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Unobtrusive detection 
of Parkinson’s disease 
from multi‑modal and in‑the‑wild 
sensor data using deep learning 
techniques
Alexandros Papadopoulos1*, Dimitrios Iakovakis2, Lisa Klingelhoefer3, 
Sevasti Bostantjopoulou4, K. Ray Chaudhuri5, Konstantinos Kyritsis1, Stelios Hadjidimitriou2, 
Vasileios Charisis2, Leontios J. Hadjileontiadis2,6 & Anastasios Delopoulos1

Parkinson’s Disease (PD) is the second most common neurodegenerative disorder, affecting more 
than 1% of the population above 60 years old with both motor and non-motor symptoms of escalating 
severity as it progresses. Since it cannot be cured, treatment options focus on the improvement of 
PD symptoms. In fact, evidence suggests that early PD intervention has the potential to slow down 
symptom progression and improve the general quality of life in the long term. However, the initial 
motor symptoms are usually very subtle and, as a result, patients seek medical assistance only when 
their condition has substantially deteriorated; thus, missing the opportunity for an improved clinical 
outcome. This situation highlights the need for accessible tools that can screen for early motor PD 
symptoms and alert individuals to act accordingly. Here we show that PD and its motor symptoms 
can unobtrusively be detected from the combination of accelerometer and touchscreen typing data 
that are passively captured during natural user-smartphone interaction. To this end, we introduce 
a deep learning framework that analyses such data to simultaneously predict tremor, fine-motor 
impairment and PD. In a validation dataset from 22 clinically-assessed subjects (8 Healthy Controls 
(HC)/14 PD patients with a total data contribution of 18.305 accelerometer and 2.922 typing sessions), 
the proposed approach achieved 0.86/0.93 sensitivity/specificity for the binary classification task of HC 
versus PD. Additional validation on data from 157 subjects (131 HC/26 PD with a total contribution of 
76.528 accelerometer and 18.069 typing sessions) with self-reported health status (HC or PD), resulted 
in area under curve of 0.87, with sensitivity/specificity of 0.92/0.69 and 0.60/0.92 at the operating 
points of highest sensitivity or specificity, respectively. Our findings suggest that the proposed 
method can be used as a stepping stone towards the development of an accessible PD screening tool 
that will passively monitor the subject-smartphone interaction for signs of PD and which could be used 
to reduce the critical gap between disease onset and start of treatment.

Parkinson’s Disease (PD) is a progressive long-term neurodegenerative disease that affects about 7 million people 
globally1,2. In its early stages, it mainly manifests through motor symptoms, such as tremor, bradykinesia and 
rigidity3. Even though the disease itself is incurable, early diagnosis has been linked to improved clinical out-
comes, as the early stage symptoms can be managed more effectively, through appropriately targeted medical4 or 
physical5 interventions, thus limiting their progression rate and increasing the patient’s chance for an improved 
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quality of life in the long run. Unfortunately, early motor signs of PD are so mild that patients often ignore them, 
causing the condition to remain under the radar for a critical period of time that could otherwise be exploited. 
This emphasizes the need for an accessible tool that will monitor subjects remotely, unobtrusively and through-
out their daily routine and urge them to visit a doctor if it detects motor symptoms that could be attributed to 
an early PD onset.

In current clinical practice, screening a potential patient for PD involves the use of the Unified Parkinson’s 
Disease Rating Scale (UPDRS)6. The latter captures specific aspects of motor behaviour through a structured 
neurological examination, as well as certain aspects of daily life through a self-evaluation interview. The motor 
examination (UPDRS Part III) is conducted by a neurologist and contains a series of tests that attempt to quan-
tify, in an increasing scale of 0 to 4, the severity of each item in the PD motor symptomatology. The sum of the 
individual symptom scores is then used as a total PD score. Subsequent evaluations of the UPDRS at large time 
intervals, serve as a way of monitoring the longitudinal course of the disease.

Harnessing the sensors embedded in off-the-shelf smart devices for healthcare applications is an emerging 
area of research, fueled by the proliferation and wide availability of such devices7,8. Most works in the literature 
attempt to infer PD from single symptom cues that are estimated from sensor data collected during tests that 
require the user’s active participation9–11. However, inferring PD from the presence of a single symptom is not 
reliable, as the disease may manifest with different symptoms in each patient3, while the need of active engage-
ment may also negatively affect adherence to the data collection protocol12.

In this study, we take a first step towards a data-driven approach for the early detection of PD by developing 
a screening methodology that is based on how a subject interacts with his/her smartphone during everyday life. 
Here we aim to detect PD using a multi-symptom approach that merges passively-captured data from two differ-
ent smartphone sensors via a novel deep learning framework. Our method is inspired by the typical workflow of 
a neurologist, in the sense that it outputs a score for tremor and fine-motor impairment (FMI), two of the most 
common PD motor symptoms, as well as a score for PD. To that end, we use two sources of data: the tri-axial 
acceleration values obtained from the Inertial Measurement Unit (IMU) sensor of the smartphone and the key-
stroke timing data (press and release timestamps of each keystroke) captured during typing with the smartphone’s 
virtual keyboard. The accelerometer data are used to monitor the subject for hand tremor, while the typing data 
are used to detect signs of FMI during typing. Both data sources are captured passively and unobtrusively when 
the users perform common actions with their phone, i.e., when they place phone calls or when they type across 
smartphone applications that require typing interaction. For analysing the collected data, we design an end-to-
end system based on deep learning13, that digests the multi-modal set of signals contributed by a subject and 
reduces it to a single fixed-length vector that is then used for multi-label subject classification. More specifically, 
the learning system digests the subject-smartphone interaction data and predicts the probability that the subject 
has tremor, FMI and PD. In this framework, each subject is represented by his/her Postural Accelerations (PA) 
and Typing Dynamics (TD) bags (unordered sets of data instances). The PA bag consists of tri-axial acceleration 
signal segments of fixed length, while the TD contains the keystroke timing dynamics of each typing session, in 
the form of the Flight Time (FT) (the time between releasing a key and pressing the next) and the Hold Time 
(HT) (the time interval between pressing and releasing a key) histograms for all the keystrokes in a session. The 
network processes these inputs via a sequence of feature extraction, attention pooling and classifier modules 
to ultimately transform them into probabilities for tremor, FMI and PD. A high-level overview of the overall 
system is presented in Fig.  1.

Our approach differs from all the works in the related literature (described in detail in Section Discussion) in 
being the first to consider the problem of automated PD detection based on multiple data sources, and covering 
different PD motor symptoms, that are unobtrusively captured from the user’s personal smartphone during the 
stochastic conditions of daily living (data in-the-wild). Validation of the proposed approach on two data sets, 
i.e., one with in-the-wild data from 22 clinically-assessed subjects (8 Healthy Controls (HC)/14 PD patients) 
and another with in-the-wild data from 157 subjects with self-reported PD status (131 HC/26 PD), justified the 
efficiency of our approach, reaching 0.93/0.86 sensitivity/specificity and an Area Under Curve (AUC) around 
0.87, respectively on each dataset. These encouraging results promote the fusion of ecologically captured data 
from multiple sources during smartphone use, as an enhanced informative medium for PD screening.

Results
To evaluate our approach, we perform experiments on two datasets: a small, clinically-validated set of 22 subjects 
(14 PD patients and 8 healthy controls), for whom clinical scores are provided by movement disorders experts, 
and a large dataset of 157 subjects, for whom only a self-report of whether they have been diagnosed with PD 
is available. We will refer to the small dataset as SData set and to the large dataset as GData set. These terms 
originate from the two data collection studies that were introduced in the i-PROGNOSIS project14 and which 
generated the datasets used in this work. The demographics of both datasets are presented in Table 1. A detailed 
account of the data collection methodology is given in Section Collection of the SData and GData sets.

In the first experiment, we employ a Leave One Subject Out (LOSO) validation scheme on the SData set. In 
a given LOSO iteration, we set aside the data of an SData subject and train a model using the data of the rest. 
The trained model is then used to predict the label of the left-out subject. The process is repeated so that all 
SData subjects are used for validation exactly once. The classification metrics of each LOSO iteration are col-
lected and the average classification performance across them is measured and reported. The resulting metric 
is a nearly unbiased estimator of the model’s probability of error15. To account for the inherent randomness in 
neural network initialisation, we repeat model training 10 times for each left-out subject. We report the aver-
age performance metrics from this experimental setup in Table 2. We also compare the average performance of 
the fused model in the tasks of tremor and FMI detection, with the standalone symptom models that emerge 
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during the single-label pre-training step of the unfused model branches. As we can see by comparing the two 
distinct parts of Table 2 with respect to the Tremor and FMI targets, the joint training of the fused model with 
the multi-label target seems to improve the average performance of the individual symptom detection ( average 
improvement of ∼ 3% in some performance metrics without deterioration in the rest over all LOSO iterations 
and random model initialisations), in addition to accurately predicting PD itself. A statistical significance test, 
comparing the f1 scores between the 2 models, showed that the fused model is significantly better at tremor 
prediction with p < 0.001 and better at FMI prediction with p = 0.12 . However, owing to the small number of 
samples for the t-test, these p values should be interpreted with caution.

For the second experiment, we train an ensemble of 10 models using all the subjects from the SData set and 
use it to predict the PD status of the subjects in the GData set. We use the average score of the individual models 
of the ensemble as the PD score for a subject. We summarise the ensemble’s performance by means of the Area 
Under Curve (AUC) metric. This resulting Receiver Operating Characteristic (ROC) curve is depicted in Fig.  2. 
The AUC score along with the sensitivity/specificity metrics at the operating points of high sensitivity and high 
specificity are presented in Table 3. The high sensitivity operating point is usually selected if high positive predic-
tion accuracy is more desirable than the need of minimising false positives. For example, a system that aims to 
identify as many PD patients as possible without worrying about scaring otherwise healthy users, will operate at 
the high sensitivity point. On the other hand, the high specificity point is preferred if limiting the number of false 
positives is more important. For example, a system that intends to alert subjects only when it is very confident 
of its prediction, will operate at the high specificity point.

As we can see in Table 1, the mean age of the healthy controls is significantly lower than the PD population. 
Age is an important covariate for PD, whose influence must be eliminated in the experimental procedure, in 
order to ensure that the resulting model indeed detects PD and not some proxy of age. To mitigate this issue, 
we performed an additional experiment, in which we randomly generated age-matched (within a tolerance of 
2.5 years) subsets of the GData set and computed the mean AUC across them. The average AUC for 10 of such 

Figure 1.   High-level overview of the deep learning system. Both input streams, represented by the 
Postural Accelerations (PA) and Typing Dynamics (TD) bags, consist of multiple data recordings ( K1 and 
K2 , respectively) that are transformed independently using a feature extraction module. The resulting 
M-dimensional features are used to produce a fixed-length embedding (also M-dimensional) using an attention-
pooling module. The embeddings for each modality are fused together via a sum operation to produce the 
subject embedding, which is then used as input to a multi-label classifier module that outputs the probability 
of tremor, fine-motor impairment (FMI) and PD. Initially, the feature extractors and attention modules of the 
two modalities are separately pre-trained against the respective symptom ground-truth (tremor or FMI), using 
a temporary single-output classifier module. After pre-training, the initial classifier modules are discarded, the 
feature extraction and attention modules are frozen, the embedding vectors are joined and a new multi-output 
final classifier module is introduced and is fine-tuned using a multi-label logistic loss function (Eq. 4). C denotes 
the number of accelerometer channels, W the length in samples of each segment in the PA bag and BHT ,BFT the 
number of bins for the hold and flight time histograms. Values for all parameters are given in Methods. Figure 
was drawn using Inkscape v1.0 https​://inksc​ape.org/.

https://inkscape.org/
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subsets is given in the relevant column of Table 3. We limit this procedure to the GData set, as it contains a 
larger number of subjects and, therefore, allows us more flexibility in generating appropriate subsets for testing. 
However, we believe that the fact that a model which was trained on the age-imbalanced SData set, generalises 
well on the age-corrected GData set, serves as adequate proof. Finally, this conclusion is also supported by the 
fact that using age as a PD predictor in the GData set, yields an AUC of ∼ 0.71 (with a 95% CI of 0.588–0.814), 
that is significantly less than the AUC of ∼ 0.87 achieved by the model.

Table 1.   Demographics and symptom information for the PD patient (PD) and Healthy Control (HC) 
populations of the two datasets (SData and GData) used in our experiments. Reported symptom scores include 
UPDRS items 16 (tremor self-report), 20 (hand rest tremor), 21 (hand action tremor), 22 (hand rigidity), 23 
(finger tapping) and 31 (body bradykinesia), as well as the sum of all UPDRS part-III items. Scores for UPDRS 
20–23 refer to the sum of both hand scores. UPDRS scores are not available for the GData set, as the GData 
subjects did not undergo a medical examination. The age corrected GData column contains the demographics 
of a typical random GData subset, sampled in such a way that the mean age of the HC population lies within 
± 2.5 years of the mean age of the PD population (note: the maximum value of 12 in the total UPDRS-III score 
in the Healthy Control population is caused by a subject that exhibits arthrosis and other problems unrelated 
to PD.) LEDD stands for Levodopa Equivalent Daily Dose.

Count

SData set GData set
GData set (age 
corrected)

HC PD HC PD HC PD

8 14 131 26 75 26

Age 50.5 (9.0) 60.7 (9.8) 54.5 (10.0) 62.5 (8.9) 60.0 (9.5) 62.5 (8.9)

Gender (female/male) 4/4 3/11 55/76 12/14 35/40 12/14

Years diagnosed (mean, std) – 7.5 (3.6)

Years diagnosed [min, max] – [1, 20] Not available

PD medication intake (yes/no) 0/8 13/1

LEDD in mg (mean, std) 0 (0) 510.7 (379.9)

LEDD in mg [min , max] [0, 0] [0, 1291]

UPDRS 16 mean (std) 0.1 (0.3) 1.3 (1.1)

UPDRS 16 [min, max] [0, 1] [0, 4]

UPDRS 20 mean (std) 0.0 (0.0) 1.4 (1.4)

UPDRS 20 [min,max] [0, 0] [0, 5]

UPDRS 21 mean (std) 0.0 (0.0) 1.2 (1.9)

UPDRS 21 [min, max] [0, 0] [0, 7]

UPDRS 22 mean (std) 0.2 (0.4) 2.2 (1.8) Not available

UPDRS 22 [min, max] [0, 1] [0, 7]

UPDRS 23 mean (std) 0.2 (0.6) 2.2 (1.5)

UPDRS 23 [min, max] [0, 2] [5, 5]

UPDRS 31 mean (std) 0.2 (0.4) 1.2 (0.4)

UPDRS 31 [min, max] [0, 1] [1, 2]

Total UPDRS-III (mean, std) 1.7 (2.5) 21.1 (15.0)

Total UPDRS-III [min, max] [0, 12] [3, 62]

Table 2.   Classification performance for the LOSO experiment on the SData set. For each predicted label 
(tremor, FMI and PD) we report the average sensitivity, specificity and precision across 10 independent 
experimental trials. The first two rows present the predictive performance of standalone symptom classifiers. 
Such models arise during the initial pre-training step, when the separate branches that comprise the total 
model are separately trained against a single symptom label (the pre-training procedure is described in detail 
in Section Training details). The rest of the table, presents the performance of the fused multi-label classifier.

Classifier Target Sensitivity Specificity Precision

Tremor Tremor 0.827 0.909 0.901

FMI FMI 0.866 0.800 0.902

Fused multi-label

Tremor 0.854 0.936 0.930

FMI 0.866 0.842 0.922

PD 0.928 0.862 0.921
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Finally, our method provides an elegant way of visualising the instances of a bag that contain the relevant 
symptom. The attention mechanism that is used for pooling the individual data instances of a bag into a single 
vector representation, (a process described in detail in “Problem formulation” section ) assigns a different weight 
to each data instance, so that instances with large weights contribute more to the resulting representation. By 
examining the instances that receive large weights versus those that receive smaller weights, we can identify which 
of the instances in the bag contain the relevant symptom and which are symptom-free. We provide examples of 
such visualizations for both the PA and the TD bag of a subject in Fig. 3a,b respectively.

Discussion
The problem of automated PD detection has received much attention in recent years. A wide range of sensors have 
been suggested to capture specific aspects of the PD-related symptomatology, such as IMU sensors for detecting 
gait alterations16–19 and hand tremor10,20–23, microphones for identifying incidents of speech impairment24–27, 
keyboards (mechanical or virtual)11,28,29 for detecting rigidity and bradykinesia, and writing equipment9,16,30 for 
estimating the level of fine motor impairment.

The common denominator in all these studies is that they attempt to infer PD from single symptom cues. 
This is inherently problematic, since PD manifests differently in different subjects3. Consequently, subjects that 
do not exhibit the targeted symptom, but are still PD positive, are bound to be missed by such a system. This 
naturally leads to the conclusion that, in order to have a high-performing PD detection system, the fusion of 
multiple sources of information, covering different PD symptoms, is necessary. Unfortunately, in this case the 
research landscape is rather desolate, with only a handful of works addressing the problem in such perspective. 
For instance, one very early work16 suggested to combine handwriting and gait features, leading to improved 
PD classification performance over the unfused features. A more recent work31 introduced a method based on 
multi-view representation learning to jointly learn handwriting and gait features and use them alongside speech-
based features to improve PD classification and prediction of the patient neurological state. This idea was further 
developed in32 and an approach to combine speech, handwriting and gait information was proposed based on 
training separate Convolutional Neural Networks (CNNs) for each modality and then merging features from 

Figure 2.   ROC curve obtained by using an ensemble of 10 models trained on the SData set ( n = 22 ), to infer 
PD on the GData set ( n = 157 ). The corresponding AUC is 0.868 with a 95% confidence interval of 0.773–0.948. 
Figure was drawn using Inkscape v1.0 https​://inksc​ape.org/.

Table 3.   Experimental results of an ensemble of 10 fused multi-label models trained on the SData set ( n = 22 ) 
and evaluated on the GData set ( n = 157 ) for the detection of PD. The AUC in the age corrected GData 
column refers to the mean AUC across 10 randomly generated, age-matched GData subsets (as such, we do not 
report performance metrics values at the two operating points for this experiment).

Operating point Metric GData GData (age corrected)

High sensitivity (> 0.9)
Sensitivity 0.920

Specificity 0.689

High specificity (> 0.9)

Sensitivity 0.600

Specificity 0.917

AUC​ 0.868 0.834

https://inkscape.org/
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the last hidden layer of each CNN, to produce a single feature vector for each subject. The resulting vector was 
ultimately used as input to a non-linear Support Vector Machine (SVM) that performed the final classification.

Our work here also follows a multi-modal approach towards PD detection, yet significantly differs from previ-
ous works in a number of ways. In particular: i) In many previous works, data collection took place through the 
use of specialised equipment, such as body-worn sensors for capturing gait information17,32, physical keyboards 
for capturing keystroke dynamics11 and drawing tablets32 or even pen and paper30 for collecting handwriting 
data. Our approach, on the other hand, captures PD-related data by utilising the IMU sensor and the virtual 
keyboard embedded in the subjects’ personal smartphones. ii) The subjects in almost all previous works had to 
follow scripted self-initiated data capture scenarios, such as performing specific actions, like writing or resting 
for some minutes20,21,33, pronouncing specific words and sentences25,34, drawing specific shapes9,30 or transcribing 
given text excerpts11,28. Apart from our two previous works23,29, that collect uni-modal data in-the-wild, only one 
other work35 considers the unscripted data collection problem. However, it does so limited to a home environ-
ment and involves very low scale experiments (as little as 2 PD patients), while also employing a custom-made 
body-worn system of accelerometers and motion sensors. Our approach differs from all the existing literature, 
by being the first to consider the problem of simultaneously detecting PD and its symptoms from multi-modal 
data captured unobtrusively and in-the-wild, using the readily available sensors of modern smartphones. The 
combination of these properties facilitates user engagement and enables the development of a remote PD screen-
ing tool that can be deployed in large-scale and for long time periods.

To that end, we proposed an end-to-end trainable deep learning framework, consisting of independent build-
ing blocks, such as feature extractors and attention pooling modules, that outputs binary predictions for tremor, 
FMI and PD. The introduction of attention offers an elegant way of modelling the fluctuating nature of some 
PD symptoms, which can be caused by symptom-alleviating medication or can be inherent to some symptoms 
(for instance tremor increases in stressful situations and alleviates in relaxed situations). In addition, by visualis-
ing the instances in a data bag that have received large attention weights, we can identify the specific data that 
contributed to the model’s predictive functionality, thus, adding a degree of interpretability to the approach. We 
provide examples of such visualizations for both the acceleration (Fig. 3a) and the typing modalities (Fig.  3b).

The resulting model achieved 92.8% sensitivity and 86.2% specificity for PD detection in a LOSO experiment 
with 22 subjects, averaged over 10 random trials, while also performing equally well for the tasks of tremor and 
FMI detection (Table 2). We also showed some evidence that the joint multi-label training objective is beneficial 
for the secondary symptom detection tasks as well, based on the difference in performance between the initially 
pre-trained symptom classifiers and the final multi-label model. To account for the small number of subjects 
in the first experiment, we extended our analysis to a larger dataset of 157 subjects, where we showed that an 
ensemble of 10 models trained on the initial 22 subjects, was able to generalise well, achieving an AUC of 0.868 
(with a 95% confidence interval (CI) of 0.773–0.948) over the total dataset and an average AUC of 0.834 over 10 
random age-matched subsets (Table 3), for the task of PD detection. In general, while the results of both experi-
ments are very encouraging, future work will aim for a larger set of newly-diagnosed PD patients, as well as an 

(a) (b)

Figure 3.   Visualization of bag instances that receive the highest and lowest attention weights by the proposed 
model. Figures were drawn using Inkscape v1.0 https​://inksc​ape.org/. (a) View of the tri-axial (x-axis: blue, 
y-axis:orange, z-axis: green) accelerometer segments corresponding to the two highest (top row) and two lowest 
(bottom row) attention weights assigned by the model, for a PD subject that exhibits tremor. As we can see, the 
model assigns larger attention weights ak to the acceleration segments that contain sinusoidal components in the 
PD tremor frequency band of 3–8Hz (top row) and low weights to segments that lack such patterns (bottom left) 
or whose frequency content is outside the target frequency band (bottom right). (b) View of the hold and flight 
time histograms (smoothed for visualization purposes via a kernel-density estimator) corresponding to the two 
highest (top row) and two lowest (bottom row) attention weights for a PD subject that exhibits FMI. Notice how 
the model assigns large attention weights to typing sessions in which the hold and flight time distributions are 
multi-modal and shifted towards regions of slower typing, in contrast to the sessions that receive little attention 
and in which the distributions are unimodal and located at regions of faster typing.

https://inkscape.org/
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enriched pool of healthy controls, so that the model’s classification performance can be estimated more accu-
rately for subjects at the early PD stages or for healthy controls with PD-like symptoms, such as essential tremor.

Aside from its performance, one of the most attractive properties of the proposed framework is its extend-
ability, i.e., due to its modular structure, it is rather straightforward to incorporate additional data modalities 
under the same architecture. For instance, a third branch that would process speech information, using separate 
feature extraction and attention modules, could be readily added without compromising the model’s end-to-end 
nature, while reaping the apparent benefits of the joint multi-modal training scheme. In addition, fusing the 
different modalities together by summing their embeddings, makes sure that the dimensionality of the input to 
the final classifier does not increase as new modalities are added (which would be the case if we concatenated 
the embeddings). Apart from keeping the dimensionality low, the most important aspect of this design choice is 
that it theoretically enables us to perform training and inference in the presence of missing data; hence, should 
a subject lacks data for one or more modalities, we can simply compute his/her final embedding by summing 
the embeddings of the modalities for which s/he did provide data. While definitely not optimal, this procedure 
allows us to utilise any incomplete data that would otherwise be unusable.

A limitation of our approach is that, in its current form, it may lead to false positive PD predictions even in 
cases where the symptom detection is performed correctly. In fact, it is natural for a healthy subject to exhibit 
some symptom from the PD motor symptomatology. For example, tremor is associated with many other condi-
tions and in some cases it may not even be caused by pathological factors36 (e.g., physiological tremor). However, 
should that single symptom be detected, our model will classify such subjects as having PD. This emanates from 
the relatively small size of the training set, in which almost all the healthy controls, in addition to being PD nega-
tive, did not exhibit any of the examined PD symptoms. As such, the model is likely to associate even a single 
symptom with a positive PD case. As far as we can see, there are two main directions of improvement, that could 
alleviate the impact of this issue: a) acquisition of new training examples that cover these specific cases, and b) 
incorporation of additional data modalities, so that any predictions are based on a more complete view of the 
subject. As these directions are complementary to each other, they can be pursued independently.

A more technical problem arises as more data are collected per subject. At the moment, the data contribu-
tion of a subject is transformed into bags of a fixed maximum size. The bag size parameter is large enough so 
that the produced bags contain most of the contributed data. In addition, filtering mechanisms are used to 
reduce the effective bag size (Sections Postural Accelerations bag creation, Typing Dynamics bag creation). These 
mechanisms implement some ranking criterion and are used to discard instances that are deemed to be of little 
interest. However, as the collected data increase, the amount of instances that is discarded, in order to keep the 
bag size fixed, also becomes greater. This can eventually lead to loss of significant information. For example, for 
a subject with mild symptoms and a large data contribution the resulting bag may ultimately not contain the 
informative sessions, due to the max bag size constraint. On the other hand, increasing the bag size imposes a 
substantial computational overhead during both training and inference. The development of more robust filter-
ing mechanisms during the bag creation step, could help mitigating this issue. Alternatively, we could consider 
a reformulation of the problem, in which each subject participates with multiple data bags. In such a case, the 
attention mechanisms would be applied in two levels: both within each bag (as is the case currently) and across 
the different bags (as some bags may be completely symptom-free). Although this approach would severely 
complicate the model architecture, we believe it could serve as a viable alternative.

We have presented a framework for the remote detection of PD, tremor and fine-motor impairment based on 
smartphone-derived sensor data captured completely unobtrusively and in-the-wild. We believe our work is the 
first to address the problem of detecting PD and its symptoms from multi-modal data under these conditions. 
Performance-wise, our approach produced good classification results in two real-world datasets of varying size. 
The discussion of the previous paragraphs outlined an abundance of potential future work, such as the incorpo-
ration of new data modalities, like speech, and the adaptation of the framework to handle missing data, as well 
as specific interventions targeting the system’s week spots. Nonetheless, we believe that the proposed approach 
is a solid first step towards a high-performing remote PD detection system that will be used to unobtrusively 
monitor a subject and urge them to visit a doctor if it detects signs of PD.

Methods
Postural accelerations bag creation.  Prior to the actual training procedure, the sensor data contributed 
by the subject must be expressed in a form that can be analysed by the network. In the case of the acceleration 
modality, the data contribution is summarised as a set of fixed-length acceleration signal segments, namely the 
postural accelerations bag. Transforming the captured raw, variable-length accelerometer recordings to the PA 
bag involves a pre-processing and a selection step, similar to our earlier work23. First, problematic recordings 
are discarded. As problematic we characterise recordings with: (a) duration less than 20 s, (b) very low sampling 
frequency (< 50Hz) , (c) extreme acceleration values ( > 100m/s2) , or d) too many missing values. Recordings 
that pass the pre-rejection step are resampled to 100 Hz using polyphase resampling. A 5-s segment is trimmed 
from both ends of the signal as a rough solution to remove the segments that correspond to gestures of picking 
up or hanging up the phone. The gravitational component of the acceleration is also removed using a high pass 
FIR filter of order 512 with cutoff frequency at 1 Hz. The signal is then segmented into non-overlapping windows 
of 5s (hence, w.r.t Fig. 1, the segment length in samples, W, equals 500 and the number of acceleration channels, 
C, equals 3) and the segments whose energy across channels is below a threshold of 0.15(m/s2)2 are discarded. 
The surviving segments are added to the pool. After repeating this process for all recordings of a subject, the 
resulting pool of segments is sorted in descending order according to the segments energy in the frequency 
band of PD tremor (3–7 Hz37) and the top K1 = 1500 segments are kept, resulting in a PA bag of the form 
X = {x1, x2, . . . , xK1} , where xk ∈ R

C×W corresponds to an acceleration segment. Bags that contain fewer than 
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K1 segments, are zero-padded to reach that length and a masking mechanism is implemented within the model 
so that only the actual data are used in the computations. On the other hand, subjects that end up with less than 
five segments in their bag (before the zero-padding step) are discarded altogether. Values for the aforementioned 
hyperparameters were selected based on previous work23.

Typing dynamics bag creation.  Similar to the acceleration modality, the typing data contribution of the 
subject is summarised as a set of keystroke timing information, i.e. the typing dynamics bag. In this case, each 
contributed recording corresponds to one instance in the TD bag. A single data recording includes the press 
and release timestamps of keys tapped during a typing session, with a session defined as the interval between a 
foreground appearance of the software keyboard and its subsequent disappearance. Given the press and release 
timestamps of a session, the first step is to compute the Hold Time (HT) for each key and the Flight Time (FT) to 
the next key. Through this process, the series of timestamps is transformed to a series of 2-tuples, each represent-
ing a keystroke in the given session. Since the number of keystrokes in each session may be different, an additional 
step is required, in order to make sure that all the instances in the resulting bags are of the same dimensions. To 
this end, we keep only typing sessions with at least 40 keystrokes and compute the normalised histograms of the 
hold and flight times, using 10ms bins in the range of [0, 1]s for hold time and [0, 4]s for flight time (hence, w.r.t 
Fig. 1 the number of HT bins, BHT , equals 100 and the number of FT bins, BFT , equals 400). The upper limits for 
these ranges were selected based on previous work28. Ultimately, the two histograms are concatenated to form a 
single vector. The resulting session vectors are then sorted in descending order based on their keystroke count, 
and the top K2 = 500 are kept to form the TD bag of the subject, that is of the form X = {x1, x2, . . . , xK2} , where 
xk ∈ I

BHT+BFT corresponds to the concatenation of the HT and FT histograms of a session. Similarly to the PA bag 
creation process, any bags that contain fewer than K2 instances are zero-padded up to that length and a masking 
mechanism is used to disregard the padding in the computations. Finally, we impose a minimum contribution of 
five valid typing sessions (with >= 40 keystrokes) for a subject to be considered in our experiments.

Problem formulation.  We formulate the problem of detecting PD and two of its most relevant motor 
symptoms as a Multiple-Instance Learning (MIL) problem38. MIL is a supervised learning framework that allows 
us to learn mappings of the form f : 2RN

�→ {1, . . . ,C} , that is, mappings of an entire set X = {x1, x2, . . . , xK } 
with xi ∈ R

N to the set of class labels, given only access to the ground truth of the entire set X. This learning situ-
ation naturally accommodates the needs of a system targeting PD, as not all data contributed by a PD patient are 
expected to contain signs of the disease. This can attributed to a number of factors, such as the unilateral mani-
festation of symptoms combined with operating the smartphone with the unaffected hand, the use of symptom-
alleviating medication or the inherent intermittence of some symptoms, like tremor.

We adopt the attention pooling mechanism that was proposed for the MIL task39. This mechanism arises as a 
specific case of a general theoretic result40, stating that any permutation-invariant set function can be described 
as a sum-decomposition of the form f (X) = ρ(

∑

x∈X φ(x)) for some suitable transformations ρ,φ . Stepping 
on this result, the incorporation of weights in the sum operation was proposed39:

where the weights αk are obtained via an additive attention mechanism41

In practice, the parameters φ, ρ,V,wT of the function f are modelled using neural networks whose weights are 
learnt through stochastic gradient optimization techniques (specific details about the neural architectures used 
in this work are given in Section Component architecture).

Here we apply this approach separately to each data source up to the attention pooling stage and fuse 
the resulting embeddings ( z vectors) into a unified representation. To that end, we define a mapping 
f : (2R

K1 , 2R
K2
) �→ [0, 1]3 , that maps two sets of maximum length K1 and K2 respectively, to a vector of three 

elements in the [0, 1] interval. Using the attention MIL framework, the mapping f takes the following form:

where

In the above notation, X1 corresponds to the Postural accelerations (PA) bag of a subject and X2 to its Typing 
Dynamics (TD) bag. As we can see, each modality has its own feature extractor ( φ function) and attention 
parameters ( α coefficients), while the function ρ is common (the final classifier module in Fig. 1). The final 
output of the function f is a vector of length three, where each element denotes the probability that a subject is 

(1)f (X) = ρ(z) = ρ

(

K
∑

k=1

akhk

)

= ρ

(

K
∑

k=1

akφ(xk)

)

(2)ak =
exp (wT tanh (VhTk ))

∑K
k=1 exp (w

T tanh (VhTk ))

(3)





p
�

ytr = 1|X1,X2

�

p
�

yfmi = 1|X1,X2

�

p
�

ypd = 1|X1,X2

�



 = f (X1,X2) = ρ(z) = ρ(z1 + z2)

Xi = {xi1, xi2, . . . , xiKi }, zi =

Ki
∑

k=1

αikφi(xik), i ∈ {1, 2}
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positive for either tremor, FMI or PD, given their accelerometer and typing dynamics data (represented by X1 
and X2 respectively).

Collection of the SData and GData sets.  Data collection was carried out via a dedicated Android 
application, developed in the context of the i-PROGNOSIS project14. Two separate studies were conducted that 
resulted in the two datasets used in this work. In the GData study, the data collection application was made avail-
able through Google Play store in Germany, Greece, Portugal, United Kingdom, Spain, Austria and Australia, 
after receiving ethical approval by the responsible ethics committee in each country. Each participating subject 
installed the app on their own smartphone via this channel and, after providing electronic consent and some 
metadata such as their PD status, age and gender, used it to provide data for a time period ranging from a few 
days up to several months. Subjects were free to withdraw their consent or drop out at any time. The pool of sub-
jects that donated their data through this procedure, formed the GData set (Table 1). At the same time, a smaller 
group of users, limited to Greece, Germany and the United Kingdom, was explicitly recruited in order to serve as 
a clinically-validated set. This group differed from the GData set in that, in addition to using the data collection 
app, they also underwent a full clinical examination by a movement disorders expert, following a standardised 
medical evaluation protocol42 that included two UPDRS evaluations, typically separated by a period of 8 months. 
This group of participants formed the SData set (Table 1), a well-defined set of PD patients and healthy controls, 
diagnosed by a movement disorders specialist according to the MDS clinical diagnostic criteria for PD43. There-
fore, for subjects in the SData set, detailed symptom scores were available (in addition to their PD diagnosis).

One core requirement was to capture data passively, so as to enable unobtrusive screening for PD. To that 
end, data were recorded automatically when subjects performed certain actions with their personal smartphones. 
Specifically, accelerometer data were captured whenever a phone call was received or made by the subject. An 
upper threshold of 75s was set for this type of recording in order to preserve battery life. Keystroke timing data 
were recorded by a custom software keyboard, developed for the needs of the study and bundled with the Android 
application. Whenever the subject used the custom keyboard to type, two timestamps were captured per key 
tap, one indicating the down time (the moment that the virtual key was pressed) and the other indicating the 
uptime (the moment that the key was released). The typed content was never captured. Data captured from both 
modalities, along with some pseudo-anonymised metadata, were temporarily stored on the smartphone database 
and eventually uploaded to a remote server, when the phone was deemed to be idle.

In general, there is a discrepancy between the pool of users that contributed accelerometer data and the pool 
of users that contributed keystroke timing data. This can be attributed to a number of reasons. First of all, subjects 
were at liberty to disable data collection for either one of the two modalities. Moreover, in order to contribute 
keystroke timing data, subjects had to activate the custom keyboard and use it as the default keyboard across 
applications. Certain subjects decided not to proceed with this action, probably due to familiarity with their 
keyboard of choice. Finally, there were subjects that did not contribute an adequate amount of data in either 
modality and were consequently not included in the analysis process. Specific contribution requirements for each 
data source are given in “Postural accelerations bag creation” and “Typing dynamics bag creation” sections. The 
discrepancy between the two cohorts can be quantified, by cross-examining the content of Tables 4 and 5, that 
present the demographics for the contributors to each data source separately, against the SData part of Table 1, 
that presents the demographics of the user pool that provided data from both sources.

Training details.  Due to the nature of the data collection process (Section Collection of the SData and 
GData sets), some subjects contributed data for only one of the two modalities. Thus, in order to better utilise all 
the available data, we perform an initial pre-training step, during which, the two distinct branches of the overall 
model (acceleration and typing branch in Fig. 1) are trained separately on the entire pool of SData subjects that 
contributed data for that modality, using only the respective symptom label as target. After this pre-training step, 
the feature extraction and attention modules of each modality are frozen and their initial classifier modules are 
discarded The two branches are merged via summation of their embeddings and a new, common final classi-
fier module with three outputs is introduced and trained from scratch using the subjects that contributed both 
sources of data, i.e., the intersection of the two sets of subjects used for pre-training. Training in this stage is 
performed using a multi-label approach. The total loss function is defined as the sum of the three binary cross-
entropy losses for each model output p(yi|X1,X2) against the corresponding target label yi:

Table 4.   Clinically-assessed subjects that contributed typing data. All values (except count) refer to the 
population mean, with the standard deviation given inside parentheses.

Healthy controls PD patients

Count 9 16

Age 49.6 (8.8) 60.5 (9.3)

Years diagnosed - 6.8 (3.8)

UPDRS 22 (hand rigidity) 0.2 (0.4) 2.2 (1.7)

UPDRS 23 (alternate finger tapping) 0.2 (0.6) 2.0 (1.5)

UPDRS 31 (body bradykinesia) 0.2 (0.4) 1.1 (0.5)

Total UPDRS-III score 1.7 (2.4) 20.3 (14.2)
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where Li = −yi log
[

p(yi|X1,X2)
]

 and i ∈ {tremor, fmi, pd} . The acceleration branch was pre-trained using all 
subjects that contributed such data (Table 5). As training target we used a binary tremor annotation provided 
by signal processing experts after examining all accelerometer signals and taking into account the movement 
disorders expert’s symptom assessment scores (UPDRS-III Item 20 and 21). This procedure was identical to the 
one used in previous work23 and which was found to produce the most reliable tremor label, owing to the many 
particularities of monitoring tremor in-the-wild (inherently intermittent as a symptom, can be easily missed 
during UPDRS examination if the latter coincides with a period of good symptom control under PD medication, 
subject inclined to use the unaffected hand for making phone calls, etc.). The typing branch was pre-trained using 
data from the cohort of Table (4) and, in addition, a publicly available typing dataset28. As the ground-truth for 
FMI, we used a fusion of the relevant UPDRS Part III item scores and the subject’s self-report of symptoms. Spe-
cifically, a subject was considered positive for FMI if they had positive scores for both UPDRS item 22 (the items 
concerning hand rigidity) and UPDRS item 23 (alternate finger tapping, closely related to bradykinesia) in any 
one of the two clinical examinations, or if they self-reported signs of fine-motor impairment during the medical 
history part of the clinical examination. After pre-training, the fused model was finetuned on the subjects that 
contributed both accelerometer and typing data (Table 1), using the multi-label loss function of Eq. 4. All train-
ing steps were performed using mini-batch stochastic gradient descent with the Adam optimizer44 and a batch 
size of 8, as that was the maximum batch size that could fit in the GPU memory. We used the default learning 
rate of 0.001 during the pre-training step and a reduced learning rate of 0.0005 during finetuning. Experiments 
were conducted on an NVIDIA 1070Ti GPU with 8GB of memory. Models were implemented in PyTorch (1.1.0).

Component architecture.  The total model consists of three main parts: the feature extraction module, the 
attention module and the final classifier module. The feature extraction module is specific to each modality. Its 
goal is to automatically extract useful features from each instance in the input bag. The resulting feature vectors 
are then pooled together via the attention module. The role of the attention module is to identify the instances 
that reflect the relevant symptom within the bag (not all instances in a bag do, due to the inherent fluctuations of 
motor symptoms or the intake of symptom-alleviating medication), and output an embedding in the form of a 
single vector that summarises the entire bag appropriately. The embeddings of the different modalities are then 
summed together to produce the subject embedding. Finally, the subject embedding is fed to the final classifier 
module which outputs the final predictions for tremor, FMI and PD.

For the various components in the model architecture we use standard neural networks architectures. More 
specifically, for the accelerometer feature extraction module (transformation φ1 ) we use a five-layer 1D Convo-
lutional Neural Network (CNN), while for the keystroke timing feature extraction module we use a three-layer 
fully-connected network. The specific details of both modules are given in Table 6. The attention modules of each 
modality are modelled using simple fully-connected layers, based on Eq. 2. Finally, the final classifier module 
ρ is implemented as a three-layer fully-connected network with three outputs, one for each predicted label. Its 
detailed description is given in Table 7.

Statistical analyses.  For the reported AUC scores in the GData set, we estimated the 95% CIs using a 
bootstrap approach. First, a subset of n′ ( n′ = 120 ) subjects was randomly sampled from the GData set with 
replacement, and their model scores were used to compute an AUC score. This process was repeated 1000 times 
and the 95% CIs were computed as the interval between the 2.5 and 97.5 percentiles of the distribution of AUC 
scores across the 1000 repetitions. Statistical significance testing between the f1-score of the fused and the single-
symptom models, was conducted using the independent two-sample t-test, assuming equal sample variance, 
with n = 10.

Ethical statement.  All research protocols were approved by Ethik-Kommission an der Technischen Uni-
versität Dresden, Dres- den, Germany (EK 44022017), Greece, Bioethics Committee of the Aristotle University 
of Thessaloniki Medical School, Thessaloniki, Greece (359/3.4.17), Portugal Conselho de Ética, Faculdade de 
Motricidade Humana, Lisbon, Portugal (CEFMH 17/2017), United Kingdom London, Dulwich Research Ethics 
Committee (17/LO/0909), Comité de Ética de la Investigación Biomédica de Andalucia, Spain (60854c5dbc58d-

(4)Ltotal = Ltremor + Lfmi + Lpd

Table 5.   Clinically-assessed subjects that contributed acceleration data. All values (except count) refer to the 
population mean, with the standard deviation given inside parentheses.

Healthy controls PD patients

Count 29 48

Age in years 57.3 (11.5) 63.3 (9.1)

Years diagnosed - 7.5 (4.1)

UPDRS 16 (self-report tremor) 0.1 (0.3) 1.1 (0.8)

UPDRS 20 (hand rest tremor) 0.0 (0.2) 1.1 (1.2)

UPDRS 21 (hand action tremor) 0.0 (0.0) 1.0 (1.3)

Total UPDRS-III score 1.4 (2.7) 18.9 (10.7)
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da37b4730edb590a503edbd3572), Sunshine Coast Hospital and Health Service, Australia (41562 HREC/18/
QPCH/266) and Studienzentrum der Prosenex AmbulatoriumbetriebsgesmbH an der Privatklinik Confrater-
nitaet, Wien, Austria (002/2018). Recruitment and study procedures were carried out according to institutional 
and international guidelines on research involving adult human beings. All subjects provided informed consent 
prior to participating and preserved the right to withdraw from the study at any time.

Data availability
The datasets used in this work, will be made publicly available within 6 months of publication, in order to allow 
enough time for their proper curation.

Code availability
The source code of the deep learning algorithm (training and inference) will be made available for research uses 
at https​://githu​b.com/alpap​ado/deep_pd.
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