Skip to main content
. Author manuscript; available in PMC: 2020 Dec 8.
Published in final edited form as: Med Phys. 2020 Aug 30;47(10):4971–4982. doi: 10.1002/mp.14429

Table 2.

(a) Dice Similarity Coefficient (DSC) and (b) Mean Surface Distance (MSD) (in units of mm) between different normalization methods (No Normalization [NoNorm], Batch Normalization [BN] in Train/Test mode, Instance Normalization [IN], and Layer Normalization [LN]) in DenseUnet (k=48) on the test set. “*” indicates significant difference (p < 0.05/8 = 6.25e-3 considering Bonferroni correction) when comparing each of the other scenarios to the NoNorm network. Without normalization, the network not only runs fastest but also obtains the best performance. Also, it is worth noting that using the training mode of BN during inference obtains a large performance improvement over using the testing mode of BN. We highlight the best performances in bold.

(a)
DenseUnet
Liver Pancreas Right Kidney Left Kidney Stomach Duodenum Small Intestine Spinal Cord Vertebral Body Spleen Mean P-value Runtime (s)
NoNorm 0.961±0.008 0.860±0.042 0.954±0.006 0.952±0.009 0.907±0.024 0.766±0.066 0.839±0.085 0.898±0.021 0.886±0.015 0.944±0.013 0.897±0.059 - 8.307
BN_TrainMode 0.960±0.009 0.828±0.074 0.940±0.009 0.951±0.008 0.889±0.046 0.732±0.076 0.790±0.103 0.866±0.028 0.889±0.017 0.934±0.018 0.878±0.071* 5.336e-07 18.052
BN_TestMode 0.957±0.011 0.801±0.105 0.935±0.023 0.923±0.040 0.861±0.059 0.626±0.117 0.734±0.159 0.857±0.042 0.871±0.014 0.883±0.096 0.845±0.096* 1.451e-06 9.703
IN 0.960±0.009 0.826±0.068 0.944±0.007 0.948±0.010 0.888±0.042 0.726±0.078 0.782±0.116 0.851±0.039 0.874±0.028 0.935±0.023 0.874±0.074* 8.155e-06 13.216
LN 0.960±0.011 0.818±0.076 0.950±0.007 0.951±0.007 0.884±0.055 0.704±0.112 0.834±0.071 0.896±0.016 0.898±0.012 0.940±0.013 0.883±0.076* 7.014e-04 13.503
(b)
Liver Pancreas Right Kidney Left Kidney Stomach Duodenum Small Intestine Spinal Cord Vertebral Body Spleen Mean P-value Runtime (s)
NoNorm 1.135±0.204 1.307±0.472 0.693±0.083 0.812±0.377 1.905±0.698 2.189±0.865 2.771±2.608 0.678±0.098 0.994±0.200 1.047±0.436 1.353±0.669 - 8.307
BN_TrainMode 1.188±0.269 2.270±1.167 1.212±0.893 0.934±0.493 2.732±1.241 2.931 ±1.295 5.081±3.932 0.875±0.219 1.097±0.200 1.180±0.632 1.950±1.269* 4.297e-07 18.052
BN_TestMode 1.370±0.290 2.265±1.153 1.006±0.449 1.058±0.572 3.420±2.691 4.192±2.462 3.890±2.526 0.933±0.254 1.211±0.340 2.129±2.216 2.147±1. 196* 1.951e-07 9.703
IN 1.211±0.263 2.946±1.734 1.262±1.104 1.003±0.586 2.808±1.612 3.773±1.640 5.743±4.552 0.905±0.211 1.656±1.208 1.276±0.788 2.258±1.485* 4.803e-06 13.216
LN 1.179±0.282 1.726±0.841 0.714±0.138 0.808±0.218 2.078±0.882 2.653±1.144 3.476±3.081 0.691±0.140 0.922±0.142 1.259±0.740 1.550±0.886* 2.853e-04 13.503