It allows estimat-
ing dependent variable (y) with the aid of a given independent
variable (x).The line of best fit can be defined by the equation
Y = bx + a, where b represents the slope of the line and a is the
intercept. The values of b and a can be determined for a set of
data comprising two variables and can be used to predict the
value of y for any specified value of x.

Evaluation of model performances

The performance of the models was evaluated using different
performance criteria such as root mean square error (RMSE),
mean absolute deviation (MAD), mean absolute percentage
error (MAPE%), and coefficient of determination (R2).
Related equations for calculation of RMSE, MAD, MAPE
and R2 values are given in Eq. (27–29):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 MWactual
i −MWpredicted

i

� 	2

n

vuut
ð27Þ

MAD ¼ 1

n
∑
n

i¼1
MWactual

i −MWpredicted
i




 


 ð28Þ

MAPE ¼ 1

n
∑
n

i¼1

MWactual
i −MWpredicted

i




 



MWactual

i



 

 � 100% ð29Þ

Table 3 Performance of different kernel functions

Model RMSE MAD MAPE R2

Polynomial Kernel 1622.2923 1335.9223 34.6421 0.9499

RBF Kernel 1581.2785 1117.3358 57.6599 0.9526

PUK Kernel 882.5870 599.5386 12.6760 0.9857
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R2 ¼
∑
n

i¼1
MWactual

i −MWactual
i

� 	
MWpredicted

i −MWpredicted
i

� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
MWactual

i −MWactual
i

� 	2
� ∑

n

i¼1
MWpredicted

i −MWpredicted
i

� 	2
s

2
66664

3
77775

2

ð30Þ
where MWactual

i and MWpredicted
i represent the actual and pre-

dicted value of ith data point, respectively. MWactual
i and

MWpredicted
i are the average of the actual and predicted value

of ith data point, respectively. Also, n shows the total number
of data points. The performance of the models can be

measured by calculating R2 value. It takes values between 0
and 1, and values close to 1 means better fitting.

Results and discussion

Forecasting using GM (1,1) model

In order to implement the GM (1,1) model for predicting
MW generation, MATLAB version 2018b software was
used. It is important to select the suitable value of the
horizontal adjustment coefficient (θ) between 0 and 1 to
ensure the lowest estimation error. Since different values

Table 4 Model comparison

Model RMSE MAD MAPE R2

ARIMA (1,0,2) 863.4984 675.5712 11,8660 0.9867

ARIMA (0,1,0) 970.2076 729.0000 13.6850 0.9790

ARIMA (1,2,1) 1056.3368 788.6365 15.4074 0.9794

ARIMA (0,1,2) 763.6852 588.4712 11,7595 0.9888

ARIMA (1,1,0) 893.2460 705.4143 12.4617 0.9822

Table 5 Performance indices of the models

Model RMSE MAD MAPE R2

LR 1462.1266 1185.9415 26.5966 0.9587

ARIMA (0,1,2) 763.6852 588.4712 11.7595 0.9888

SVR PUK Kernel 882.5870 599.5386 12.6760 0.9857

GM (1,1) 1555.8831 1298.5890 14.0223 0.9739
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Fig. 2 Estimated (a)
autocorrelations and (b) partial
autocorrelations after first
differencing
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of this parameter affected the predictive performance of
the GM (1,1) model, the different GM (1,1) models were
performed using different θ values. As shown in Table 2,
two popular test criteria such as posterior error ratio and
small error probability were used to compare the accuracy
of the GM (1,1) models. The goodness of fit test showed
that the precision of the GM (1,1) model was excellent
(1st level) with 0.5 horizontal value (θ). The posterior-test
ratio (C) and small error probability (p) values were cal-
culated as 0.1616 and 1, respectively. This means that the
GM (1,1) model has a higher degree of prediction perfor-
mance. The development coefficient (α) and the control
variable (b) values of the GM (1,1) model were calculated
by the least square method. According to the estimation
standards of the GTS, when the development coefficient
is -α < 0.3, the GM (1,1) model can be applied in mid-
long-term forecasting [29]. The development coefficient
of this model is −α = 0.07697 < 0.3, which means that
we can use the GM (1,1) model to predict the future
MW generation of Istanbul.

Forecasting using SVR model with SMO algorithm

Different SMOreg based SVR models were constructed
using WEKA software developed by the University of
Waikato, New Zealand. Since the correct determination
of the parameters had a critical effect on the success of
the model, the parameters of the SVR model were adjust-
ed using the grid search optimization approach. This ap-
proach searches the best possible values of SVR model
parameters such as the regularization constant (C), insen-
sitive loss margin (ε). As mentioned earlier, kernel func-
tions can be used in various types in the SVR model.
Therefore, it is also necessary to properly adjust the ker-
nel function parameters such as degree of the polynomial
kernel, the width of the RBF kernel, and the actual shape
and the width of PUK kernel function [41].

It is seen from Table 3 that the best performance is
achieved by using the SVR model with the PUK kernel
function. The optimal values of the parameters σ, ω, and
C were calculated as 1.0, 1.0 and 100, respectively. On
the other hand, the highest values of RMSE and MAD
values were calculated by using the SVR model based
on the polynomial kernel. The correlation of the determi-
nation value of the SVR model based on the RBF kernel
function (R2 = 0.9526) was lower than the SVR model
based on the PUK kernel function (R2 = 0.9857). This
comparison showed that the developed SVR models based
on polynomial, RBF, and PUK functions are different in
terms of the performance measurements. According to
these results, it was concluded that the PUK function is
robust and best compared to the polynomial and RBF
kernel functions. This is mainly due to the flexibility of

the PUK function to change the parameters ω and σ. This
flexibility provides a higher predictive ability for the PUK
function compared to the other kernel functions [41, 42].

Forecasting using ARIMA model

Based on past MW data, the ARIMA model was used to
estimate the future trend. The analysis was carried out using
STATGRAPHICS Centurion XVI.I software. Because the
ARIMA model requires the stationary sequence for the deter-
mination of the AR and MA components, the data should be
examined for the existence of any trend. Since the series is not
stationary, first-order differencing (d = 1) was applied.
Autocorrelation function (ACF) plot in Fig. 2a indicated that
the series is stationary after first differencing at 5% the signif-
icance level.

The patterns of the ACF and partial autocorrelation
function (PACF) plots of the differenced series were ex-
amined for the tentative determination of the components
of the autoregressive (p) and moving average orders (q) in
ARMA(p,q) model. Several alternative ARIMA models
were also generated for the model selection and their per-
formances were evaluated according to the various statis-
tical tools. As seen from Table 4, the ARIMA (0,1,2)
model has the highest R2 (0.9888) and lowest RMSE
(763.6852), MAD (588.4712), and MAPE (11.7595)
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Fig. 3 Box plot of the absolute forecasted errors of the models

Table 6 Parameter estimates of the ARIMA (0,1,2) model

Parameter Estimate Std. Error t p value

MA (1) −0.72742 0.121841 −5.97022 0.000010

MA (2) −0.90289 0.0876436 −10.3019 0.000000

Mean 1313.25 462.68 2.83836 0.010507

Constant 1313.25
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values. Thus, it was selected as the best model and con-
sidered a potential prediction model. Table 5 summarizes
the statistical significance of the terms in the forecasting
model. The p values of the associated with the parameters
are less than 0.05, so the terms are significantly different
from zero at the 95.0% confidence level.

Forecasting using LR analysis

The annualMWdata from 1995 to 2017was used to create the
LR model. As shown in Fig. 4, the LR model was fitted to the
MW data. The values of R2, RMSE, MAD, and MAPE were
calculated as 0.9587, 1462.1266, 1185.9415, and 25.5966,
respectively.
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Fig. 4 The scatter plots of the
models
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Fig. 5 (a) Residual plot (b) time series plot for ARIMA (0,1,2) model

Table 7 Prediction of MW generation of Istanbul with ARIMA (0,1,2)
model

Year Forecast Lower 95.0% Limit Upper 95.0% Limit

2018 28,279 26,467 30,091

2019 30,347 26,731 33,964

2020 31,661 25,678 37,644

2021 32,974 25,325 40,623

2022 34,287 25,274 43,300

2023 35,600 25,405 45,796
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Comparison of forecasting models

Figure 3 shows a comparison of the error distribution of dif-

ferent methods in the box plot , FEj j ¼ MWactual
i −




MWforecasted

i j, where |FE| is the absolute value of forecasted
error statistics. In terms of the maximum absolute error, it can
be said that the ARIMA (0,1,2) model performed better than
other methods. When the median errors were compared, the
SVRmodel with PUK kernel function performed slightly bet-
ter than the ARIMA (0,1,2) but significantly lower than the
LR and GM (1,1) model. Table 6 presents the summarization
of the error analysis in terms of RMSE, MAD,MAPE, and R2

values. It is clear that ARIMA (0,1,2) model performs better
than other methods in terms of all error measurements.

Figure 4 shows the scatter plots representing the comparison
between the actual values and the predicted MW generation for
the years using SVR, LR,GM (1,1), andARIMA (0,1,2)models.
Because of higher forecasting accuracy, ARIMA (0,1,2) was
applied to estimate the MW amounts of Istanbul from 2018 to
2023. Figure 5 shows the future prediction for MW generation
using time series and residual plots for ARIMA (0,1,2) model. It
is seen from Table 7 that the total amount ofMW in Istanbul will
show a relatively stable rising trend in the following six years,
and will reach approximately 35,600 tons by the year 2023.

Discussion

It is critical to determine future MW generation for an effective
MW management system. This information is important to de-
termine the size of storage facilities, the number and type of
collection equipment, and future treatment and disposal capacity
needs. In recent years, despite an increase in the number and
variety of treatment facilities in Turkey, problems with MW
management is continued. The increasing population and
socio-economic development in Turkey cause a significant in-
crease in the MW generation amount. The city of Istanbul, with
its population of approximately 16million, generates muchmore
MW than other cities of the country. Therefore, research on a
suitable model that explains MW generation data is a significant
step for ensuring successful MW management in metropolitan
cities such as Istanbul. For this purpose, three widely applied
models were compared and their performances tested in estima-
tion for the annual MW generation of Istanbul. Statistical tools
were employed for the results from models to evaluate
forecasting performances for future trends. Depending on the
principles of the models, forecasting performances varied. The
highest R2 value (0.9888) was obtained with ARIMA (0,1,2)
model, and this model was used to estimate the future MW
generation amount. ARIMA is a simple, fast and robust time
series model to forecast values. Structured modeling ability and
acceptable forecasting performance made the ARIMA model
best in this study.

Conclusion

It is important to provide appropriateMWmanagement to control
and improve the current situation in the increasingly populated
city of Istanbul. Sustainable management of MW can only be
achieved with accurate waste estimation. Therefore, the aim of
this research is to provide a suitable model to estimate the amount
of MW generated. In this context, four different methods, such as
LR, GM (1,1), ARIMA, and SVR were used. ARIMA (0,1,2)
was selected as the best model and used to predict the MW
generation of Istanbul between 2018 and 2023. It was concluded
that the total amount of MW of Istanbul will show a relatively
stable rising trend in the following six years, and will reach ap-
proximately 35,600 tons by the year 2023. The results of the study
can help authorities to create a reliable MW prediction model,
which can be an important source of information for Istanbul. In
addition, prior knowledge about the amount of MW generated
can be used for both the planning and design of future facilities.
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