
Immunotherapy in PSP

Pavan A. Vaswani, MD PhD, Abby L Olsen, MD PhD
Department of Neurology, Brigham and Women’s Hospital, Massachusetts General Hospital, 
Harvard Medical School, Boston, Massachusetts.

Abstract

Purpose of review: Progressive supranuclear palsy (PSP) is a progressive adult onset 

neurodegenerative disease. Abnormally phosphorylated forms of the microtuble-associated protein 

tau containing four repeat domains (4R-tau) aggregate in neurons. Additionally, increasing 

evidence suggests that secretion and uptake of fragments of abnormal 4R-tau may play a role in 

disease progression. This extracellular tau is a natural target for immunotherapy.

Recent findings: Three monoclonal antibodies targeting extracellular tau are in clinical stages 

of development. ABBV-8E12 and BIIB092 were safe in Phase 1, but both Phase 2 studies recently 

failed futility analyses. UCB0107 recently reported (in abstract form) Phase 1 safety results, and a 

Phase 2 study is under consideration. Stem cell therapy and the infusion of plasma is also being 

explored clinically

Summary: The likely role of extracellular tau in the progression of PSP makes tau a natural 

target for targeted immunotherapy. Clinical trials are still in early stages, and while tau 

immunotherapy has largely been shown to be safe, efficacy has yet to be demonstrated.
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Background / Introduction

Progressive supranuclear palsy (PSP) was first described by Richardson in 1963, and named 

by Steele, Richardson and Olszewski in 1964, describing a small series of patients with 

adult-onset vertical gaze palsy, dysarthria, axial rigidity, parkinsonism, and dementia[1,2]. 

Among patients with atypical parkinsonism, those with PSP are the most common, with the 

prevalence of PSP estimated between 1.4–8.3 per 100,000 [3–5]. Since then, the disorder has 

been further characterized clinically [6] and pathologically[7], though effective therapies to 

improve prognosis or slow progression have remained elusive[8].

There is significant clinical heterogeneity in PSP, particularly at disease onset. The initially 

described Richardson syndrome captures only a subset of patients (24% in one series[9]; 
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54% in another[10]), limiting accurate diagnosis (70% and 69% of patients in the two series, 

respectively). The International Parkinson and Movement Disorder Society (MDS) PSP 

study group published revised criteria in 2017, highlighting 4 core clinical features: 1) 

oculomotor dysfunction (classically vertical supranuclear gaze palsy); 2) postural instability 

within 3 years; 3) akinesia; and 4) cognitive dysfunction [6]. Additional supportive clinical 

features include levodopa resistance, dysarthria, dysphagia, and photophobia. Imaging 

findings of midbrain atrophy or hypometabolism, or postsynaptic striatal dopaminergic 

degeneration are also supportive of the diagnosis. The predominant clinical presentation and 

supportive factors are used to characterize the diagnostic certainty and clinical 

“predominance type.”

Despite these robust revised clinical criteria, the gold standard for diagnosis of PSP remains 

neuropathologic examination [6]. On autopsy, patients exhibit intracerebral aggregation of 

the protein tau. Formal neuropathologic diagnosis requires aggregates in the form of 

neurofibrillary tangles and neuropil threads in at least 3 of the pallidum, subthalamic 

nucleus, substantia nigra, or pons, and at least 3 of the striatum, oculomotor complex, 

medulla, or dentate [11]. Neuropathologic features also include oligodendroglial coiled 

bodies (tau positive perinuclear fibers) and tufted astrocytes [12].

Tau

Tau is a microtubule associated protein involve in the polymerization and assembly of 

microtubules. It is encoded by the MAPT gene on chromosome 17. Alternative splicing of 

exons 2, 3, and 10 generate 6 isoforms, which differ in the number of insertions of a 29 

amino acid sequence at the N-terminal end of the protein (0, 1, or 2 replicates) and the 

number of repeat domains (three, “3R”; or 4, “4R”) in the microtubule binding region 

(MBTR) (Figure 1). Patients with PSP demonstrate aggregations of the 4R but not the 3R 

isoform[7].

A number of post-translational modifications create significant heterogeneity in the 

physiologic and likely also the pathologic tau proteome[13]. Hyperphosphorylation, 

truncation, nitration, glycation, glycosylation, and ubiquitination have all been described 
[13]. These post-translational modifications, particularly hyperphosphorylation, are likely 

responsible for the conversion of tau from its soluble to insoluble forms, where it aggregates, 

deposits, and causes neurodegeneration.

The exact mechanism of tau aggregation and propagation has not been fully established [14]. 

The propagation of abnormal tau has been proposed to correspond to clinical disease 

progression. There is mounting evidence in cellular and animal models for the secretion of 

tau fragments, so called “tau seeds”, from one cell to another, as well as for the ability of 

abnormal tau aggregates to induce the aggregation of non-aggregated tau, in a “prion-like” 

manner[14]. Ongoing work suggests that extracellular tau may play a role in the propagation 

of abnormal tau. The degree to which this mechanism contributes to human tauopathies is 

inherently difficult to assess.
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The proposed role of secreted, extracellular tau in disease progression has made tau a natural 

target for immunotherapies as potentially disease modifying agents. In this review, we 

highlight recent updates in immunotherapy for the treatment of PSP. We focus on clinical 

trials and associated preclinical work using targeted immunotherapy strategies to reduce 

uptake and aggregation of tau as well as therapeutic strategies with broader 

immunomodulatory effect.

Immunotherapy in other neurodegenerative disorders, particularly Alzheimer disease, could 

have relevance for PSP; for a detailed discussion of tau immunotherapy in other conditions, 

see Novak et al[13]. Jadhav et al review the significant number of preclinical 

immunotherapies in development [15]. A broader discussion of therapies (including non-

immunotherapies) in PSP is recently reviewed by Giagkou and Stamelou[16].

Immunotherapies currently in development

There are several strategies employed for immunotherapy in PSP and other tauopathies. 

Those in clinical trials are shown in Table 1 and discussed in detail below. These consist 

largely of monoclonal antibodies thought to target extracellular tau. It is unclear if antibodies 

would be able to enter neurons to target intracellular pathologic tau aggregates, pre-

aggregate forms, or the aggregation process itself. Pre-clinical efforts targeting intracellular 

tau are ongoing, and other approaches include active vaccines [17,18] and antibodies that 

target tau-interacting partners[19]. Finally, other immunotherapies in early stages of 

development take a broader approach, engaging the innate immune system more generally 
[20].

ABBV-8E12

ABBV-8E12 is a humanized murine monoclonal antibody that binds amino acids 25–30 near 

the N-terminus of tau (Figure 1). In vitro studies demonstrated the ability to block the uptake 

of tau aggregates into human and mouse neurons [21,22]. In vivo studies in human-tau 

transgenic mice showed that delivery of the antibody into the CSF or the peritoneum 

reduced levels of insoluble tau and reduced brain atrophy [22,23]. CSF delivery also rescued 

behavioral deficits in an associative learning task[22].

Based on these preclinical data, a phase 1 study was completed in 30 patients with possible 

or probable PSP [24]. 23 subjects were treated with a single ascending dose ranging from 2.5 

mg/kg to 50 mg/kg with follow-up for 84 days; the remaining 7 subjects received placebo. 

Notably, patients had relatively early disease, with less than 5 years of symptoms and with 

the ability to walk 5 steps with minimal assistance. While adverse events occurred in 70% of 

the participants, the majority were rated by the blinded investigators to be mild to moderate 

and largely felt to be unrelated to the therapy.

A Phase 2 randomized double-blind placebo-controlled trial in PSP (and separately, 

Alzheimer disease) recruited 378 patients with early PSP who received one of two doses or 

placebo every 4 weeks for 52 weeks. The primary endpoint was change in PSP rating scale 

(PSPRS) at one year (Table 1), but this study was halted in July 2019 after it failed a futility 

analysis[25]. The details of this analysis have not been made public at the time of this writing 
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but will be presented at the Tau2020 Global Conference in February, 2020. The Phase 2 trial 

in patients with Alzheimer disease is ongoing.

BIIB092

BIIB092 is a humanized murine monoclonal antibody that binds the amino acids 15–24 near 

the N-terminus of tau, immediately adjacent to the ABBV-8E12 epitope (Figure 1). 

Preclinical studies in vitro suggested that extracellular tau seeds are composed of 

predominantly N-terminal fragments of tau [26]. An early version of the antibody was shown 

to bind extracellular, but not intracellular, tau and to reduce the levels of tau fragments in the 

interstitial fluid and CSF [26].

A Phase 1 study was first completed in 65 healthy, relatively young (mean age 44) 

participants who each received a single IV infusion of BIIB092 in one of 6 doses (up to 

4200 mg) to assess for safety. In general, adverse events were mild. As evidence of target 

engagement, CSF N-terminal tau levels were found to be suppressed in this healthy 

population, with 82–95% suppression after 85 days [27].

A subsequent Phase 1b study was conducted in 48 patients with probable or possible PSP, in 

early stages of the disease - with fewer than 5 years of symptoms and able to ambulate 

independently or with assistance [28]. One of 3 doses (150, 700, 2100mg) or placebo was 

administered intravenously every 4 weeks for 3 doses. The primary outcome was safety: 

75% of patients reported an adverse event, which were largely mild and felt to be unrelated 

to the study drug. The CSF concentration of free N-terminal tau was reduced by 90% 

compared to placebo. Exploratory outcomes, including clinical rating scales (PSPRS and 

others) and brain volume, did not demonstrate a significant effect in this small study. An 

open-label extension study in 47 of these participants is ongoing.

A Phase 2 randomized double-blind placebo-controlled study in a similar population of 

patients with early PSP (and, separately, in Alzheimer disease) with primary clinical and 

safety outcomes completed enrollment of approximately 490 patients. The study was 

completed in December 2019 – BIIB092 did not show efficacy on the primary endpoint 

(change in PSPRS at 1 year) or secondary endpoints, according to a press release from the 

company[29]. The Phase 2 trial in patients with mild Alzheimer disease is ongoing.

UCB0107

UCB0107 is a humanized murine monoclonal antibody targeting a central tau epitope 

adjacent to the microtubule-binding repeats (Figure 1). Preclinical work identified antibodies 

that suppressed tau aggregation in an in vitro model and suggested that a central tau epitope 

antibody more strongly suppressed tau seeding (using human Alzheimer disease brain 

homogenate) and propagation than antibodies with N-terminal epitopes [30,31].

In a Phase 1 trial (reported in abstract form), 52 healthy male adults received intravenous 

UCB0107 or placebo. Adverse events occurred in 47% of subjects; none were serious or 

related to the therapy [32]. A Phase 2 trial is currently being planned, though it is not 

specified whether Alzheimer disease, PSP, or another tauopathy will be included.
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Stem Cell Therapy

Bone marrow derived mesenchymal stromal or stem cells (MSCs) have been proposed as 

immunomodulatory therapy for a number of neurologic conditions, though as yet have not 

shown efficacy in neurodegenerative disorders. In animal models of Parkinson and 

Alzheimer disease, MSCs from bone marrow or other sources, or media derived from MSCs, 

have been suggested to reduce neural cell loss by inhibiting apoptosis[33], enhancing 

neurogenesis[34], modulating autophagy and enhance clearance of synuclein and 

amyloid[35,36], reducing hyperphosphorylated tau [37], and modulating 

neuroinflammation[38,39], in some cases with improvement on learning tasks[34,37,39,40] (for 

recent reviews see [41,42]).

A small Phase 1 study was completed in which 5 patients with PSP received autologous 

MSCs administered into the internal carotid and basilar arteries [43]. Patients had an average 

disease duration of 6 years, typically with severe disability but able to stand unassisted. 

Some microembolization was reported as a consequence of the intraarterial MSC delivery. 

The study was not designed to assess efficacy, however some patients reported mild 

subjective improvement and 4 of the patients were alive 1 year after treatment, compared to 

24% of patients in a historical cohort followed by the authors.

There is one active study of intravenous and intranasal administration of autologous bone-

marrow derived MSCs in PSP, in an open-label, non-randomized study (NCT02795052, 

Table 1). However, this study is generally recruiting patients with a wide variety of 

neurologic disorders with coarse outcome measures (ADLs); and substantial ethical and 

safety concerns have been raised [44,45].

Fresh Frozen Plasma (FFP)

Preclinical data has suggested that the transfusion of plasma from young mice improved 

performance in learning and memory tests when administered to a mouse model of 

Alzheimer disease[46]. Based on these preclinical studies, a phase 1 trial in 18 patients with 

mild to moderate Alzheimer disease was conducted [47]. They received 1 unit of FFP from 

young male donors weekly for 4 weeks. The primary outcome was adverse events. One 

patient discontinued therapy due to urticaria. Adverse events were mild to moderate, and no 

serious adverse events were attributed to the therapy. The study was not powered to assess 

clinical benefit; subjective improvement in functional ability was reported by caregivers.

There is one active open-label, non-randomized study of transfusion of FFP from young, 

male donors in PSP (Table 1).

Notably, due to reports of for-profit commercial use of this therapy making unproven safety 

and efficacy claims, the FDA issued a statement warning the public of the risks of plasma 

from young donors outside of FDA reviewed clinical studies [48].

Discussion

The extracellular availability of tau, and the potential role of extracellular tau in the 

progression of the disease, makes the protein a natural target for immunotherapy. However, 
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clinical trials are still in early stages, and, while these therapies have largely been shown to 

be safe, their efficacy has yet to be demonstrated.

Developing tau immunotherapy for PSP poses several challenges, including the lack of 

uniform preclinical models and the complex pathogenesis of tauopathies. Various in vitro 
and in vivo models are used, there is variability in how antibody response is quantified and 

reported, and outcome measures are diverse (neuronal loss, inflammatory response, 

performance on motor or learning tasks)[15]. Additionally, the optimal target epitope of the 

tau protein is unknown. The N-terminal region has been attractive due to its hypothesized 

role in tau seeding; other studies suggest targeting the MBTR[49]. The ideal mechanism of 

action to target is also unclear. Tau plays both an intracellular and extracellular role in the 

normal and abnormal cell. Tau antibodies in PSP thus far have targeted tau seeding; but this 

may represent an early event in pathogenesis that is no longer amenable to intervention by 

the time patients have established disease. Reduction of overall levels of tau or 4R-tau as 

well as reduction of tau phosphorylation, secretion, uptake, and aggregation via 

immunotherapy are also being explored. Additionally, glial tau represents a potential 

therapeutic target. Microglia play a role in tau processing and clearance, and tau pathology is 

also present in astrocytes and oligodendrocytes. Impaired clearance of tau by microglia, 

reactive gliosis due to tau pathology, and impairment in the ability of glia to maintain 

homeostasis resulting in neuronal loss likely contribute to disease progression – further 

understanding of these mechanisms will also guide future therapies[50–52].

Beyond the above preclinical challenges, clinical trials are constrained by the absence of a 

reliable biomarker and the clinical heterogeneity of disease. Classic PSP-RS (Richardson 

syndrome) accounts for the plurality but potentially not the majority of cases[9,10], and the 

rate of progression is different among different clinical phenotypes [8,9]. The ideal study 

population is unclear, and there are complex trade-offs. For example, a larger number of 

study subjects and longer duration of follow up may improve statistical power but comes at a 

financial cost, prioritizing phenotypic homogeneity may increase the likelihood of observing 

a therapeutic effect but does not reflect the diversity of the disease, and enrolling early stage 

patients who may be most responsive to therapy reduces diagnostic certainty. Currently, 

neuropathology at autopsy remains the gold standard for diagnosis, though novel imaging 

techniques are being explored [53]. Volume loss on imaging is evident with disease 

progression, at least in PSP-RS[54], and so may be a valuable biomarker in assessing 

potential sub-clinical, early benefit of therapies across different clinical phenotypes. 

However, volume loss on MRI can be seen well before patients fulfill criteria for PSP, and so 

ongoing efforts towards early diagnosis will likely be necessary to improve therapeutic 

outcomes.

Finally, tau immunotherapy is not restricted to PSP. Several monoclonal antibodies and 2 

vaccines are in clinical stages of development in Alzheimer disease[13], a mixed 3R/4R 

secondary tauopathy. While it is not yet clear if a therapy for one tauopathy will translate 

into a therapy for another, there are likely lessons to be learned from other immunotherapy 

trials.
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Conclusion

Tau immunotherapy, and immunotherapy in general, is an exciting and active area of study 

for the treatment of Progressive Supranuclear Palsy. While there are challenges in the 

selection of therapies and design of trials, several agents are in clinical stages of 

development.
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Key points:

• Progressive supranuclear palsy is a rapidly progressive neurodegenerative 

disease, characterized by a clinically diverse population of patients. Classical 

symptoms include supranuclear vertical gaze palsy, dysarthria, axial rigidity, 

parkinsonism, and dementia.

• Aggregates of 4R-tau in astrocytic tufts, neurofibrillary tangles, and neuropil 

threads are the pathologic hallmarks of the disease

• Immunotherapies, largely consisting of monoclonal antibodies targeting 

extracellular tau, are hypothesized to disrupt transmission of abnormal tau 

from cell to cell.

• Three monoclonal antibodies are in clinical stages of development: 

ABBV-8E12 and BIIB092 have recently failed a futility analyses, and 

UCB0107 has completed Phase 1 studies with a Phase 2 trial under 

consideration.
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Figure 1: 
PSP is characterized by aggregates of the 4R tau isoforms, so named because of inclusion of 

all four repeats in the microtubule binding domain. Monoclonal antibodies against tau are 

currently in clinical trials, each binding different epitopes of the protein.
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