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Abstract

Purpose—To develop and evaluate a fast and effective method for deblurring spiral real-time 

magnetic resonance imaging (RT-MRI) using convolutional neural networks (CNN).

Methods—We demonstrate a 3-layer residual CNN to correct image domain off-resonance 

artifacts in speech production spiral RT-MRI without the knowledge of field maps. The 

architecture is motivated by the traditional deblurring approaches. Spatially varying off-resonance 

blur is synthetically generated by using discrete object approximation and field maps with data 

augmentation from a large database of 2D human speech production RT-MRI. The effect of off-

resonance range, shift-invariance of blur, and readout durations on deblurring performance are 

investigated. The proposed method is validated using synthetic and real data with longer readouts, 

quantitatively using image quality metrics and qualitatively via visual inspection, and with a 

comparison to conventional deblurring methods.

Results—Deblurring performance was found superior to a current auto-calibrated method for in 

vivo data and only slightly worse than an ideal reconstruction with perfect knowledge of the field 

map for synthetic test data. CNN deblurring made it possible to visualize articulator boundaries 

with readouts up to 8 ms at 1.5 T, which is 3-fold longer than the current standard practice. The 

computation time was 12.3 ± 2.2 ms per-frame, enabling low-latency processing for RT-MRI 

applications.

Conclusion—CNN-deblurring is a practical, efficient, and field-map-free approach for the 

deblurring of spiral RT-MRI. In the context of speech production imaging this can enable 1.7-fold 

improvement in scan efficiency and the use of spiral readouts at higher field strengths such as 3 T.
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INTRODUCTION

Spiral data sampling is used in a variety of MRI applications due to its favorable properties. 

It requires only few TRs to achieve Nyquist sampling of k-space, provides excellent velocity 

point spread function (PSF) (1,2), and reduces motion artifacts due to its natural 

oversampling at the k-space center (3,4). Spiral sampling is well-suited for advanced 

reconstruction algorithms such as compressed sensing when combined with strategies such 

as under sampling and golden angle scheme (5,6). Spiral imaging is also widely used for 

real-time MRI (RT-MRI) where the capability of capturing rapid motion is crucial such as 

in cardiac imaging and speech production imaging (6–12).

One major limitation of spiral sampling is image blurring due to off-resonance (13). Off-

resonance causes the accumulation of phase error along the readout in k-space domain, 

resulting in blurring and/or signal loss in the image domain. To date, this artifact remains the 

predominant challenge for several RT-MRI applications: In speech RT-MRI it degrades 

image quality primarily at the air-tissue boundaries which include the vocal tract articulators 

of interest (14–16). In cardiac RT-MRI, it degrades image quality in the lateral wall and 

adjacent to draining veins, and around implanted metal (e.g., valve clips, etc) (10,17). In 

interventional RT-MRI, it may degrade image quality around the tools used to perform 

intervention (depending on the precise composition of the tools) (18). These artifacts are 

most pronounced with long readout durations which is precisely when spiral provides the 

greatest efficiency. In speech production RT-MRI, the convention is to use extremely short 

readouts (≤ 2.5 ms at 1.5 T) (15).

Many spiral off-resonance correction methods have been proposed in the literature. Most 

existing methods require prior information about the spatial distribution of the off-

resonance, also called the field map, Δf(x,y) (19–25). For RT-MRI, this field map needs to 

be updated frequently throughout the acquisition window because of local off-resonance 

changes as motion occurs. Several research groups have proposed to estimate the dynamic 
field maps either from interleaved two-TE acquisition using the conventional phase 

difference method (14,23,26) or from single-TE acquisition after coil phase compensation 

(16). Common limitations of these approaches are field map estimation errors due to off-

resonance induced image distortion and/or reduced scan efficiency which is undesirable for 

RT-MRI.

Given a field map, the conventional approach to deblur the image is conjugate phase 

reconstruction (CPR) (19,20) or one of its several variants (21,22,27). One such variant is 

frequency-segmentation which reconstructs basis images at demodulation frequencies and 

applies spatially-varying masks to the basis images to form a desired sharp image. While it 

is an efficient approximation to assume off-resonance to be spatially varying smoothly, the 

assumptions are typically violated at air-tissue interfaces. Alternatively, iterative approaches 

(28,29) are known to be effective at resolving abruptly varying off-resonance at the cost of 

increased computation complexity. Note that neither iterative nor non-iterative approaches 

are able to overcome the performance dependence on the quality of the estimated field maps.
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Recently, convolutional neural networks (CNN) have shown promise in solving this 

deblurring task. Zeng et al (30) have proposed a 3D residual CNN architecture to correct off-

resonance artifacts from long-readout 3D cone scans. Specifically, off-resonance was framed 

as a spatially varying deconvolution problem. Synthetic data was generated by simulating 

zeroth-order global off-resonance at a certain range of demodulation frequency. The trained 

network was applied successfully to long-readout pediatric body MRA scans. Is there an 

underlying principle that explains why and how CNNs work well in this deblurring task? 

Perhaps it is the combinatorial nature of nonlinearities such as the rectified linear unit 

(ReLU) in CNN models. Traditional methods require field maps (19–25) or focus metrics 

(31–33) to estimate the spatially-varying mask. In contrast, CNNs utilize prior information 

about characteristics of off-resonance in the synthesized training data, while ReLU 

nonlinearities provide the mask to the convolutional filters, which enables spatially-varying 

convolution (34). Once the network is trained, the feedforward operation of CNNs generates 

a desired sharp image given a blurry image input in an end-to-end manner, without explicit 

knowledge of field maps.

In this work, we attempt to establish a connection between the CNN architecture and 

traditional deblurring methods. We utilize a compact 3-layer residual CNN architecture to 

learn the mapping between distorted and distortion-free images for 2D spiral RT-MRI of 

human speech production. We consider this application (15,35,36) because off-resonance 

appears as spatially (and temporally) abruptly varying blur, degrades image quality at the 

vocal tract articulators of interest, and therefore is a fundamental limitation to address. We 

leverage field maps estimated from a previously proposed dynamic off-resonance correction 

method (16). Specifically, we synthesize spatially varying off-resonance by using the 

estimated field maps with various augmentation strategies. We test the impact of the 

augmentation strategies on deblurring performance and generalization in terms of several 

image quality metrics. We evaluate the proposed method using synthesized and real test data 

sets and compare its performance quantitatively using metrics and qualitatively via visual 

inspection against conventional deblurring methods.

THEORY

Image Distortion due to Off-resonance

In spiral MRI, off-resonance results in a spatially varying blur that can be characterized by a 

PSF (31). Off-resonance causes the local phase accumulation in the k-space signal. In the 

spatial domain, this can be viewed as an object being convolved with spatially varying filter 

kernel (PSF) that is determined by the local off-resonance and trajectory-specific parameters 

such as a readout time map. Here, we briefly introduce this representation in the discrete 

domain, which we use throughout this paper.

In the presence of off-resonance effects, the signal equation after discretization 

approximation (28,29) can be expressed as:

yi ≈ ∑j = 1
Np xje−ι2πfjtie−ι2π ki ⋅ rj [1]
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where ki and rj represent the k-space and spatial coordinates for i = 1,…,Nd and j = 1,…,Np, 

respectively; yi is the complex k-space measurement at time ti ∈ [TE,TE + Tread] defining t1 

= TE as the start of the readout, TE as echo time, and Tread as the readout duration. xj is the 

transverse magnetization of an object at a location rj. fj is the off-resonance frequency 

present at rj. Here e−ι2πfjti is the local phase error that is induced by off-resonance present 

at rj and is multiplied to the k-space signal at ki. Note that Eq.[1] can be expressed in a 

matrix vector form as y = Afx where 

y = (y1, …, yNd) ∈ ℂNd, x = (x1, …, xNp) ∈ ℂNp, f = (f1, …, fNp) ∈ ℝNp, and Af ∈ ℂNd × Np

with Af i, j = e−ι2πfjtie−ι2π ki ⋅ rj . In the absence of off-resonance effects (i.e., f = 0), Af is 

reduced to the conventional (non-uniform) Fourier basis matrix A0 with 

A0 i, j = e−ι2π ki ⋅ rj .

Without considering the off-resonance effect, we could reconstruct a blurry image x ∈ ℂNp

by applying A0
TW to y as follows:

x = A0
TWy = A0

TWAfx = Hfx [2]

where T denotes the conjugate transpose of a matrix. W ∈ ℝNd × Nd is a diagonal matrix 

defining [W]i,i = wi where wi denotes a density compensation weight at ki. Here, 

Hf ∈ ℂNp × Np is a blurring operator matrix defining 

Hf j, k = ∑i = 1
Nd wie−ι2πfktieι2πki ⋅ rj − rk . The k-th column of Hf corresponds to the 

discretized PSF for a point-source located at rk. The effect of off-resonance can be seen as a 

spatially varying convolution since the PSF is shift-variant due to e−ι2πfkti with non-zero fk. 

Whether the PSF is sharp or blurred is dependent on the off-resonance frequency (fk) given 

the trajectory-specific parameters – trajectory ki and time map ti. Likewise, the readout 

duration (Tread) determines the shape of the PSF given fk. For example, the larger fk and/or 

the longer Tread are, the more phase error of e−ι2πfkti is accrued, therefore increasing the 

spread of the PSF.

Approximation of Spatially Varying Blur

The blurring operation is described in Eq. [2] as a matrix vector multiplication. An 

approximate analytical solution to the deblurring problem is therefore:

x = Hf
THf

+Hf
Tx [3]

where Hf
THf j, k ≈ ∑i = 1

Nd wieι2π fj − fk tieι2πki ⋅ rj − rk  and + denotes the pseudo-inverse. 

Noll et al. have shown that Hf
THf can be approximated well by an identity matrix under the 

condition that the phase term due to off-resonance is sufficiently small (i.e., 

2π fj − fk ti ≪ π/2) (27). This is the underlying principle behind CPR and its variants. This 

condition is met whenever the off-resonance f(x,y) due to B0 inhomogeneity and 
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susceptibility exhibits smooth spatial variation (37). Under this assumption, the deblurred 

image can be obtained by projecting the blurred image onto the column space of Hf
T:

x ≈ Hf
Tx . [4]

Note that CPR performs these projections in the frequency domain while other approaches 

(25,38) including Eq. [4] perform them in the spatial domain.

Next, we approximate e−ι2πfkti of Eq. [1] by e−ι2πfkti ≈ ∑l = 1
L bilclk. This approximation is 

supported by literature (29) for general choices of bil and clk. For instance, time-

segmentation approximates bil = bl(ti) and clk = e−ι2πfktl for a predetermined set of time 

points tl while frequency-segmentation approximates bil = e−ι2πflti and clk = cl(fk) for a 

predetermined set of frequencies fl. Substituting such an approximation into Hf yields 

Hf j, k ≈ ∑l = 1
L ∑i = 1

Nd bilwieι2πki ⋅ rj − rk clk . In matrix form, this can be expressed as:

Hf ≈ ∑l = 1
L A0

TWBlA0Cl = ∑l = 1
L HlCl [5]

where Bl ∈ ℂNd × Nd and Cl ∈ ℂNp × Np are diagonal matrices with [Bl]i,i = bil and [Cl]k,k = 

clk, respectively. Eq. [5] can be viewed as a decomposition of the shift-variant blurring 

operator Hf as a sum of L (L << Np; Np = the number of pixels) convolutions Hl (i.e., 

approximately shift-invariant blurring operators) with prior weightings Cl. In frequency-

segmentation (27), Hl can be given by PSFs at a set of L equally spaced off-resonance 

frequencies and Cl is a spatially varying mask that has a diagonal element of 1 if a 

corresponding pixel needs to be assigned to the l-th off-resonance frequency or 0 otherwise. 

Other types of decomposition can be found in both MR and non-MR literature (29,39,40).

Substituting Eq. [5] into Eq. [4] yields

x ≈ ∑l = 1
L Cl

THl
Tx

= SCTHTx
[6]

where S ∈ ℝNp × LNp = INp ⋯ INp , C =
C1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ CL

, and H = H1 ⋯ HL . INp ∈ ℝNp × Np

is an identity matrix. Eq. [6] can be interpreted as a blurred image x being convolved by H 

with spatially varying weighting (C), followed by summation (S) along the dimension 

corresponding to L basis images.

Spatially Varying Deblurring using CNN

Interestingly, the solution described in Eq. [6] resembles the feedforward operation of a 

simple two-layer CNN. Let us consider a two-layer CNN:

x = DΛ x ETx [7]
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where D ∈ ℝNp × LNp = D1 ⋯ DL , E ∈ ℝNp × LNp = E1 ⋯ EL , and Λ x ∈ ℝLNp × LNp is 

a diagonal matrix with 0 and 1 elements that are determined by the nonlinear ReLU 

activation output (i.e., Λ x i, i = 1 if ETx i > 0, otherwise 0). El and Dl refer to convolution 

matrices associated with the l-th channel output and input at the first and second layers, 

respectively. With 1×1 convolutions in the second layer, D reduces to D = d1INp ⋯ dLINp
with channel-wise trainable weights dl for l = 1,…,L.

D in the second layer and E of the first layer of the CNN perform frequency summation S 
and input filtering H in Eq. [6], respectively. The convolution matrices D and E are learned 

from the training data, whereas the convolution matrix H and spatially-varying mask C are 

determined by field maps f. More importantly, the zero-one switching behavior of the 

elementwise ReLU induced nonlinear operator Λ can derive the spatially-varying weight 

adaptively from the different filtered inputs and analogously achieve the spatially varying 

weighting of the matrix C in Eq. [6]. Rather than relying on measuring the exam-specific 

field maps, the CNN would learn from training samples to recognize and undo characteristic 

effects of off-resonance.

While the implementation of Eq. [7] would be a direct replication of traditional off-

resonance deblurring methods, we take this starting point and build on the following recent 

advances in machine learning to arrive at the proposed network architecture shown in Figure 

1. First, we increase the CNN architecture from two to three layers by replacing the single 

convolutional layer E with two convolutional layers with a ReLU operation in between. 

When using a single convolutional layer, there exist maximum 2L distinct combinations of 

different convolution kernels. This is because there are L convolutional filter outputs for 

each spatial location, and summing up these L coefficients at the second layer yields 2L 

possible combinations due to the binary selection of the element-wise ReLU. Increasing the 

number of cascaded layers from one to two increases the number of combinations from 2L to 

2L1 − 1 2L2. A similar increase in the number of combinations was derived for encoder-

decoder CNNs by Ye et al (34). Second, we consider residual learning by adding a skip 

connection between input and output. Residual learning is widely used for medical image 

restoration (41–44) and we experimentally found that it improves deblurring performance 

(comparison not shown).

METHODS

Network Implementation Details

The convolutional neural network (Figure 1) is comprised of 3 convolutional layers. The 

network architecture is practically implemented with real-valued operations. Although both 

the input and output of the networks consist of two channels (real and imaginary 

components), we do not explicitly separate the real and imaginary image processing into 

separate streams and therefore information between the real and imaginary images is shared 

between the intermediate layers.
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The filter widths are set to n1 = 64, n2 = 32, n3 = 2. We choose f1 = 9, f2 = 5, and f3 = 1. We 

experimentally determined convolutional filter sizes of f1 and f2 that give the best deblurring 

performance in terms of image quality metric described in the following section (Supporting 

Information Figure S1).

We train the model in a combination of Lp loss and ℒgdl gradient difference loss (45) 

between the prediction x and ground truth x:

ℒ x, x = ℒp + λℒgdl [8]

where ℒp x, x = x − x p
p and ℒgdl x, x = ∇xx − ∇xx + ∇yx − ∇yx . We choose to 

use p=1 (i.e., L1 loss) and λ = 1. We report the experimental results on the performance of 

choosing the different values of λ and choosing between L1 and L2 in Supporting 

Information Figure S2.

For training the model, we use the ADAM optimizer (46) with a learning rate of 0.001, a 

mini-batch size of 64, and 200 epochs. We implement the network with Keras using 

Tensorflow backend. The network is trained using a 16-core Intel Xeon E5–2698 v3 CPU 

and a graphical processing unit of Nvidia Tesla K80.

Generation of Training Data

We acquired the data from 33 subjects on a 1.5T scanner (Signa Excite, GE Healthcare, 

Waukesha, WI) at our institution using a standard vocal-tract protocol (6). The imaging 

protocol was approved by our Institutional Review Board. A 13-interleaf spiral-out spoiled 

gradient echo pulse sequence was used with the body coil for RF transmission and a custom 

8-channel upper airway coil for signal reception. Imaging was performed in the mid-sagittal 

plane while the subjects being scanned followed a wide variety of speech tasks to capture 

various articulatory postures. Imaging parameters used included: TR/TE = 6.004/0.8 ms, 

Tread = 2.52 ms, spatial resolution = 2.4 × 2.4 mm2, slice thickness = 6 mm, FOV = 200 × 

200 mm2, receiver bandwidth = ±125 kHz, and flip angle = 15°.

Although this protocol uses a short spiral readout (2.52 ms), we found the off-resonance in 

this data corpus to be diverse and necessary to be corrected to obtain high-quality images. 

We adopted a recent dynamic off-resonance correction method (DORC)(16) to estimate 

dynamic field maps and to reconstruct dynamic images in conjunction with the off-

resonance correction. The resultant dynamic images (and field maps) were of size 84 × 84 × 

400 (time) for each subject. We regarded these images (x) and estimated field maps (f) as 

ground truth. We split 33 subjects into 23, 5, and 5 subjects for the training, validation, and 

test sets, respectively. The validation set was used for choosing network parameters and 

performing validation experiments. The test set was used for evaluating the performance of 

the proposed method.

Blurred images x were simulated from the ground truth x with augmented field maps f′ by 

employing Eq. [2] x = A0
TWAf′x frame by frame as illustrated in Figure 2A. Augmentation 

included a scale α and an offset β to the field map f such that f′ = αf + β and synthesizing 
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blurred images was based on the augmented field map. Note that α ≠ 0 would inherit 

original spatially varying off-resonance blur from the field maps f up to scale, whereas α = 0 

leads to spatially uniform blur analogous to the work of Zeng et al (30). We added the offset 

β to simulate the zeroth-order frequency offsets in image space. Such offsets are a typical 

result of imperfect shimming. We considered four different spiral trajectories (Supporting 

Information Figure S3). Those correspond to 13-, 8-, 6-, 4-interleaf spiral-out samplings, 

with readout times (Tread) of 2.52, 4.02, 5.32, and 7.94 ms, respectively, with the same field 

of view and in-plane resolution. Figure 2B contains examples of synthetic images. During 

the implementation of Af in Eq. [2], we approximated e−ι2πfkti as described earlier and 

executed Af with L=6 times non-uniform FFT (47) calls.

Validation Experiments

Here, we evaluated the impact of various data augmentation strategies (for f) on deblurring 

performance and generalization. Specifically, we trained the same network architecture 

using reference data from 23 subjects synthesized with different combinations of the scale 

factor α, frequency offset β, readout duration Tread (spiral trajectories), and the training data 

size as summarized in Table 1. We then measured the effectiveness of the different 

configurations by using the validation set (5 subjects) listed in Table 1.

EXP I–A. Off-resonance range—The off-resonance frequency range is typically 

unknown. We examined the impact of off-resonance frequency range (fmax denoting the 

maximum frequency value) in training data on deblurring performance. We trained the 

network on training data simulated with 4 different values of fmax using α ∈ {1
6 , 1

3 , 2
3 , 1}, 

resulting in four trained networks, and compared their model performance on validation data 

with varying fmax as listed in Table 1. We considered β = 0 and Tread = 2.52 ms for both 

training and validation sets. Note that the frequency ranges from −625 to 625 Hz (fmax=625 

Hz) for the original field maps (i.e., when α = 1 and β = 0).

EXP I–B. Frequency offset and training set size—We added a frequency offset β 
when synthesizing the training data. This is equivalent to simulating a constant frequency 

offset over an image space. We considered two training configurations; one with β = 0 and 

one with β ∈ {−300,−200,…,300}. The former had N (=9200) samples, while the latter had 

different sample sizes from N to 7N. The range of β from −300 to 300 Hz is deliberately 

chosen broad to cover the maximum center frequency error that could be expected.

EXP II. Spatially varying versus spatially uniform blur—Recent work by Zeng et al 

(30) generated training data by simulating off-resonance at evenly spaced frequencies 

between ± 500 Hz. This approach, if generalized to spatially varying blur, could benefit 

situations where the field map is not available for synthesizing spatially varying blur. To test 

the generalizability of this approach and more importantly the necessity of the field maps for 

the spatially variant blur, we generated synthetic data of spatially invariant blur by setting α 
= 0 and β ∈ {−600,−550,…,600} and of spatially variant blur by using α = 1 and β ∈ 
{−300,−200,…,300}, the same setting as in EXP I–B. We then tested each trained network 
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to another configuration setting by considering two validation configurations of spatially 

variant and invariant blur listed in Table 1.

EXP III. Readout duration—We investigated whether a network trained on a particular 

Tread (spiral trajectory) can be generalized to the unseen Tread in test time. We used 13-, 8-, 

6-, 4-arms trajectories corresponding to Tread of 2.52, 4.02, 5.32, 7.94 ms to synthesize blur 

data, while setting α = 1 and β ∈ {−300,−200,…,300}.

For all experiments, the accuracy and robustness of deblurring performance were evaluated 

using multiple image quality metrics. We used the high-frequency normalized error norm 

(HFEN) (48), due to the expectation that high spatial frequency features would be restored 

after the blurred boundary is recovered. We also used common metrics, such as peak-signal-

to-noise ratio (PSNR) and structural similarity index (SSIM) (49).

Evaluation using Synthetic Test Data

We tested the model on unseen synthetic test data from 5 subjects (independent from 

training and validation datasets). We used the model trained in EXP III. The test data were 

simulated from all spiral trajectories without any augmentation (i.e., α = 1,β = 0). For 

comparison, we applied 1) frequency-segmentation-based multi-frequency interpolation 

(MFI) (22) and 2) model-based iterative reconstruction (IR) (28) into the synthetically 

generated test k-space data (y). For MFI, we obtained a deblurred image by x = Af
TWy. For 

IR, we obtained a deblurred image by solving minx y − Afx 2
2 iteratively by using conjugate 

gradient with 16 iterations. In both methods, we used the ground truth field map f to 

construct Af. HFEN, PSNR, and SSIM metrics were used for evaluation.

It is worth noting that the IR method is known to provide more accurate results than the non-

IR method for abruptly varying off-resonance in space. This IR approach could provide the 

best achievable deblurring performance given the ground truth field map f, although it is not 

available in practice.

Evaluation using Real Experimental Data

We applied the trained network to real data. We acquired spiral RT-MRI data with four 

readout durations (2.52, 4.02, 5.32, and 7.94 ms) from two subjects and performed image 

reconstruction as described by Lingala et al (6). We performed the deblurring on the 

reconstructed images frame by frame by using the trained network. We compared results 

with DORC (16). This auto-calibrated method estimates dynamic field maps from single-TE 

blurred image itself after coil phase compensation, with no scan time penalty, and iteratively 

reconstructs off-resonance-corrected image using the estimated field map.

RESULTS

Validation Experiments

Figure 3A shows deblurring performance (SSIM and PSNR) as a function of the range of 

off-resonance (fmax) in the train and validation sets (EXP I-A). For the corrected images, 

each curve represents a separate network trained with different fmax. For no correction (a, 
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black dashed curve), the values of SSIM and PSNR gradually decrease as fmax increases in 

the validation sets, which is likely due to worsened blurring artifact. All but the network 

trained with fmax of 104 Hz (b, blue curve) improve image quality for all fmax tested 

compared with the uncorrected case. Each network is shown to exhibit the highest values of 

SSIM and PSNR for validation data fmax, with which the network is trained. The 

performance then quickly degrades for fmax greater than that of its best performance (see c, 

orange curve). In Figure 3B, representative frames are shown. The uncorrected image 

presents fmax=625 Hz as shown in (a) and model trained with fmax of 625 Hz shown in (e) 

exhibits the best deblurring performance qualitatively against the other models shown in (b-

d, f). We observe that it is essential for the frequency range of the training set to be a 

superset of the validation data.

We also found that adding frequency offsets when synthesizing the training data helps the 

network perform better, which is shown in Table 2 (EXP I-B). In addition, as the training 

samples increase from N to 7N, a performance improvement of 2.1, 0.003, and 0.022 can be 

found in PSNR, SSIM, and HFEN, respectively.

Table 3 presents the quantitative comparison of model performance on spatially invariant 

and variant blur (EXP II). The network trained on spatially variant blur has superior PSNR, 

SSIM, and HFEN values for both validation data of spatially invariant and variant when 

compared to no correction and the network trained on spatially invariant blur. The network 

trained on spatially invariant blur improves all the image metrics for the validation data of 

spatially invariant blur compared to no correction, but when applied to spatially variant blur, 

it presents even lower values in all the metrics than with no correction, indicating it fails to 

deblur spatially varying off-resonance.

Figure 4 presents image metrics as a function of the readout duration (Tread) in the train and 

validation sets (EXP III). For each of the Tread tested, the network trained with the 

corresponding Tread has superior PSNR, SSIM, and HFEN compared to no correction and 

networks trained with other Tread (see arrows). For each trained network, the performance 

then quickly degrades for Tread longer than that of its best performance. In contrast to the 

individually trained networks, the network trained using all the Tread (see green, “All 

included”) exhibits consistent improvement over the Tread.

Evaluation using Synthetic Data

Figure 5 compares image metric results as a function of Tread for images with no correction 

and after correction using various methods applied to synthetic test data of 5 subjects. The 

proposed method (purple) is compared against no correction (blue), MFI (red), and IR 

(orange). For all methods, performance gradually degrades as readout duration increases. 

Overall, IR has superior PSNR, SSIM, and HFEN values for all readout durations, followed 

by the proposed method, MFI, and no correction. MFI had an even lower PSNR than that for 

no correction for Tread≥2.52 ms (black arrows).

Figure 6 contains representative image frames of the ground truth, uncorrected image, and 

images corrected by various comparison methods. In Figure 6A, blurring is clearly seen 

around the lips, tongue surface, and soft palate in the uncorrected image (yellow arrows). 
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After correction, MFI even deteriorates the delineation of the boundaries in those regions, 

whereas the IR method almost perfectly resolves the blurring artifact as also clearly 

observed in the difference images (see Fig. 6B). The proposed method successfully resolves 

the blurring artifact in those regions, which is visually comparable to the result from the IR. 

Figure 6C shows the intensity time profiles that are extracted at the dotted line marked in the 

ground truth. Both IR and the proposed methods exhibit sharp boundaries between the 

tongue and air and around the soft palate, which is consistent over time frames.

Evaluation using Real Experimental Data

Figure 7 contains representative experimental data using different spiral readout durations. 

The image is reconstructed with no off-resonance correction and using the DORC (16). The 

proposed method took the uncorrected images (left column) as an input to the trained 

network and performed deblurring frame-by-frame. In the uncorrected image, off-resonance 

blurring is most clearly observed at the lower lip (green arrows) and hard palate (red arrows) 

and becomes severe with the longer readouts. The proposed method can improve the 

delineation of boundaries in those locations; the lower lip becomes sharper and the structure 

of the hard plate becomes visible after correction using the proposed method (see red 

arrows), which is consistent for all readout durations considered. The DORC exhibits an 

improved depiction of the air-tissue boundaries for short readouts (≤5.32 ms) but the signal 

intensity in several regions becomes spuriously amplified, and the blurred anatomic 

structures still remain unresolved for longer spiral readouts (7.94 ms) (see yellow arrows).

DISCUSSION and CONCLUSION

We have demonstrated a machine learning method for correcting off-resonance artifacts in 

2D spiral RT-MRI of human speech production without exam-specific field maps. We 

trained the CNN model using spatially varying off-resonance blur synthetically generated by 

using the discrete object approximation and field maps. Once the network is trained, the 

proposed method is computationally fast (12.3 ± 2.2 ms per frame on a single GPU) and 

effective at resolving spatially varying blur that occurs predominantly at the vocal tract air-

tissue boundaries of interest. The performance was superior to the current state-of-the-art 

auto-calibrated method and only slightly inferior to an ideal reconstruction with perfect 

knowledge of the field map.

We utilized a simple 3-layer residual CNN to learn the deblurring operation based on the 

training set of paired blurred and ground truth images. The network with the learned 

parameters is applied to different subjects with different speech patterns and spatio-temporal 

off-resonance patterns. The results indicate that frame-by-frame blurring is resolved in a 

matter that is far superior to the correction of the temporal average blur. The CNN 

performance is invariant to rotation/flipping (see Supporting Information Table S1), despite 

the fact that some of learned convolution kernels lack circular symmetry (see Supporting 

Information Figure S4). Our interpretation is that the CNN estimates local deblurring from 

the features of the input image while allowing for adaptation to the changing off-resonances. 

Even in blurred images, the necessary information for deblurring remains local (cf., local 

imaginary components exploited by Noll et al (31)). We speculate that the convolutional 
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filters are able to pick up information from surrounding pixels and use nonlinearities such as 

the ReLU operation to preserve only the filter outputs that are relevant to deblurring for each 

spatial location.

To train the proposed network architecture, we synthetically generated spatially varying off-

resonance blur using reference data with field maps estimated from the auto-calibrated 

method (16) with affine linear data augmentation of the field maps (f′ = αf + β). This is 

different from the approach taken by Zeng et al (30) where spatially invariant off-resonance 

was simulated at a range of off-resonance frequencies. We experimentally found that our 

network architecture trained for spatially invariant blur would not be able to resolve the 

spatially varying blur, and the usage of spatially-varying field maps is valuable (EXP II). 

This is consistent with one of the critical underlying assumptions pertaining to machine 

learning that unseen test data comes from the same distribution as training data. We also 

investigated generalizability for readout duration. We found that the readout duration of the 

training and test sets should be the same for the network to correct off-resonance without 

performance degradation (EXP III). This is consistent with expectation, because each 

readout (trajectory) presents a unique PSF for a given off-resonance frequency, which might 

not be generalized by the other readouts unless data from the other readouts are also present 

during the training phase. One exception would be spiral imaging with extremely short echo 

time.

We compared the proposed method with several conventional methods. For the synthetic test 

data, MFI exhibited the worst performance (see Fig. 5). This is likely due to the air-tissue 

boundary presenting abrupt spatially-varying off-resonance that would not fulfill the 

assumption of smooth spatial off-resonance variation. Model-based IR with knowledge of 

the true field map was superior to all others in terms of PSNR, SSIM, and HFEN. However, 

these two approaches are impractical as they require knowledge of the field map and are 

therefore limited by the quality of field map estimates. This is a practical limitation of 

conventional methods. One such case is shown in Figure 7, where auto-calibrated methods 

do not reliably work at longer readout duration (7.94 ms). This is because the field maps are 

estimated from the severely distorted images and this error propagates to the estimated field 

maps and the iterative off-resonance correction procedure. The proposed method avoids this 

issue and provides superior performance even at a longer spiral readout than the iterative 

approach.

We used a simple 3-layer CNN architecture, which is motivated by an analogy to traditional 

deblurring procedures. With the continually growing number of state-of-the-art network 

architectures, many of which are much deeper, we expect that there is further room for 

improvement. Nevertheless, there should be a balance between performance and the ability 

to explain such performance. The purpose of this study was to demonstrate the feasibility of 

spatially varying off-resonance correction using a simple CNN architecture, and this was 

achieved. We only examined a single contrast and a single region of the body from the 

midsagittal imaging plane. A larger study encompassing multiple body regions with 

different imaging parameters would be valuable in future work.
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We considered the speech production application because off-resonance artifacts 

significantly hamper the detailed speech scientific and linguistic analyses using the dynamic 

imaging data. The proposed method has shown to provide sharp delineation of articulator 

boundary with readouts up to ~8 ms at 1.5T, which is 3-fold longer than the current standard 

practice (15) and would provide 1.7-fold improvement in scan efficiency. This would allow 

for improved accuracy and precision of speech analysis beginning with boundary 

segmentation (50–52) that is often impaired by blurring artifact (16). It would also 

potentially be feasible to achieve higher temporal resolution using a longer readout with 

image quality comparable to a short readout (see Fig. 7) or to use spiral readouts at higher 

field strengths such as 3T which is available on more sites and provides higher SNR. The 

low-latency processing of off-resonance deblurring (12.3 ± 2.2 ms per frame) without field 

map would also be valuable for other RT-MRI applications such as cardiac studies and 

interventional RT-MRI where off-resonance at the lateral wall, adjacent to draining veins, or 

around metal implants and tools impedes diagnostic use of RT-MRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proposed network architecture.
The input is distorted complex images, and the output is distortion-free complex images, 

each consisting of two channels (real and imaginary). The first convolutional layer takes the 

input distorted image of size 84 × 84 × 2 and applies n1 2D convolutions with filter size f1 × 

f1 × 2 (the last dimension 2 equaling the depth of the input), followed by the ReLU 

operation. The second layer takes the output of the first layer of size 84 × 84 × n1 and 

applies n2 2D convolutions with filter size f2 × f2 × n1, followed by the ReLU operation. The 

third layer takes the output of the second layer of size 84 × 84 × n2 and applies 2 2D 

convolutions with filter size 1 × 1 × n2. The output of the third layer is added to the input 

images via the skip connection to generate the final distortion-corrected image of size 84 × 

84 × 2.
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Figure 2. Generation of training data.
(A) The ground truth image x and field map f are obtained from short readout (2.52 ms) data 

with off-resonance estimation and correction. Blurred images x are synthesized via 

simulating Eq. [3] using the ground truth image x and field map f′ augmented by α and β 
and different spiral readout durations (Tread). (B) The field maps are augmented by f′ = αf + 

β with scale α ranging from 0 to 1 and constant offset β from −300 to 300 Hz. We also 

consider four different spiral readout durations (Tread = 2.52, 4.02, 5.32, and 7.94 ms). Those 

correspond to 13-, 8-, 6-, 4-interleaf spiral-out trajectories, respectively, with the same field 

of view and in-plane resolution.
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Figure 3. Performance depends on the Training Set (EXP I-A).
(A) Averaged SSIM and PSNR as a function of frequency range (fmax denoting the 

maximum frequency value) for the uncorrected (black dotted) and corrected (non-black 

solid) images in the validation set. Color (non-black) represents a separate network trained 

with different fmax. Note that higher SSIM and PSNR correspond to better performance. The 

best performance is achieved when the training and validation datasets share the same range 

of off-resonance (arrows). When severe off-resonance appears in the validation data as off-

resonance range is increased, performance for the network trained with fmax less than that of 

the validation data quickly degrades. (B) Representative example of the ground truth, 

uncorrected, and corrected images. The uncorrected image had fmax = 625 Hz and was 

deblurred using models trained with fmax of 104, 208, 417, 625 Hz, and all of them. We 

observe that it is essential for the frequency range of the training set to be a superset of the 

validation set.
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Figure 4. Impact of Readout Duration (EXP III).
Image Quality Metrics (PSNR, SSIM, and HFEN) as a function of readout duration (2.52, 

4.02, 5.32, and 7.94 ms) for the uncorrected (black) and corrected (non-black) images are 

shown. For corrected images, color represents a separate network trained with different 

readout durations; “All included” (green) indicates all of four readout durations are used 

during training. All metrics are averaged across time and subjects. Note that higher PSNR 

and SSIM and lower HFEN correspond to better performance. The best performance is 

almost always achieved when the training and validation datasets share the same readout 

duration as indicated by arrows in each panel of the image metrics. The performance then 

quickly degrades for longer readout durations in the validation set than that with which the 

network was trained.
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Figure 5. Quantitative comparison of deblurring performance for comparison methods using 
synthetic test data.
Image Quality Metrics (PSNR, SSIM, and HFEN) are shown as a function of readout 

duration (2.52, 4.02, 5.32, and 7.94 ms). All metrics are averaged across time and subjects 

and error bars were calculated as the standard deviation. Note that higher PSNR and SSIM 

and lower HFEN correspond to better performance. The proposed method (purple) is 

compared against no correction (blue), multi-frequency interpolation (MFI, red), and 

iterative reconstruction (IR, orange). For all methods, performance gradually degrades as 

readout duration increases. IR performs best for all readout durations, followed by the 

proposed method, MFI, and no correction. Note that MFI had lower PSNR than that for no 

correction for readout duration > 2.52 ms (black arrows).
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Figure 6. Qualitative comparison of deblurred images for comparison methods using synthetic 
test data.
Left to right: the ground truth, uncorrected, multi-frequency interpolation (MFI), model-

based iterative reconstruction (IR), and the proposed method. (A) images before and after 

deblurring with various methods, (B) absolute difference images (amplified by a factor of 4 

for better visualization) with respect to the ground truth, and (C) an intensity vs time (y-t) 

plot marked by dotted white line in (A). Yellow arrows point out the regions that are most 

affected by off-resonance blurring and that present contrast in deblurring performance for 

various methods. The proposed method successfully resolves the blurring artifact, which is 

superior to uncorrected image and image using MFI, and is visually comparable to IR 

method that presents the best performance over all others.
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Figure 7. Representative experimental results using long readout spirals.
Left to right: Image reconstruction with no off-resonance correction, image reconstruction 

using a previous auto-calibrated dynamic off-resonance correction (DORC), and image 

deblurred by the proposed method. Top to bottom: readout duration from 2.52 to 7.94 ms 

and temporal resolution of 78 (13-interleaf) to 46 ms (4-interleaf). Green (lower lip) and red 

(hard palate) arrows point out the regions that are most affected by off-resonance blurring 

and corrected by the DORC and proposed methods. The proposed method provides 

improved delineation of the boundaries, which is consistent for all readout durations 
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considered, whereas DORC fails to resolve the blurred boundaries for longer readout 

duration of 7.94 ms (yellow arrows). See also Supporting Information Videos S1.
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Table 1.

Summary of the parameters used to generate training and validation sets for validation experiments.

Train Validation

α β (Hz) Tread (ms) # of samples α β (Hz) Tread (ms)

EXP I

A

1/6
1/3
2/3
1

{0} 2.52 N*
1/6
1/3
2/3
1

{0} 2.52

B 1

{0}
{−300, −200, …, 300}
{−300, −200, …, 300}
{−300, −200, …, 300}

2.52

N
N

3.5N
7N

1 {0} 2.52

EXP II 1
0

{−300, −200, …, 300}
{−600, −550, …, 600} 2.52 3.5N

4N
1
0

{0}
{−300, −200, …, 300} 2.52

EXP III 1 {−300, −200, …, 300}

2.52
4.02
5.32
7.94

7N 1 {−300, −200, …, 300}

2.52
4.02
5.32
7.94

Each row represents a configuration set of α, β, Tread, and # of samples for train set or α, β, Tread for validation set.

*
Here, N (# of samples) = 9200 84×84 image pairs of distorted and distortion-free complex images.
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Table 2.

Quantitative evaluation of model performance in terms of the PSNR, SSIM, and HFEN, without and with 

offset β, and as a function of the number of training samples (EXP I-B).

Training data PSNR SSIM HFEN (x1000)

Without offset β (= 0) # of samples = N* 32.75 0.979 0.274

With offset β {−300, −200, …, 300}

N 33.43 0.980 0.125

3.5N 34.40 0.983 0.094

7N 34.53 0.983 0.103

No correction 26.82 0.951 0.890

*
Here, N = 9200 84×84 image pairs of distorted and distortion-free complex images.
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Table 3.

Quantitative evaluation of model performance on spatially invariant and variant blur in terms of the PSNR, 

SSIM, and HFEN (EXP II).

Validation data Training data PSNR SSIM HFEN (x1000)

Spatially variant blur
(α = 1 and β = 0)

no correction 26.82 0.951 0.890

Spatially variant blur
α = 1

β ∈ {−300, −200, …, 300}
34.40 0.983 0.094

Spatially invariant blur
α = 0

β ∈ {−600, −550, …, 600}
26.53 0.934 1.414

Spatially invariant blur
(α = 0 and β ∈ {−300, −200, …, 300})

no correction 27.01 0.897 0.346

Spatially variant blur
α = 1

β ∈ {−300, −200, …, 300}
35.60 0.986 0.037

Spatially invariant blur
α = 0

β ∈ {−600, −550, …, 600}
35.54 0.986 0.046
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