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Abstract

Purpose of review—Degenerative ataxias are rare and currently untreatable movement
disorders, primarily characterized by neurodegeneration in the cerebellum and brainstem. We
highlight MRI studies with the most potential for utility in pending ataxia trials, and underscore
advances in disease characterization and diagnostics in the field.

Recent findings—With availability of advanced MRI acquisition methods and specialized
software dedicated to the analysis of MRI of the cerebellum, patterns of cerebellar atrophy in
different degenerative ataxias are increasingly well-defined. The field further embraced rigorous
multi-modal investigations to study network level microstructural and functional brain changes,
and their neurochemical correlates. MRI and MRS were shown to be more sensitive to disease
progression than clinical scales and to detect abnormalities in premanifest mutation-carriers.

Summary—MR techniques are increasingly well-placed for characterizing the expression and
progression of degenerative ataxias. The most impactful work has arguably come through multi-
institutional studies that monitor relatively large cohorts, multi-modal investigations that assess the
sensitivity of different measures and their inter-relationships, and novel imaging approaches that
are targeted to known pathophysiology (e.g., iron and spinal imaging in Friedreich ataxia). These
multi-modal, multi-institutional studies are paving the way to clinical trial readiness and enhanced
understanding of pathology in degenerative ataxias.
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INTRODUCTION

Ataxia refers to deficits in the coordination of movement and balance. While ataxia can
present as a symptom of other neurological diseases and occur due to acquired causes (e.g.
alcoholic cerebellar degeneration, vitamin deficiency), here we focus on hereditary and
sporadic degenerative ataxias that are characterized by neurodegeneration in the cerebellum
and its afferent and efferent connections, and frequently also in other brain regions [1]

(Table 1). Conventional MR imaging is part of the diagnostic work-up in ataxias to confirm
cerebellar atrophy (Figure 1). In addition, quantitative MR technologies have been used to
evaluate structure, connectivity, function and biochemistry in ataxias for over two decades
[2]. Rigorous quantitative MRI studies were in particular facilitated by the discovery of
genetic mutations for many degenerative ataxias, which allowed studies of genetically
defined cohorts. More recently, with exciting developments toward viable disease modifying
therapies [3], a critical need for non-invasive, validated biomarkers of cerebral and cerebellar
pathology has emerged to facilitate upcoming clinical trials. To present a meaningful picture
of the recent progress in cerebellar ataxia imaging, we will highlight the important
contributions from the last three years. Progress in this field has been particularly facilitated
by the wider availability of high field MR scanners (3 tesla and above), development and
dissemination of advanced MRI and MR spectroscopy (MRS) acquisition methods [4,5], and
development of specialized software and templates dedicated to the analysis of MR images
from the human cerebellum and brainstem [6,7].

AUTOSOMAL RECESSIVE ATAXIAS

Quantitative neuroimaging research in autosomal recessive ataxias has largely focused on
Friedreich ataxia (FRDA), the most common ataxia (Table 1). Rarer disorders have most
often been the subject of qualitative case reports, although several recent case-control studies
are available. Overall, recent MRI studies have not only brought better delineation of
atrophy patterns in autosomal recessive ataxias, but they have also increasingly moved
beyond a myopic focus on cerebellar macrostructure. Studies characterizing network-level
microstructural and functional brain changes, spinal morphology, as well as longitudinal
studies of pathophysiology (e.g. iron accumulation) have been particularly impactful in
understanding the evolution of these diseases. Efforts to define disease staging, to
disambiguate developmental versus degenerative brain changes, and to uncover factors
associated with inter-individual variability (i.e., age of onset) have also provided
increasingly nuanced disease descriptions.

Friedreich Ataxia: Brain Morphometry

With the availability of cerebellum-focused image analysis tools, a pattern of grey matter
atrophy weighted towards lobules IV to VI, and reductions in brainstem and cerebellar white
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matter volume adjacent to the dentate nuclei and within the cerebellar peduncles, is now
well-established [8-12] (Figure 2). Atrophy of the dentate nuclei was further supported
using quantitative susceptibility mapping (QSM), alongside cross-sectional increases in iron
concentration and longitudinal iron accumulation in these structures [13]. Outside of the
cerebellum and brainstem, reports of more subtle anatomical changes remain mixed, with
atrophy of the thalamus and cortical motor areas most consistently implicated and thought to
reflect later-stage disease changes [9,10].

Friedreich Ataxia: Connectivity, Neurochemistry and Function

Robust microstructural white matter abnormalities were detected not only in the cerebellar
peduncles and in the brainstem, but more subtle changes also extend to the cerebrum, most
notably in corticospinal, callosal, and long-range association tracts [10-12,14] (Figure 2).
Microstructural impairments appear to manifest over-and-above volumetric atrophy [11] and
correlate with biochemical markers of neuronal loss (A-acetyl-aspartate-to-creatine ratio)
[14]. The patterns of abnormalities reported across different neuroimaging indices point to
the potential for both myelin-related and degeneration-related white-matter pathology in
FRDA.

Whole-brain functional MRI (fMRI) studies in FRDA have also revealed evidence of
network-level functional changes. Reduced cerebro-cerebellar and increased cerebro-
cerebral connectivity were found using resting-state fMRI [15], and a recent task-based
study of finger-tapping function provided evidence of cerebral compensation in parallel with
cerebellar dysfunction [16]. These studies indicate the potential for adaptive mechanisms to
play a role in disease mitigation or expression.

Friedreich Ataxia: Spine

While neuroimaging studies have conventionally focused on brain changes in FRDA, spinal
cord atrophy is also a clearly established primary site of pathology in this disease. Recent
MRI evaluations of spinal cord morphometry have identified flattening and reduced cross-
sectional area across the full length of the spinal cord, most markedly in cervical regions
[9,10]. Spinal cord changes are proposed to be early, progressive, and clinically relevant
features of FRDA.

Other Autosomal Recessive Ataxias

Available literature in other, often very rare, autosomal recessive inherited ataxias has
largely consisted of qualitative case reports or retrospective case series. Aggregated case
reviews, which in some recent cases include many tens of subjects, have provided
generalizable clinical insights into common radiological features evident in disorders such as
ataxia telangiectasia (AT) [17], ataxia with oculomotor apraxia (AOA) [18], and autosomal
recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) [19]. However, these reports are
based on qualitative clinical judgement and are restricted to large morphological features
(e.g., “cerebellar atrophy” or “vermal hypoplasia™).

Several quantitative case-control assessments of brain integrity have also been undertaken in
rare recessive ataxias. Using a multi-modal imaging approach in children with AT, global
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cerebellar volumetric and diffusion abnormalities were reported relative to healthy controls
[20]. In the same study, the diffusion abnormalities correlated with spectroscopic indices of
neuronal integrity and gliosis [20]. Similarly, although in a more limited sample of
individuals with SYNEL1 ataxia and matched controls, widespread grey and white matter
impairments were identified throughout the brain [21].

AUTOSOMAL DOMINANT ATAXIAS

Autosomal dominantly inherited ataxias comprise spinocerebellar ataxias (SCASs) and
episodic ataxias [1]. The majority of MRI literature available from the review period
focusses on the most common SCAs, with only a few qualitative case reports available on
MRI of episodic ataxias. Recent highlights in SCA imaging include the demonstration of the
higher sensitivity of MRI and MRS to disease progression than clinical scales, detection of
premanifest abnormalities in mutation-carriers, and developing a better understanding of the
role of cerebellar degeneration in non-motor deficits using functional MR.

Spinocerebellar Ataxias: Morphometry

Genotype-specific atrophy patterns are increasingly well-mapped for the most common
SCAs [22-26]. Atrophy is primarily found in the brainstem, cerebellum and basal ganglia in
SCA1 and SCA3 [22,25] (Figure 2), the pons and cerebellum in SCA2 [24], and the
cerebellum in SCA6 and SCA7 [22,26] (Figure 1). In addition, atrophy of the spinal cord is
seen in SCA3 and cerebral atrophy is observed at late stages in this disease [25].

Such genotype-dependent volumetric measures were previously shown to correlate with the
widely used and validated clinical scale, the Scale for the Assessment and Rating of Ataxia
(SARA), and to be more sensitive to change than SARA [23]. This was confirmed by two
other longitudinal studies in which volumetry outperformed clinical scores in the
measurement of disease progression in SCA1, SCA2, SCA3 and SCA7 [27,28]. Together,
these studies provide a strong rationale to supplement clinical outcome assessments with
these objective, non-invasive MRI markers in clinical trials.

A large multisite study of individuals at risk of SCA has also shown brainstem and
cerebellum atrophy prior to ataxia onset in SCA1 and SCA2 [29]. Similar results in
preclinical and manifest SCA2 mutation carriers were recently obtained in a Cuban
population [24]. Similarly, volume reductions were identified at the spinal cord, midbrain
and substantia nigra at the preclinical stage in SCA3 [25].

Spinocerebellar Ataxias: Connectivity, Neurochemistry and Function

A number of reports prior to our review period had shown regional white matter
abnormalities using diffusion tensor imaging (DTI) in the common SCAs [30,31]. Recent
cross-sectional investigations further outlined differences in DT metrics between patients
with SCAs and controls in multiple brain regions, including the cerebellar peduncles and
brainstem (pons) [25,27,32] (Figure 2). Most of these studies also showed correlations
between DTI metrics and clinical severity in SCAs. Importantly, premanifest microstructural
abnormalities were detected in the cerebellar and cerebral peduncles in SCA3 [25].
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Similar to genotype-dependent morphometric findings, a recent MRS study showed
genotype-dependent neurochemical abnormalities in common SCAs [33], which could be
detected in presymptomatic mutation carriers up to 10 years prior to their estimated disease
onset [33]. A longitudinal study in SCAL also showed that both MRI volumetry and MRS
were more sensitive to disease progression than SARA, and that MRS may have predictive
value for disease progression [28]. In keeping with the move towards multimodal
evaluations of disease, a novel statistical strategy to integrate multimodal biomarkers,
including volumetry and MRS, was proposed to identify markers of disease progression in
SCAs [34]. In addition to work directed towards biomarkers, an important contribution
towards disease understanding was made when SCA7 was defined as a mitochondrial
disease based in part on phosphorus (31P) MRS data obtained during a visual task [35].

Among the few recent functional connectivity studies, a network-based statistical approach
showed altered inter-nodal cerebellar-cerebrum connectivity in SCA2, providing clinical and
neural clues about cognitive and motor dysfunction [36]. In SCAB, decreased resting-state
functional connectivity in the attention network [37] and impaired functional activity in the
sensorimotor cortex and supplementary motor area was observed [38].

X-LINKED ATAXIAS

Fragile X-associated tremor/ataxia syndrome (FXTAS) is the only X-linked ataxia for which
quantitative neuroimaging has been reported. Here, midbrain, brainstem, and cerebellar
atrophy was shown, with a large retrospective cross-sectional study also indicating that
cerebellar and brainstem atrophy is progressive in both unaffected premutation carriers and
those with frank illness [39,40]. Further investigations have supported the critical
involvement of the cerebellar peduncles. White matter lesions in infratentorial regions
correlate with motor and cognitive dysfunction [41], and diffusion-based microstructural
indices of middle and inferior cerebellar peduncle integrity are associated with methylation
levels in the causative FMR1 gene and circulating FMR1 mRNA [42]. Longitudinal imaging
also indicates that unaffected premutation carriers with smaller middle cerebellar peduncles
may be at greater risk of transitioning to symptomatic states, perhaps reflecting a useful
stratification biomarker [40].

SPORADIC DEGENERATIVE ATAXIAS

Sporadic degenerative ataxias comprise cerebellar multiple system atrophy (MSA-C) and the
often more benign sporadic adult onset ataxia (SAOA) [1]. Recent MRI studies in sporadic
ataxias focused on characterizing regional gray and white matter loss, as well as
neurochemical and connectivity changes. A body of work has also attempted to use imaging
to distinguish between MSA-C and SAOA, which may help with diagnosis early in the
disease course.

Sporadic ataxias: Morphometry

Atrophy of the cerebellum and brainstem are common in both MSA-C and SAQA [43,44]
(Figures 1, 2). This was recently further confirmed by a whole-brain morphometry study
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showing gray matter volume loss specifically in the cerebellar areas subserving sensorimotor
functions in both diseases [45].

MRI can also help to distinguish between MSA-C and SAOA. For example, while white
matter loss in the cerebellum was prominent in both SAOA and MSA-C, brainstem white
matter was found to be reduced only in MSA-C [45,46]. Structural MRI features, including
pons and/or middle cerebellar peduncle (MCP) atrophy, are even included in the second
consensus statement on the diagnosis of MSA [47]. Other MRI features, such as the “hot
cross bun” sign, MCP hyperintensity, putaminal hypointensity and the hyperintense
putaminal rim sign have also been described in MSA-C [48].

Sporadic ataxias: Connectivity, Neurochemistry and Function

Using diffusion MRI, prominent microstructural white matter involvement has been
observed in MSA-C (Figure 2), but not in SAOA [45]. In MSA-C, DTI studies have further
revealed a reduction of cerebellar fiber density, and impairment of frontal and occipital white
matter connectivity [49]. In addition, microstructural alterations of the motor subnetworks in
the diencephalon, thalamus and cerebellar regions were observed in MSA-C, which
correlated negatively with clinical features including the Unified Multiple System Atrophy
Rating Scale (UMSARS) and duration of illness [50]. One MRS study also demonstrated
that brainstem volume and A-acetyl-aspartate-to-creatine ratio in the cerebellum reliably
distinguished patients with MSA-C from those with SAOA [51].

Functional resting-state connectivity has revealed diminished functional connectivity in the
cerebellum, dentate nucleus, pons, basal ganglia, default mode network, temporo-parietal
regions and limbic system in patients with MSA-C compared with healthy controls, which
was again associated with clinical performance [52,53]. Among the few functional studies in
SAOA, abnormal intra-cerebellar functional connectivity patterns were reported in areas
with gray matter loss relative to intact cerebellar regions, suggesting that atrophy occurs in
those cerebellar regions characterized by abnormal connectivity measures [54].

CONCLUSIONS

Recent ataxia imaging has been marked by a move towards multi-modal MR imaging, both
in service of furthering the understanding of progressive disease pathology, and in
preparation for upcoming clinical trials in the most common degenerative ataxias, in
particular FRDA and common SCAs. Importantly, a number of studies have demonstrated
detection of CNS abnormalities prior to ataxia onset, which can be used for patient
stratification in clinical trials. In addition, MR metrics most sensitive to disease progression
can be used for treatment monitoring at both premanifest and manifest stages. Namely,
atrophic changes may be slowed down or stopped upon treatment, while microstructural,
functional and neurochemical abnormalities may be reversible since they mark changes prior
to, and in many cases independent of, cell loss. To improve the robustness of disease
characterizations, and prepare for these upcoming trials through validation of longitudinal
MRI and MRS markers, several prospective multi-site studies have been initiated (Figure 3),
such as EUROSCA (http://www.eurosca.org/), READISCA (https://readisca.org/), ESMI
(http://www.ataxia-study-group.net/html/studies/esmi), and retrospective data pooling
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platforms have been launched, such as ENIGMA-Ataxia (http://enigma.ini.usc.edu/ongoing/
enigma-ataxia/). These efforts represent international collaborations, which are essential to
gather sufficient trial-ready cohorts with these rare diseases, but also because of potential
geographic differences in clinical characteristics of each disease entity. Similar multi-site,
multi-modal, and longitudinal efforts are needed in recessive ataxias other than FRDA and in
dominant ataxias other than the common SCAs. Harmonization of data collection
methodologies is key for such multi-institutional efforts and is defined as a major goal for
two recent initiatives, the SCA Global (http://ataxia-global-initiatives.net/sca-global/) and
ARCA Global (http://ataxia-global-initiatives.net/arca-global/). Similar efforts are needed
for sporadic ataxias, especially considering that MRI and MRS may have great utility in the
clinic at early disease stages for diagnosis and prognosis in these conditions. Finally, while
clinical case reports will continue to be a useful and necessary vehicle for characterizing
very rare diseases, their utility would be greatly expanded through the use of quantitative
measures where possible (e.g., Z-scores of cerebellar lobule volumes relative to a healthy
control cohort).
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KEY POINTS

Quantitative MR imaging in degenerative ataxias has moved towards multi-
modal, multi-institutional studies with large cohorts, both to understand
progressive disease pathology and to prepare for testing of disease-modifying
therapies in the pipeline, in particular for Friedreich ataxia (FRDA) and
spinocerebellar ataxias (SCAS).

Similar efforts are needed in recessive ataxias other than FRDA, in dominant
ataxias other than the common SCAs and in sporadic ataxias.

Patterns of cerebellar atrophy in different degenerative ataxias are
increasingly well-defined thanks to availability of advanced MRI acquisition
methods and specialized software dedicated to the analysis of MRI of the
cerebellum.

Volumetric MRI and MR spectroscopy (MRS) are more sensitive to disease
progression than validated clinical scales and cerebral and cerebellar
abnormalities are detectable by structural and diffusion MRI and MRS at the
premanifest stage in SCASs.
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1. Typical MRI findings in the cerebellum and brainstem in degenerative ataxias.
Varying degrees of cerebellar and pontine atrophy are shown on T1-weighted mid-sagittal

images. SCA: Spinocerebellar ataxia; FRDA: Friedreich ataxia; FXTAS: fragile X-
associated tremor/ataxia syndrome; MSA-C: Cerebellar multiple system atrophy; SAOA:
Sporadic adult onset ataxia.
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2. Examples of the most common quantitative imaging approaches in the most prevalent
degenerative ataxias among autosomal recessive, autosomal dominant and sporadic ataxias,
namely Friedreich ataxia (FRDA), spinocerebellar ataxia type 3 (SCA3), and cerebellar multiple

system atrophy (MSA-C).

Profiles of cerebellar atrophy from voxel-wise (a, ¢) and region-of-interest (b) analyses are
displayed in hot colors (top). Fractional anisotropy findings from diffusion-weighted
imaging, reflecting white matter microstructural integrity, are shown in cool colors (middle)
from voxel-wise (d), region-of-interest (e), and tract-based spatial statistics (TBSS) (f)
analyses. These images reflect different analysis approaches, but exemplify their common
utility in defining key disease characteristics. The bottom panels (g-i) display neurochemical
abnormalities in MR spectra obtained at 7T from a vermis voxel (shown in yellow on the
right) in individuals with ataxia relative to a control spectrum. The alterations visible in the
spectra are marked with arrows. tNAA: total N-acetylaspartate; tCr: total Creatine; ml: myo-
Inositol. The panels in this figure are based on data from prior publications [11, 25, 33, 45]

or unpublished data.
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Discovery Validation Validation
v Identification of MRI/MRS v Reproducibility v Prospective with large
metric-of-interest v Sensitivity at different cohorts
v Demonstration of cohort disease stages (cross-sectional) | v Establish overall utility
differences v Sensitivity to progression for therapy development
v Typically single-site (longitudinal) v Multi-site harmonization
v Retrospective analyses
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3. Pipeline for validating MR imaging biomarkers for use in clinical practice or clinical trials and
the status of different MR modalities in the pipeline for different degenerative ataxia categories.

Note that the final phase, regulatory approval (“Qualification”) that follows the first three
phases is not shown. The lengths of the arrows are meant to provide the reader an
approximate idea of the place of the different markers in the pipeline relative to each other
and relative to the phases defined on top. For example, prospective multi-site morphometry
studies with large FRDA cohorts are in the planning stage, hence the arrow ends early in the
third phase. Similarly, multi-site morphometry studies with relatively large SCA cohorts
have been completed (e.g. EUROSCA), however sample sizes are still limited relative to
natural history studies that have validated clinical scales. Typically, earlier stage biomarker
discovery studies are conducted at sites with substantial MR expertise and as the identified
biomarker moves through the pipeline, increased automation in data acquisition and analysis
is necessary for clinical utility, as represented by the scale at the bottom.
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