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Green synthesis of SnO2-ZnO-eggshell nanocomposites and study
of their application in removal of mercury (II) ions
from aqueous solution
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Abstract
Background Mercury (Hg) in dental amalgam is the world’s hidden source of mercury contamination. The development of more
eco-friendly and cost-effective adsorbents to reduce mercury pollutants in wastewater is highly desirable and is still a major
challenge. In this study, a novel nanocomposite was synthesized and used as an efficient adsorbent for the removal of Hg(II) ions
from aqueous solution.
Methods A green and cost-effective method was described to the synthesis of SnO2-ZnO-eggshell nanocomposites using
teucrium polium extract as a renewable reductant and mild stabilizer. The biosynthesized nanocomposites were characterized
by various techniques. The novel SnO2-ZnO-eggshell nanocomposites were used as an effective adsorbent in the removal of
mercury (II) ions. To achieve the maximum absorption efficiency of Hg(II) ions, the effect of operating factors such as pH value,
the dose of catalyst, the initial metal concentration of Hg(II) ions, and catalyst type were evaluated.
Results The removal percentage and adsorption capacity of Hg(II) were obtained 99.15% and 396.6 mg.g−1, respectively, under
optimal conditions after 5 minutes. The selectivity of SnO2-ZnO-eggshell nanocomposites for the adsorption of metal ions was
studied, and the highest selectivity was obtained for adsorption of Hg (II) ions. Furthermore, the SnO2- ZnO-eggshell nanocom-
posites could be recovered and reused at least three times without considerable loss of their efficiency.
Conclusions The present approach has advantages such as rapidity, simplicity, selectivity, low cost and, most importantly, the use
of nanocomposites containing a bio-waste material of eggshell for removal of Hg(II) ions from aqueous solution.
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Introduction

For over 170 years, mercury (Hg) has been utilized as a dental
amalgam for teeth filling in dentistry. Based on the World
Health Organization (WHO) report, the highest human expo-
sure to mercury is from dental amalgams. Extensive use of
mercury in dentistry has resulted in the release of hundreds of
tons of mercury into discharge systems, which can generate
ionic mercury. The most toxic form of mercury is in its ionic

species which mercury ions react with the biomolecules of a
living being body and form very stable toxic bio-compounds
[1–4]. Given these worrying statistics, how Hg(II) ions are
removed from wastewater is a significant concern worldwide.
Nowadays, various technologies have been put forward to
remove Hg(II) ions such as biological treatment, precipitation,
chemical reduction, ion-exchange, extraction, electrolytic ac-
cumulation, filtration, membrane technique, and adsorption
methods [5–8]. Among these methods, adsorption is more
effective and practical than other techniques [9]. Therefore,
the increasing use of adsorption techniques has necessitated
the development of recyclable and cost-effective adsorbents
for the better removal of Hg(II) ions from contaminated
media.

In recent years, nanotechnology appears as a new innova-
tive technology with excellent potential for wastewater treat-
ment in the natural environment through more effective strat-
egies than previously explored methods [10–13]. In this
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regard, nanoparticles have attracted researchers’ attention due
to their interesting properties such as large specific surface
area, low cost, high stability and very small size. Among the
various types of nanoparticles, metal oxide nanoparticles such
as tin oxide (SnO2) and zinc oxide (ZnO) nanoparticles exhib-
ited good activity in wastewater treatment [14–16]. There are
various physicochemical techniques for the fabrication of
these nanoparticles including thermal reduction [17, 18],
chemical vapor synthesis [19, 20], sol-gel [21, 22], radiation
methods [23, 24], microemulsion techniques [25, 26], laser
ablation [27, 28] and mechanical attrition [29, 30]. Most of
these methods have shortcomings such as low purity, harsh
reaction conditions, production of side products, and the use
of complicated equipment, toxic solvents and hazardous
chemicals. So, it is desirable to develop more cost-effective
and environmental-friendly approaches for the synthesis of
metal oxide nanoparticles under mild conditions. The green
synthesis of nanoparticles using natural and renewable mate-
rials like plant extract has advantages such as milder and
cleaner conditions, and avoidance of expensive organic sol-
vents and hazardous reagents [16, 31, 32].

Teucrium polium belongs to the Lamiaceae family and
their shrubs grow in North Africa, Asia and Europe. From a
long time ago, Teucrium polium has been used to treat gas-
trointestinal diseases, inflammation, diabetes and rheumatism.
The phytochemical studies have shown which the main con-
stituent of this plant is flavonoids [33]. The presence of these
compounds in Teucrium polium induces excellent reducing
properties to it that makes Teucrium polium extract as an
excellent reducing agent and green media for the synthesis
of nanoparticles [34].

In both chemical and green synthesis of nanoparticles, the
major problem is the agglomeration of nanoparticles because
of their small size. One of the best methods to overcome this
problem is use natural suitable supports for the deposition of
metal oxide nanoparticles and formation of nanocomposites
such as TiO2/zeolite [35], SnO2/bentonite [36], Fe3O4/starch
[37], FeO/chitosan [38], ZnO/cellulose [39], ZnO/alginate
[39], MnFe2O4/diatomite [40], gelatin/TiO2[41] and graphene
oxide/ZnO [42]. If the purpose of synthesizing a nanocompos-
ite is to absorb pollutants, it would be valuable to use a support
that has high adsorption property.

In recent years, researchers were used many agricultural
and biological waste materials such as rice husk [43], eggshell
[44], Moringa pods [45], bamboo leaf powder [46], cashew
nut shells [47] and palm oil fruit shells [48] as low-cost adsor-
bents for the removal of heavy metals from aqueous medium.
The eggshell could be a right choice as support because of its
intrinsic porous structure. The eggshell is a cheap and readily
available bio-waste. It is particularly attractive for the synthe-
sis of nanocomposites due to the formation of strong metal-
protein bonds between the eggshell and nanoparticles [49].

Since our goal in this study is the adsorption of Hg(II) ions
using nanoparticles, and due to the excellent performance of
SnO2 and ZnO nanoparticles in the removal of contaminants
from wastewater [14, 50], to benefit the fantastic properties of
SnO2 and ZnO nanoparticles, we decided to the synthesis of
SnO2-ZnO nanocomposites based on the principles of green
chemistry. On the other, to prevent the agglomeration of nano-
particles, we selected eggshells as natural support for nano-
particles which itself acts as an efficient adsorbent. Therefore,
we synthesized SnO2-ZnO-eggshell nanocomposites via a
facile and non-toxic method using Teucrium polium extract
as a renewable reducing agent and efficient stabilizer. Then,
the activity of the SnO2-ZnO-eggshell nanocomposites was
studied in the removal of Hg(II) ions from aqueous solution.
The SnO2-ZnO-eggshell nanocomposites exhibited highly ex-
cellent catalytic performance in the adsorption of Hg(II) ions
at room temperature. Moreover, the SnO2-ZnO-eggshell
nanocomposites could be recovered three times without con-
siderable loss of catalytic activity. To our knowledge, the
green synthesis of SnO2-ZnO-eggshell nanocomposites has
not been reported in the literature.

Experimental

Materials

The tin (II) chloride dehydrate (SnCl2.2H2O), zinc nitrate
hexahydrate [Zn(NO3)2.6H2O] and mercury(II) chloride
(HgCl2) were purchased from Sigma-Aldrich and Fluka com-
panies. Teucrium polium plant was collected from the deserts
of South Khorasan in Iran. The eggs were purchased from the
local supermarket.

Characterization techniques

The crystal structure and composition of SnO2-ZnO-egg-
shell nanocomposites was studied by X-ray diffraction
(XRD) on a Philips model PW 1800 X’pert diffractome-
ter. The shape and particle size distribution of the SnO2-
ZnO-eggshell nanocomposites were specified by
Transmission Electron Microscopy (TEM- ZEISS
EM900). Energy dispersive X-ray spectroscopy (EDS-
ZEISS, EVO18) and scanning electron microscopy
(SEM-ZEISS, EVO18) analyses were carried out to study
the elemental composition and morphology of SnO2-ZnO-
eggshell nanocomposites and other compounds. The con-
centration of Hg(II) in the solutions after adsorbent expo-
sure was investigated by inductively coupled plasma-light
emission spectroscopy (ICP-OES, ES-730).
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Preparation of the Teucrium polium extract

The dried powder of Teucrium polium leaves (10 g) was
refluxed using distilled water (100 mL) at 80 °C for 45 mi-
nutes. The Teucrium polium extract was filtered and used for
the green synthesis of nanomaterials in the next steps.

Biosynthesis of SnO2 nanoparticles

The extract of Teucrium polium (50 mL) was dropped into a
well-mixed solution of tin (II) chloride dihydrate (25 mL,
0.05 M) with constant stirring at laboratory temperature for 30
minutes. The resulting mixture was magnetostirred for another
30 minutes at 70 °C. In the following, the reaction mixture was
cooled and the synthesized precipitates were centrifuged at
10,000 rpm and rinsed three times with double distilled water
and dried at laboratory temperature. The biosynthesized nano-
composites were powdered using a mortar and placed in an
electric furnace at 550 °C for 2 h.

Biosynthesis of ZnO nanoparticles

The extract of Teucrium polium (180 mL) was dropped into a
well-mixed solution of zinc nitrate hexahydrate (25 mL, 1 M)
with constant stirring at laboratory temperature for 30 mi-
nutes. The resulting mixture was magnetostirred for another
8 h at 70 °C. The continuing the steps were quite similar to the
one mentioned above.

Biosynthesis of SnO2-ZnO-eggshell nanocomposites

The tin (II) chloride dihydrate solution (25 mL, 0.05 M), zinc
nitrate hexahydrate (25mL, 1M), and crushed eggshell (1 g) was
vigorously stirred for 30 minutes at laboratory temperature. The
extract of the Teucrium polium (180 mL) was added drop-wise
to the above well-mixed mixture for 30 minutes. The resulting

mixture was magnetostirred for another 8 h at 70 °C. In the
following, the reaction mixture was cooled and the synthesized
precipitates were centrifuged at 10,000 rpm and rinsed three
times with double distilled water and dried at laboratory temper-
ature. The biosynthesized nanocomposites were powdered using
a mortar and placed in an electric furnace at 550 °C for 2 h. The
ZnO and SnO2 loading in SnO2-ZnO-eggshell nanocomposites
was 1:0.05 (molar ratio ZnO:SnO2).

Adsorption experiments

All adsorption tests were carried out with three replicates to ex-
amine the adsorption properties of SnO2-ZnO-eggshell nano-
composites in the removal of Hg(II) from aqueous solutions.
The experiments were done under different conditions such as
pH values (2–7), initial metal concentration of Hg(II) ions (10-
5000 mg.L− 1) and adsorbent amounts (0.001–0.05 g L− 1). The
pH of solutions was adjusted using hydrochloric acid (HCl),
sodium hydroxide (NaOH) solutions (0.1 M) and a pH-meter
instrument (Metrohm, Switzerland). After the adsorption pro-
cess, the SnO2-ZnO-eggshell nanocomposites were separated
by centrifugation and the concentration of Hg(II) ions in the
solution phase was analyzed using ICP-OES. The following
equations were used to evaluate the adsorptive capacity (Qe,
mg.g− 1) and the removal percentage (E, %) of mercury (II),
respectively:

Qe ¼
ðC0 � CeÞV

m

E ¼ C0 � Ce

C0
� 100

In the above equations, C0 and Ce are the initial and equi-
librium concentration concentrations of mercury (II) (mg.L− 1)
in solution, respectively. V (L) is the solution volume, and m
(g) is the SnO2-ZnO-eggshell nanocomposites dosage.

Scheme 1 The proposed mechanism for the green synthesis of Sn and Zn nanoparticles

1583J Environ Health Sci Engineer (2020) 18:1581–1593



Desorption and regeneration studies

The desorption of Hg(II) was done using aqueous solutions of
EDTA (0.05 M) as a suitable desorbing agent. After the adsorp-
tion process, the Hg(II) loaded nanocomposites were collected
and agitated with the above desorbing agent (10 mL) for 5 h.
Then the SnO2-ZnO-eggshell nanocomposites were separated
from the solution, washed three timeswith deionizedwater, dried
at laboratory temperature and used again in the adsorption-
desorption process the next three cycles.

Results and discussions

The aqueous extract of Teucrium polium leaves was used as an
eco-friendly medium to the synthesis of SnO2-ZnO-eggshell
nanocomposites. The flavonoids in the extract of Teucrium

polium leaves act as a green reducing agent and effectively re-
duced the Zn2+ and Sn2+ salt ions to Zn and Sn nanoparticles
(Scheme 1). Also, the extract of Teucrium polium act as an
efficient stabilizer and through the green reduction of Sn(II)
and Zn(II) ions, were remarkably dispersed the formed nanopar-
ticles in situ on the eggshell, and limited their agglomeration. The
biosynthesized nanocomposites were finally obtained after calci-
nation in an electric furnace at 550 °C for 2 h (Fig. 1). After the
successful synthesis of SnO2-ZnO-eggshell nanocomposites, the
biosynthesized nanocomposites were employed as a green adsor-
bent to removal Hg(II) ions (Fig. 2).

The characterization of SnO2-ZnO-eggshell
nanocomposites

At first, to obtain information about the elemental composition of
eggshell, SnO2 nanoparticles, ZnO nanoparticles, and SnO2-

Fig. 1 Schematics of the green synthesis procedure of SnO2-ZnO-eggshell nanocomposites using Teucrium polium

Fig. 2 Schematics of adsorption experiment of Hg ions using SnO2-ZnO-eggshell nanocomposites
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ZnO-eggshell nanocomposites was done energy-dispersive X-
ray spectroscopy (EDX) analysis (Fig. 3). The presence of car-
bon, oxygen, calcium and sulfur elements was determined in the
EDX spectrum of the eggshell (Fig. 3a). The EDX spectra of the
SnO2 and ZnO nanoparticles were well indicated in the presence
of tin, zinc and oxygen elements (Fig. 3b and c). The elements
such as carbon and phosphorus with a low weight percentage in
EDX spectra of the biosynthesized SnO2 and ZnO nanoparticles
were detected that were related to the used Teucrium polium
extract in the synthesis process of nanoparticles. The presence

of all the above elements in the EDX spectrum of SnO2-ZnO
eggshell nanocomposites indicated the successful synthesis of
biosynthetic nanocomposites (Fig. 3d).

To understand the occurred morphological changes in the
surface of the eggshell, SEM images of eggshell and SnO2-
ZnO-eggshell nanocomposites were recorded. As shown in
Fig. 4a, eggshell is a macroporous network with interwoven
fibers. Figure 4b shows the three-dimension structure of
SnO2-ZnO-eggshell nanocomposites in which eggshell was
wholly coated with SnO2 and ZnO nanoparticles.

Fig. 3 EDX spectra of (a) eggshell, (b) SnO2 nanoparticles, (c) ZnO nanoparticles and (d) SnO2-ZnO-eggshell nanocomposites

Fig. 4 SEM images of (a) eggshell and (b) SnO2-ZnO-eggshell nanocomposites
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The TEM image of SnO2-ZnO-eggshell nanocompos-
ites demonstrated that biosynthesized nanocomposites
have almost spherical morphology with homogeneous
particle sizes in the range of 20–25 nanometer (Fig. 5).

The XRD patterns of the synthesized SnO2-ZnO-eggshell
nanocomposites were shown in Fig. 6. In the XRD pattern of
eggshell, the strong and sharp peaks at 2θ = 29.45°, 36.04°,
39.49°, 43.03°, 47.76°, 48.65°, 57.55°, 60.89°, 64.67° and
68.99° could be indexed to (104), (110), (113), (202), (024),
(116), (122), (214), (300) and (217) Bragg’s reflections of
rhombohedral CaCO3 (JCPDS No. 00-002-0623) [51, 52].
To confirm the presence of SnO2 nanoparticles in the
biosynthesized nanocomposite, the typical XRD pattern
showed diffraction peaks at 26.59°, 33.88°, 37.95°, 51.78°,
54.76°, 61.89°, 64.76° and 65.98° corresponding to (110),
(101), (200), (211), (220), (310), (112) and (301) respectively
(JCPDS No. 01-072-1147) [53]. The diffraction peaks at
31.69°, 34.33°, 36.10°, 47.36°, 56.31°, 62.64°, 67.64° and
68.73° were consistent with (100), (002), (101), (102),
(110), (103), (112) and (201) reflections of the hexagonal

phase of ZnO nanoparticles (JCPDS No. 01-079-0208) [54].
All of these peaks showed that SnO2-ZnO-eggshell nanocom-
posites had been successfully prepared.

Based on the obtained results from TEM and XRD analysis
and the definition of nanocomposite (nanocomposite is a mul-
tiphase solid material where one of the phases has one, two or
three dimensions of less than 100 nanometers [55]), the nam-
ing of the nanocomposite for the biosynthesized compound
was correct.

The adsorption of Hg(II) ions using biosynthesized
SnO2-ZnO-eggshell nanocomposites

Due to the undeniable toxicity of Hg(II) ions, in this work, the
SnO2-ZnO-eggshell nanocomposites were employed as a
green adsorbent for removal of Hg(II) ions. The influence of
several operating parameters such as pH values, the dose of
catalyst, initial metal concentration of Hg(II) ions, catalyst
type, existing other ions on adsorption capacity of Hg(II)
using SnO2-ZnO-eggshell nanocomposites was investigated.

Effect of pH

The pH value of solutions, in the adsorption process of pol-
lutants, is one of the most significant parameters on adsorption
capacity [12, 56]. Therefore, Hg(II) ions solution were pre-
pared with different pH values (2, 3, 4, 5, 6 and 7) and their
adsorption capacity was studied while other factors such as
volume and concentration of the aqueous solution of HgCl2
(100 mL, 20 mg.L− 1), the dose of catalyst (0.05 g) and tem-
perature (laboratory temperature) were constant. The adsorp-
tion capacities of Hg(II) ions in different pH values were
found to be around 361.2-396.6 mg.g− 1 with the standard
deviation of 11.6 mg.g− 1. As shown in Fig. 7a, the adsorption
capaci ty of Hg(II) ions onto SnO2-ZnO-eggshell

Fig. 5 TEM image of SnO2-ZnO-
eggshell nanocomposites

Fig. 6 XRD pattern of SnO2-ZnO-eggshell nanocomposites
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nanocomposites increased with increasing pH values first and
then decreased slightly. At lower pH values, there are a large
amount of H+ ions in the solution, and they can compete with
Hg(II) ions for the active sites on the surface of SnO2-ZnO-
eggshell nanocomposites and interfere in the adsorption pro-
cess [57, 58]. When the pH values were more than 3, adsorp-
tion capacity was decreased because of the production of met-
al hydroxide of Hg(OH) 2 or Hg(OH)+ [59]. Therefore, the
maximum adsorption capacity of Hg(II) ions was obtained at
pH value of 3 and after that, all of the experiments was carried
out at pH = 3. At pH values greater than 8, metal hydroxides
start to precipitate and the adsorption studies are practically
impossible. Also, the zeta potential was applied to investigate
the charge type on the surface of SnO2-ZnO-eggshell nano-
composites in solutions with different pH values. The zeta
potential values of SnO2-ZnO-eggshell nanocomposites were
shown in Fig. 7b. The isoelectric point was obtained when the
pH value was 3.76. SnO2-ZnO-eggshell nanocomposites have

a positive charge when the pH value was less than 3.76 and
have a negative charge when the pH value was higher than
3.76. The changes in the zeta potential of SnO2-ZnO-eggshell
nanocomposites showed which the electrostatic adsorption
was not the main adsorption mechanism of Hg(II) ions by
the biosynthesized nanocomposites [60].

Effect of dosage

The effect of dosage using newly SnO2-ZnO-eggshell nano-
composites on the removal percentage and the adsorption ca-
pacity of Hg(II) ions was studied under the optimum condi-
tions (C0 = 200mg.L− 1, pH = 3, t = 5 min, and T = 298 K) and
the results were presented in Fig. 8. The selected dosages were
0.001, 0.005, 0.01, 0.025 and 0.05 g. The removal percentage
of Hg(II) ions in different dosages was found to be around
84.91–99.15 mg.g− 1 with the standard deviation of
5.78 mg.g− 1. The obtained results showed that the removal

Fig. 7 Effect of pH on (a)
adsorption capacity of Hg(II)
using SnO2-ZnO-eggshell
nanocomposites (C0 = 200 mg.L−

1, dosage of catalyst = 0.05 g, t =
5 min, and T = 298 K) and (b)
Zeta potential of SnO2-ZnO-
eggshell nanocomposites
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percentage of Hg(II) ions increased with an increasing dose of
SnO2-ZnO-eggshell nanocomposites, while adsorption capac-
ity decreased. The increase in the adsorption percentage could
be due to an increase in the number of available sites for
adsorption of Hg(II) ions. However, in the case of a decrease
in absorption capacity, it could be said with an increasing dose
of SnO2-ZnO-eggshell nanocomposites, active sites of adsor-
bent increase but the content of Hg(II) ions and the solution
volume remain constant. The obtained results in this field
were consistent with those reported in previous papers [61].

Effect of initial concentration

To study the effect of Hg(II) ions concentration on
adsorption capacity, SnO2-ZnO-eggshell nanocompos-
ites (0.05 g) were immersed in solution (100 mL) at
pH = 3 with initial Hg(II) ions concentrations of 100,
200, 500, 1000 and 5000 mg.L− 1, respectively. Then
the solut ions were s t i r red for 5 minutes . The

adsorption capacities of Hg(II) ions in Hg(II) ions
concentra t ions are found to be around 197.3-
2229 .7 mg.g− 1 wi th a s t anda rd dev i a t i on o f
1110.6 mg.g− 1. The obtained results are exhibited in
Fig. 9. It could be found when the initial Hg(II) ions
concentration increased from 100 to 5000 mg.L− 1, the
adsorption capacity of Hg(II) increased. The increase
of the adsorption capacity was because of the increase
in the driving force of the concentration gradient [62].

Effect of catalyst type

To study the exact role of SnO2-ZnO-eggshell nanocom-
posites on the adsorption capacity of Hg(II), the adsorp-
tion of Hg(II) ions were performed in the presence of
SnO2 nanoparticles, ZnO nanoparticles, eggshell and
SnO2-ZnO-eggshell nanocomposites. The adsorption ca-
pacity of Hg(II) using SnO2 nanoparticles, ZnO nano-
p a r t i c l e s , e g g s h e l l , a n d SnO2 -ZnO - egg s h e l l

Fig. 9 Effects of initial
concentration of Hg(II) ions (dose
of catalyst = 0.05 g, pH = 3, t =
5 min, and T = 298 K)

Fig. 8 Effects of dose of SnO2-
ZnO-eggshell nanocomposites
(C0 = 200 mg.L− 1, pH = 3, t =
5 min, and T = 298 K)
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nanocomposites were obtained 372.44, 366.82, 345.98
and 396.6 mg.g− 1, respectively, after 5 minutes.
Surprisingly, all the components of the SnO2-ZnO-egg-
shell nanocomposites were efficiently involved in the
uptake of Hg(II) ions.

Effect of existing ions

The selectivity of SnO2-ZnO-eggshell nanocomposites
for adsorption of Hg(II) ions was carried out using
the mixed metal ion solutions containing Ag, Cu, Sn
and Hg chloride salts. These metal ions were chosen
because they were components of dental amalgam.
The concentration of each ion, dose of catalyst and
pH were set at 200 ppm, 0.05 g and 3. The adsorp-
tion capacities of the mixed metal ions solution were
shown in Fig. 10. The adsorption capacities for Ag(I),
Cu(II), Sn(II) and Hg(II) ions were 10.15, 39.78,
23.43 and 285.96 mg.g− 1, respectively, with the

standard deviation of 131.3 mg.g− 1. The obtained re-
sults clearly showed that the SnO2-ZnO-eggshell
nanocomposites have a higher selectivity for adsorp-
tion of Hg(II) ions than the other metal ions.

Comparison of the adsorption capacity with other adsorbents

To show the advantages of the SnO2-ZnO-eggshell
nanocomposites in the present work, a comparative
study was performed between the SnO2-ZnO-eggshell
nanocomposites and other previously reported com-
pos i t es for the removal Hg( I I ) . As shown in
Table 1, among the reported composites, the highest
adsorption capacity and shortest time in the removal
of Hg(II) were obtained using SnO2-ZnO-eggshell
nanocomposites. Furthermore, the present study
showed that the SnO2-ZnO-eggshell nanocomposites
were biosynthesized using the plant extract as a green
reducing agent and safe stabilizing.

Table 1 Comparison of adsorption capacities of various composites for Hg(II)

Adsorbent Adsorption capacity (mg.g− 1) Time (min) Reference

MnO2/CNT nanocomposites 58.8 80 [62]

Graphene oxide-Fe3O4 nanocomposite 16.6 120 [63]

Reduced graphene oxide-Ag 9 120 [64]

Fe3O4/poly (C3N3S3) nanocomposite 344.8 60 [65]

Phytic acid doped polyaniline/cellulose acetate composite 280.11 600 [66]

Amino functionalized magnetic graphenes composite 23.03 200 [67]

2-Mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite 240 60 [68]

Geopolymers modified with chitosan 156.01 60 [69]

Polyethylenimine modified-activated carbon 16.39 60 [70]

SnO2-ZnO-eggshell nanocomposites 396.6 5 This study

Fig. 10 Effects of existing ions
(C0 = 200 mg.L− 1, dose of
catalyst = 0.05 g, t = 5 min, and
T = 298 K)
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Reusability and stability of SnO2-ZnO-eggshell
nanocomposites

To have a cost-effective adsorbent, it must be reused sev-
eral times in the adsorption-desorption cycles. For the
desorption process and removing adsorbed Hg(II) ions
from the adsorbent, firstly, used SnO2-ZnO-eggshell
nanocomposites were agitated with aqueous solutions of
EDTA as a suitable desorbing agent. Then, SnO2-ZnO-
eggshell nanocomposites were separated from the reaction
mixture, washed three times with water, dried and reused
at least three times without any significant loss in their
adsorption performance (Fig. 11). Furthermore, the stabil-
ity of reused SnO2-ZnO-eggshell nanocomposites was
confirmed by TEM image (Fig. 12).

Conclusion

In this work, a simple procedure was described for the green
synthesis of SnO2-ZnO-eggshell nanocomposites using
teucrium polium extract as a naturally-sourced reducing agent
and efficient stabilizer. The SnO2-ZnO-eggshell nanocompos-
ites were characterized by EDX, SEM, TEM and XRD to
study the chemical elemental composition, morphology and
crystalline size of the biosynthesized nanocomposites. The
SnO2-ZnO-eggshell nanocomposites were employed as an ef-
ficient adsorbent for the removal of Hg(II) ions. The influence
of several parameters, including pH value, the dose of catalyst,
initial metal concentration of Hg(II) ions, catalyst type,
existing other ions on adsorption capacity of Hg(II) using

SnO2-ZnO-eggshell nanocomposites were investigated. The
obtained results confirmed the high ability of SnO2-ZnO-egg-
shell nanocomposites in the removal of Hg(II) from aqueous
solution, so that after only 5 minutes, the removal percentage
and adsorption capacity approached to 100% and 400 mg.g-1,
respectively. The use of eggshell as a bio-waste and natural

Fig. 12 TEM image of reused SnO2-ZnO-eggshell nanocomposites after
three times

Fig. 11 Hg(II) adsorption
efficiency using SnO2-ZnO-
eggshell nanocomposites in three
consecutive cycles (C0 =
200 mg.L− 1, dose of catalyst =
0.05 g, t = 5 min, and T = 298 K)
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support not only prevented the aggregation of SnO2 and ZnO
nanoparticles but also improved the adsorption activity of
nanocomposite for efficient removal of Hg(II) ions.
Furthermore, the SnO2-ZnO-eggshell nanocomposites
showed higher selectivity for adsorption of Hg(II) ions than
the other metal ions. Also, the SnO2-ZnO-eggshell nanocom-
posites could be recycled three times without considerable
loss in their adsorption activity. The high stability and dura-
bility of SnO2-ZnO-eggshell nanocomposites during the ad-
sorption process were confirmed by the comparison of the
TEM image of the reused nanocomposites after three cycles
with fresh ones. Generally, SnO2-ZnO-eggshell nanocompos-
ites were the efficient and green-based adsorbent for the re-
moval of Hg(II) ions. The present study includes diverse ad-
vantages such as eco-friendly protocol, optimal use of bio-
waste materials, simple conditions and excellent adsorption
capacities as same as short adsorption times.
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