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Abstract

NADPH oxidase 4 (NOX4) is the most abundant NOX isoform in the kidney; however, its 

importance for renal function has only recently emerged. The NOX4-dependent pathway regulates 

many factors essential for proper sodium handling in the distal nephron. However, the functional 

significance of this pathway in the control of sodium reabsorption in the initiation of chronic 

kidney disease is not established. We show that genetic ablation of Nox4 in Dahl salt-sensitive 

(SS) rat attenuates a high-salt (HS)-induced increase in epithelial Na+ channel (ENaC) activity in 

the cortical collecting duct. We also found that H2O2 upregulated ENaC activity, and H2O2 

production was reduced in both the renal cortex and medulla in SSNox4−/− rats fed an HS diet. 

NaCl cotransporter expression was increased in the streptozotocin model of hyperglycemia-

induced renal injury compared to healthy controls, while expression values between SS and 

SSNox4−/− groups were similar. ENaC activity in hyperglycemic animals was elevated in SS but 

not SSNox4−/− rats. These data emphasize a critical contribution of the NOX4-mediated pathway in 

maladaptive upregulation of ENaC-mediated sodium reabsorption in distal nephron in the 

conditions of HS- and hyperglycemia-induced kidney injury.

Keywords

chronic kidney disease; salt-sensitive hypertension; NOX4; ENaC; diabetic nephropathy; H2O2

*To whom correspondence should be addressed: Alexander Staruschenko, PhD; Department of Physiology, Medical College of 
Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA. Phone: (414) 955-8475; Fax: (414) 955-6546; 
staruschenko@mcw.edu.
AUTHOR CONTRIBUTIONS
Conceptualization – T.S.P., O.P., D.V.I., and A.S.; Performed research – T.S.P., O.P., V.L., E.I., S.K., G.B., and D.V.I.; Contributed new 
reagents or analytic tools – A.W.C.; Writing – Original Draft, T.S.P., E.I., D.V.I., and A.S.; Review, Editing & Final Approval – all 
authors; Resources – A.W.C. and A.S.; Supervision – A.S.

HHS Public Access
Author manuscript
FASEB J. Author manuscript; available in PMC 2021 October 01.

Published in final edited form as:
FASEB J. 2020 October ; 34(10): 13396–13408. doi:10.1096/fj.202000966RR.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Chronic kidney disease (CKD) is a progressive disorder characterized by the impaired 

ability of the kidney to control fluid and electrolyte balance and to excrete metabolic wastes. 

CKD afflicts millions of Americans, accounts for significant morbidity and kidney failure. 

Although a variety of pathological conditions can cause CKD, specifically hypertension and 

diabetes mellitus are responsible for the majority of renal injury and progressive 

deterioration of kidney function and structure (1). Identification of the underlying molecular 

mechanisms will help to develop appropriate preventive therapies.

Evidence from clinical observations and basic science studies suggests that the progression 

of renal dysfunction in CKD is associated with an increase in oxidative stress as a 

consequence of reactive oxygen species (ROS) overproduction, an impaired antioxidant 

system, and mitochondrial function (2-4). Although many endogenous sources of ROS were 

described in the kidney, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, 

and specifically the most abundant isoform in the kidney NADPH oxidase 4 (NOX4), are 

generally accepted as their major producers (5, 6). NOX4 is expressed in several 

compartments of the kidney, and it was reported that its abundance could be altered by 

multiple factors that play an essential role in the initiation and progression of kidney injury, 

such as hyperglycemia, high salt (HS) intake in salt-sensitive rats (SS) rats, as well as other 

factors important for kidney disease progression (5, 7, 8). Nox4 deletion or pharmacological 

targeting of this NADPH oxidase was shown to reduce oxidative stress and renal injury in 

many renal and cardiovascular pathological conditions (9). Global Nox4 knockout (10, 11) 

and apocynin treatment (12, 13) decrease SS hypertension by reducing ROS levels (14). In 

streptozotocin (STZ)-induced diabetic ApoE−/− mice, administration of the most specific 

Nox1/4 inhibitor, GKT137831, replicated the renoprotective effects of Nox4 deletion (15). 

The novel pan-NOX inhibitor APX-115 also demonstrated similar protective effects in 

diabetic nephropathy (16). Together these studies emphasize the significance of the NOX4-

dependent pathways in the development of CKD pathophysiology.

NOX4 is highly expressed in renal tubular segments, including the aldosterone-sensitive 

distal nephron (ASDN), which consists of the late distal convoluted tubule (DCT) and 

collecting duct (CD) (17, 18). Although sodium is reabsorbed along the whole nephron, the 

ASDN has a pivotal role in final urinary Na+ excretion. Na+ reabsorption in the CD is 

mainly mediated by the epithelium sodium channel (ENaC) (17). Upregulation of ENaC 

expression and activity is observed in experimental models of HS-induced hypertension 

(Dahl SS rats), and in an STZ model of type 1 diabetes, that might be a physiological 

compensation for the water and electrolyte wasting that is associated with these disease 

states. However, this also contributes significantly to the progression of hypertension (19). 

Numerous studies have shown that ENaC regulation by endocrine factors, such as 

angiotensin II (Ang II), prorenin, and insulin, increase epithelial sodium transport in the 

cortical collecting duct (CCD) through ROS-dependent mechanisms (20). Lu and colleagues 

reported that activation of prorenin receptors increases ENaC activity in mpkCCD 

immortalized cell culture, and both siRNA-mediated NOX4 knockdown and the dual 

NOX1/4 inhibitor GKT137892 blunts the effect of prorenin (21). ENaC activity might also 
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be directly upregulated by the application of H2O2 in A6 distal nephron cells (22). 

Furthermore, our recent studies revealed that Dahl SS rats lacking Nox4 have lower blood 

pressure and renal injury when placed on an HS diet than wild type controls (10). Finally, 

Nox4 deletion protects against Ang II-mediated arterial and pulse pressure increase in an 

experimental model of hypertension in mice (23). These data suggest that ENaC 

upregulation in the context of renal injury might result from overstimulation of the NOX4-

dependent pathway and increased ROS generation.

In contrast to NOX1-3 and NOX5, which are activated by specific agonists or Ca2+,and 

depend on cytosolic subunits, NOX4 is constitutively active and H202 production modulated 

by NOX4 expression levels (24). According to Rajaram and colleagues, the constitutive 

character of NOX4 activity may represent a “double-edge sword” for the kidneys and the 

heart. The authors summarize existing literature and conclude that although targeting NOX4 

is beneficial in some cardiorenal conditions (e.g. in diabetic glomerulopathy, cardiac 

remodeling and hypertension), a number of detrimental effects such as tubule-interstitial 

injuries, atherosclerosis and cardiac ischemia may occur. This duality requires a careful 

evaluation of the potential adverse effects of NOX4 inhibition (9). The present study aimed 

to investigate the influence of Nox4 deletion in Dahl SS rats on the production of renal H2O2 

and epithelial Na+ transport in the ASDN in two different models of CKD: salt-induced 

hypertension and STZ-induced type 1 diabetes.

MATERIALS AND METHODS

Experimental protocol and animals

Animal use and welfare procedures adhered to the ARRIVE guidelines and National 

Institutes of Health Guide for the Care and Use of Laboratory Animals. The following 

protocols were reviewed and approved by the Medical College of Wisconsin Institutional 

Animal Care and Use Committee. Experiments were performed on male Dahl salt-sensitive 

(SS; SS/JrHsdMcwi) and SSNox4−/− rats bred at the Medical College of Wisconsin. 

SSNox4−/− rats were created using zinc-finger nucleases technology. Genetic manipulations 

resulted in an 8 bp deletion in the Nox4 exon 7 and appearance of an early stop codon that 

caused missing most of the C-terminal (10). Rats were provided with normal salt food (0.4% 

NaCl AIN-76 purified rodent chow; Dyets #113755, Bethlehem, PA) and water ad libitum. 

The study was performed using two main protocols, as described below. Tissues for 

biochemical and electrophysiological experiments described in Protocol 2 were collected 

from the same animals as recently used for glomerular analysis (25).

Protocol 1.—For the study of the role of NOX4-dependent pathway in the model of HS-

induced hypertension, eight weeks old SS and SSNox4−/− rats were switched to an HS diet 

(4%, Dyets #113756) for either three days or three weeks for the electrophysiological 

measurements. To collect urine, rats were placed in metabolic cages for 24 hrs periods on 

days 0, 3, and 21 of HS diet supplementation. Urine electrolytes and creatinine were 

measured with a blood gas and electrolyte analyzer (ABL system 800 Flex; Radiometer, 

Copenhagen, Denmark). At the end of the experiments, rats were euthanized and their 

kidneys were flushed and collected for electrophysiological analysis.
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Protocol 2.—For the study of the role of Nox4-dependent pathway in the model of type 1 

diabetes, 7 week old SS and SSNox4−/− rats received one intraperitoneal (i.p.) injection of 

streptozotocin (STZ, 75 mg/kg; Sigma-Aldrich, St Louis, MO) or vehicle (50 mM sodium 

citrate, pH 4.5) for controls as previously described (25-27). Briefly, seven days after STZ 

injection, both SS and SSNox4−/− groups of rats underwent surgery for subcutaneous 

implantation of slow-release insulin pellets (LinShin, Canada) to maintain moderate 

hyperglycemia (approximately 300 mg/dl) throughout the protocol timeline. Control groups 

were implanted with blank pellets. Rats were fed a normal salt (0.4% NaCl) diet throughout 

the protocol. At the end of the experiments, rats were euthanized, and kidneys were flushed 

and collected for electrophysiological measurements or Western blot analysis.

Measurement of H2O2 level in vivo

The detailed application of the biosensor amperometry technique to assess H2O2 levels in 

the kidney was previously described (28, 29). Briefly, animals were prepared using an 

anesthetic mixture of ketamine (20 mg/kg, intramuscularly) and inactin (50 mg/kg, i.p.) and 

placed on a temperature-controlled surgical table. Supplementary anesthetic (inactin) was 

administered i.p., as required. A midline incision was made to expose and isolate the left 

kidney from the surrounding fat before placing it in a stainless-steel kidney cup to reduce 

breathing artifacts (Fig. 4A). The exposed kidneys were not denervated. Following surgery 

and a 20-min equilibrium period, control baseline measurements were recorded. A H2O2-

sensitive biosensor (tip − 0.5 mm; Sarissa Biomedical, UK) was inserted into the kidney 

cortex or medulla with a micromanipulator (MN-153, Narishige International USA, Inc). 

Interstitial infusion of catalase (2 μg/ml; #C40, ≥10,000 units/mg protein, Sigma-Aldrich) 

was performed directly to the kidney via an implanted catheter connected to a peristaltic 

pump to scavenge interstitial H2O2 and block the signal detected by the biosensors. The 

obtained levels of the catalase sensitive current were calculated as interstitial H2O2 

concentrations corresponding to a linear calibration curve performed before each study as 

previously described (28, 29).

Electrophysiology

Electrophysiological recordings were performed using the cell-attached patch-clamp 

technique in a voltage-clamp configuration. ENaC activity was measured in split-open 

freshly isolated CCDs. Renal tubules were isolated manually or using a vibrodissociation 

technique described previously (30, 31). Recordings have been made using extracellular 

solution (in mM): 150 NaCl, 2 MgCl2, 10 HEPES (pH 7.4). Patch pipettes were filled with a 

solution of the following composition (in mM): 140 LiCl, 2 MgCl2, and 10 HEPES (pH 

7.35). Resistances of patch pipettes ranged from 7 to 12 MΩ. After a high resistance seal 

was obtained, the cell-attached recordings were performed immediately and analyzed as 

described previously (30, 31).

Western blotting

Kidney cortical lysates were prepared as follows: the kidney cortex was excised immediately 

after perfusion and snap-frozen in liquid nitrogen. Cortical sections were cut, weighed and 

dissolved in Laemmli with protease inhibitors cocktail (Roche) at 20 mg/ml with pulse 
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sonication for 5-10 sec. Samples were subjected to PAGE, transferred onto a nitrocellulose 

membrane (Millipore) for probing with antibodies against total and phosphorylated NCC 

kindly provided by Dr. David H. Ellison (Oregon Health & Science University).

Statistical analysis

Data presented as mean±SEM. To test for a significant difference among means, a two-

factor ANOVA was applied. For two mean comparisons, unpaired, two-tailed, Student’s t-

tests or non-parametric Mann-Whitney U test was performed. For paired experiment data, a 

Wilcoxon signed-rank test was used. For all hypothesis testing, a significance threshold of 

p<0.05 was used.

RESULTS

Nox4 deletion increases HS-induced diuresis and natriuresis, and prevents ENaC 
activation in SS rat

SSNox4−/− rats fed an HS diet was recently demonstrated to develop significantly lower 

blood pressure and lesser levels of albumin excretion, tubular necrosis and glomerular injury 

than SS controls that implicates a role of NOX4-dependent signaling in salt-induced 

hypertension and associated renal injury (10). Since impairment of pressure natriuresis/

diuresis dependency is considered a major contributor to blood pressure elevation in this 

model of hypertension, our first aim was to test whether Nox4 deletion in SS rats improves 

sodium/water handling under HS intake. In the model of HS-induced hypertension, blood 

pressure increase is well established to occur in two phases: early reversible phase, which 

lasts 3-7 days, followed by the second phase that lasts weeks and is associated with 

irreversible kidney damage (32, 33). Figure 1A shows a schematic protocol of our 

experiment, where SS and SSNox4−/− male rats fed a normal salt diet (0.4% NaCl) were 

switched to an HS (4% NaCl) chow for either 3 days or 3 weeks with subsequent 24-hrs 

urine collections and analysis. Figure 1 illustrates that the HS diet increases urinary volume 

and sodium excretion similarly to earlier reports (34, 35). HS diet and associated 

hypertension led to renal damage, which can be detected by elevated albuminuria. As shown 

in Figs. 1B,C SSNox4−/− rats demonstrated increased daily diuresis and natriuresis on day 3 

of dietary intervention indicating improved pressure-natriuretic response at an early stage. 

We also confirmed earlier findings (10) that SSNox4−/− animals have lower albuminuria (Fig. 

1D). Urinary excretion of potassium and creatinine exhibited similar trends throughout the 

experiment, and no statistical difference is found between genotypes (Figs. 1E,F), which is 

indicative of equal food intake in both groups.

Previous studies demonstrated that HS diet induces increased ENaC activity in CCDs, which 

may contribute to the development of HS-induced hypertension (19, 34). To test the 

involvement of NOX4 in the upregulation of ENaC in our model, channel activity was 

probed with the patch-clamp technique in freshly isolated split opened CCDs. Fig. 2 

illustrates representative examples of ENaC single-channel current, recorded in the cell-

attached mode at different time points of the experiment and corresponding summary graphs 

of ENaC activity (NPo). Our data revealed that a significant increase in ENaC NPo in CCDs 

from SS controls could be detected after three days on HS diet, and is sustained with the HS 
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intake. In contrast, the activity of ENaC in SSNox4−/− rats did not increase during the HS 

challenge (Fig. 2). Po remained stable in all groups and NPo upregulation in SS control rats 

was mediated by the higher number of active channels (N) − 1.2±0.2, 2.8±0.8 and 2.0±0.2 

on Days 0, 3 and 21 respectively, whereas in SSNox4−/− rats N did not exceed 1.1±0.1. These 

data indicate that the NOX4-dependent pathway is involved in the upregulation of ENaC 

activity in Dahl SS rats.

NOX4 modulates ENaC activity via control of H2O2 level in the kidney

A group of studies reviewed in Cowley et al. (3) indicated that ROS’s excessive renal 

production increases sodium retention. It was previously demonstrated that elevated H2O2 

level in the renal medulla of SS rats contributes to substantial differences in blood pressure 

between SS and control animals. While changes in H2O2 levels in the renal cortex were also 

observed (36), whether oxidative stress, and particularly H2O2, modulates ENaC properties 

in cortical segments of SS rat distal nephron has not been determined. To address this 

question, we evaluated the effect of H2O2 applications on ENaC activity in CCDs freshly 

isolated from adult SS rats. Fig. 3A shows a representative example of single-channel ENaC 

activity recorded in cell-attach mode in the principal CCD cell apical membrane before and 

after the addition of 0.5 mM H2O2 into the bath. Summary data reveals that the application 

of H2O2 to the bath solution results in increased ENaC NPo from 0.92 ± 0.40 to 1.84±0.4 

(p=0.03; Fig. 3B).

Next, we examined Nox4 contribution to the interstitial levels of H2O2 levels in renal 

medulla and cortex of hypertensive SS rats (HS diet for 3 weeks). Figs. 4A,B represent the 

procedure and representative experiment for detecting renal interstitial H2O2 levels in 

anesthetized SS and SSNox4−/− rats using in vivo biosensors amperometry. The H2O2 signal's 

specificity was confirmed with an interstitial application of catalase enzyme, known for the 

high efficiency for converting H2O2 to water and oxygen. Our data revealed that SSNox4−/− 

rats exhibit a lower H2O2 concentration in both medullar and cortical renal tissues compared 

to SS control rats (Fig. 4C). Taken together, these data suggest that decreased H2O2 levels 

may underlie increased natriuresis and the absence of increased ENaC activity in SSNox4−/− 

rats fed with an HS diet.

Nox4 deletion prevents ENaC activation in the STZ model of diabetic nephropathy in Dahl 
SS rats

Production of ROS plays an essential role in the pathogenesis of diabetic nephropathy. The 

ameliorative effect of Nox4 deletion or pharmacological inhibition of the NOX4-dependent 

pathway on hyperglycemia-induced kidney injury was reported in rodent models of type 1 

diabetes (25, 37-39). Also, the higher expression of membrane proteins responsible for 

sodium reabsorption in distal nephron was reported previously in STZ-treated Sprague-

Dawley rats (40). Dahl SS rats were recently reported to be more susceptible to the 

development of STZ-induced renal injury than other strains (27, 41, 42); however, the extent 

of the sodium reabsorption machinery affected in this strain under the conditions of 

hyperglycemia has yet to be determined. In our recent studies, we reported that upon 

induction of type 1 diabetes with STZ, SSNox4−/− rats exhibited less kidney injury than 

control STZ-treated SS rats (25). We used the same groups of animals to test the 

Pavlov et al. Page 6

FASEB J. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contribution of ENaC and NCC in SSNox4−/− rats injected with STZ. We found that ENaC 

activity (NPo) in the chronically hyperglycemic SS rats was elevated compared to control SS 

rats (0.71±0.10 in sham controls and 1.27±0.2 in STZ treated conditions; p<0.05) and this 

effect was attributed to the changes in single-channel open probability (Po was 0.43±0.06 in 

control vs. 0.86±0.07 in hyperglycemic rats). In SSNox4−/− rats, hyperglycemia only slightly, 

but not significantly increased ENaC activity with no effect on Po (0.51±0.06 in sham 

control and 0.51±0.07 in STZ-treated group, respectively), which delineates the importance 

of NOX4 activation for the regulation of ENaC open probability in this model of diabetic 

nephropathy (Fig. 5).

Finally, using Western blot analysis, we found a significantly increased expression of total 

NCC in kidney tissue of SS rats treated with STZ compared to the vehicle-treated group. 

The abundance of the phosphorylated form of NCC from renal cortical tissue was also 

elevated demonstrating a significant activation of this cotransporter under hyperglycemia 

conditions (Fig. 6). However, in contrast to experiments with ENaC, Nox4 deletion does not 

affect hyperglycemia-induced upregulation of NCC expression.

DISCUSSION

Diabetes and hypertension, either alone or synergistically, are recognized as major causes of 

developing CKD (1, 43). A well-documented feature for both pathologies, which is the 

overproduction of ROS in the kidney, has been mainly attributed to the upregulation of 

NOX4-dependent signaling. Increased Nox4 expression was previously shown in the SS 

hypertension model by Cowley et al.; high salt diet significantly elevated Nox4 mRNA level 

in the cortex of Dahl SS rats (10). In an 8-week extended diabetic model induced by STZ 

injection in Wistar rats, Etoh and colleagues demonstrated an increase of Nox4 mRNA by 

~35% in the cortex and twice in medulla (37), which may have contributed to a 2/3 increase 

in renal H2O2 levels observed in the Wistar Furth rat background (44). A 75% cortical Nox4 
mRNA increase was also shown in STZ-induced type 1 diabetes in Sprague-Dawley rats 

(45). Nox4 deletion or its inhibition ameliorated the high salt or high glucose-induced 

kidney injury, underscoring the important role of NOX4-dependent pathways in the 

progression of kidney dysfunction. However, the underlying mechanisms are largely 

unidentified. In the present study we show that: a) Nox4 deletion in Dahl salt-sensitive (SS) 

rat challenged with an HS diet attenuates HS-induced upregulation of ENaC activity in 

CCDs; b) H2O2 upregulated ENaC activity in freshly isolated CCDs; c) H2O2 levels in the 

kidney of SSNox4−/− fed with HS was significantly lower than that of similarly treated SS 

controls; d) upregulation of renal NCC expression was similar in SS and SSNox4−/− groups in 

the conditions of STZ-induced hyperglycemia; and e) ENaC activity in hyperglycemic 

animals was elevated in SS controls but not SSNox4−/− rats.

Ample experimental data obtained in Dahl SS rats support the use of this strain as a model 

of salt-induced hypertension. Increased NADPH oxidase activity causing ROS 

hyperproduction was identified as a significant contributor to the development of 

hypertension (12). SS rats have an initial rapid and reversible increase in blood pressure 

observed within a few days on the HS diet, followed by a slow aggravation of hypertension 

associated with an increasingly irreversible component (33). The development of SS 
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hypertension in these rats is mainly attributed to the reduction in renal excretory function, 

which leads to the progressive rightward shift of chronic pressure-natriuresis relationship 

and, thus, promoting maladaptive retention of salt and water, and the expansion of 

extracellular fluid volume, which ultimately results in the increase of blood pressure (33, 

46). Cowley and colleagues previously identified H202 as a regulator of the pressure 

natriuresis response (47, 48). Here we observed a robust natriuretic response to an HS in 

SSNox4−/− rats on Day 3 of the dietary challenge. However, by the end experiment, urinary 

volume and sodium excretion became similar in both groups. Therefore, NOX4-deficient 

rats might appear to more robustly able to compensate to a HS load with a greater 

natriurestic response compared to SS rats thus hindering the renal damage. Longer high salt 

administration in SSNox4−/− rats leads to renal injury, which is detected by a significant 

increase of albuminuria (Fig. 1D), and sodium retention at Day 21. It was shown previously 

that in salt-resistant animal strains, ENaC is downregulated in response to an HS challenge 

(19). In contrast, an HS diet for several weeks induced in Dahl SS rats a substantial 

increased ENaC expression and activity, which significantly exacerbates the ramifications of 

HS excess (19).

The important role of ENaC in the development of HS-induced hypertension was confirmed 

in previous studies, where treatment with benzamil and amiloride (ENaC inhibitors) during 

HS consumption attenuated blood pressure elevation (34, 49). Interestingly, in our hands, a 

significant ENaC NPo increase was observed in SS rats as early as the third day of the HS 

diet (Fig. 2C) and during the later course of the HS challenge. This observation suggests that 

ENaC upregulation contributes to both the initial and late stages of hypertension progression 

in this model. However, in our previous studies with benzamil pretreatment, we did not 

observe a significant effect of ENaC inhibition on blood pressure during the early stage of 

HS-induced hypertension development (34). Moreover, although ENaC activity was low in 

the knockout rats, NOX4 deficiency did not improve natriuresis on the late stage of 

hypertension, indicating that in the developed renal damage, other parts of the nephron 

provide a major impact to natriuresis. The most probable candidate is the medullary thick 

ascending limb (mTAL) of the loop of Henle, where ROS increases sodium reabsorption via 

NKCC2 (50).

In SSNox4−/− rats fed a standard diet (0.4 % NaCl) we did not observe differences in either 

daily urine output or in urinary sodium levels compared to the SS control group. When 

experimental groups were challenged with HS, an increase in fluid and salt levels were 

visible at the beginning of HS intake in both groups; however, in SSNox4−/− rats, this 

increase was more striking than in SS controls. Early increase in diuresis and natriuresis in 

SSNox4−/− rats in response to HS is accompanied by reduced ENaC activity in the distal 

nephron. As ENaC is a well-recognized contributor to sodium and water retention, we 

suggest that the difference in urine and salt output in SSNox4−/− and SS control rats 

challenged with HS could be partly attributed to the elimination of renal sodium 

reabsorption that emerged from an overproduction of ENaC.

NOX4-dependent pathways are upregulated in the model of HS-induced hypertension and 

involved in the regulation of many factors important for the control of ENaC activity. In our 

study application of H2O2 increased ENaC NPo in CCD of SS rats, which complements 
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other studies showing the positive regulation of ENaC activity by ROS. H2O2 application 

was shown to increase ENaC Po in amphibian cell cultures (22). SS rats on a HS diet 

exhibited elevated ROS levels in both the renal medulla and cortex, which was shown to 

contribute to a reduction in medullary perfusion, Na+ excretion, glomerular sclerosis, tubular 

injury and interstitial fibrosis (2). In our study, SSNox4−/− rats on HS diet exhibit a lower 

interstitial H2O2 interstitial concentration in both medullar and cortical renal tissues 

compared to SS control rats, corroborating the important role of NOX4 in the generation of 

H2O2 in the kidney. Taken together, our data suggest that in the model of HS-induced 

hypertension, upregulation of NOX4 leads to increased H2O2 production and subsequent 

ENaC activity. Increased NOX4 activity and NADPH-dependent ROS production was earlier 

demonstrated in the cortical tissues isolated from STZ-treated rats (51). In diabetes, sodium 

retention leads to fluid imbalance, edema, and eventually, hypertension (52, 53). Culshaw et 

al. reported a substantial impairment of pressure natriuresis in STZ-treated Sprague Dawley 

rats: acute elevation in blood pressure did not increase renal medullary blood flow, tubular 

sodium reabsorption was not downregulated, and proximal tubule sodium reabsorption, 

measured by lithium clearance, was unaffected (54). These data suggest that distal tubule 

sodium reabsorption was not downregulated with increased blood pressure in STZ-treated 

Sprague Dawley rats, and the tubular defect responsible for an impaired pressure-natriuretic 

response in early type 1 diabetes mellitus is located in the distal nephron (54). Wild type and 

Nox4 knockout Dahl SS rats subjected to the STZ treatment in our previous study 

demonstrated similar sodium excretion in both genotypes (25). Although we did not test 

pressure-natriuresis in acute settings in the present study, we suggest that pressure-

natriuresis in Dahl rats in the setting of STZ-induced diabetes can potentially be impaired 

due to NOX4-driven ENaC activation, but this speculation requires further investigation.

A plethora of studies reported that ENaC function could be upregulated by a physiologically 

high glucose level. These high levels increase ENaC mRNA and protein expression in cell 

cultures (55). Reports on the effect of high blood glucose on ENaC function in vivo 
significantly vary depending on selected models and genetic backgrounds. However, 

biochemical analysis shows increased ENaC subunit expression in hyperglycemic animals 

(40, 56, 57) or following long exposure to media enriched with oligosaccharides (58). 

However, the effect of systemic hyperglycemia on ENaC activity was not well characterized 

in STZ-treated Sprague-Dawley or SS rats. This is different from hyperglycemic STZ-

treated SD rats due to the genetic background, prehypertension state and other conditions, 

which enable the SS rat to better mimic clinical nephropathy. Importantly, our observations 

were performed in STZ-treated SS rats, which develop both hyperglycemia and strong signs 

of diabetic nephropathy including glomerular damage and proteinuria (25) that is not typical 

for STZ-induced type 1 diabetes in Sprague-Dawley rats (27). We confirmed that 

hyperglycemia results in significant activation of ENaC and found that Nox4 deficiency 

precluded ENaC activation. Our experiments also revealed a dramatically increased NCC 

expression in response to hyperglycemia, which is in agreement with earlier data from other 

groups (40, 59). However, in contrast to its effects on ENaC, Nox4 deficiency did not affect 

NCC levels in STZ-treated animals.

Earlier studies established an interaction between pressure-natriuresis and H2O2 production. 

In Sprague Dawley rats, increased Na+ and fluid delivery in mTAL perfused in vitro leads to 
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the generation of superoxide, which can be reduced to H2O2 by superoxide dismutase (2, 60, 

61). Interestingly, mitochondrial ROS production in mTAL was not mediated by NADPH 

oxidases (14). Involvement of H2O2 on the cortical collecting ducts has not as understood. 

Biosensor amperometry revealed increased interstitial H2O2 levels on a 4% NaCl diet, 

whereas Nox4 deficiency contributes to H2O2 production. As NOX4 is a membrane protein, 

we suggest that it can serve as both basolateral (or interstitial) and luminal source of H2O2 in 

CCD. Figure 7 provides a summary scheme illustrating that in pathological conditions, 

overexpression of NOX4 causes excessive H2O2 production in the cortical interstitium. 

H2O2 increases ENaC expression in the apical membrane (observed on a HS diet), whereas 

in the absence of NOX4 ENaC activity remained stable (Fig. 2). Factors capable of 

mediating the effect of basolateral H2O2 on ENaC are still not completely clear; experiments 

on immortalized CCD cell cultures showed that H2O2 implicates prostaglandin E2 (PGE2) in 

the regulation of ENaC (62). Severe oxidative stress in the kidney inhibits the EGF-ERK 

pathway (63); in normal conditions ERK promotes ENaC subunits phosphorylation and 

ubiquitination by Nedd4 (64). We can speculate that our data reported here and in earlier 

studies (34, 65) reflect the following mechanism: HS diet reduces EGF tissue level in Dahl 

SS rats cortex and increases the number of active ENaC on the plasma membrane, 

potentially resulting from impaired ubiquitination. The stimulatory effect of H2O2 on ENaC 

was shown in both basolateral and apical applications to amphibian A6 monolayer (66). 

Patch-clamp experiments revealed that H2O2 increases ENaC open probability Po in both 

apical and basolateral applications but did not affect ENaC if applied from the cytosolic side. 

Interestingly, inhibition of Phosphoinositide 3-kinase (PI3-kinase) with LY290002 prevents 

the effect of apical (not basolateral) H2O2 application. Data in Fig. 2 indicates that ENaC 

upregulation on the HS diet was mediated by a higher number of active channels on the 

membrane without increasing Po of individual channels. We suggest that in Dahl SS rats on 

a HS diet, basolateral NOX4 and auto/paracrine H2O2 production contribute to ENaC 

upregulation by recruiting intracellular mechanisms disturbing ENaC recycling from the 

plasma membrane. An elevated ENaC expression and/or increased trafficking to the 

membrane also cannot be excluded. Stable Po may reflect low involvement of apical NOX4 

and lack of machinery mediating H2O2 signal across the isolated mammalian principal cells 

(e.g., the effect on cytoskeleton capable of modulating Po). This assumption is supported by 

the recent data by Kumar et al., indicating equal PI3-kinase and AMPK pathways activity in 

SS compared to SSNox4−/− rats on a 4% NaCl diet (11).

In the diabetic conditions, NOX4 upregulation increases ENaC Po that indirectly may 

indicate a strong influence of apical NOX4 derived H2O2 and involvement of 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production in the membrane. Such a 

phenomenon is in accordance with the literature reporting that diabetes induced by STZ does 

not increase ENaC mRNA (54) in Sprague-Dawley rats. An increase of total renal ENaC 

was shown by Ecelbarger et al (40), and the group later dissected this effect and reported 

that it occurs in the medullary layers, whereas cortical ENaC level did not change (67). The 

authors also suggested that increased ENaC protein level in diabetes could be mediated by 

the presence of vasopressin, since diabetes is associated with elevated arginine vasopressin 

(AVP) (67). Although the AVP increase is a compensatory reaction against the natriuretic 

loss of sodium in acute diabetes (68), it contributes to renal injury (69, 70). Details on how 
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vasopressin release is stimulated primarily by increases in plasma osmolality and regulates 

ENaC can be found in reviews by Bankir (71) and Stockand (72). We conclude that in 

diabetic conditions hyperglycemia increases luminal NOX4-dependent production of H2O2, 

which stimulates PIP3 production and ENaC Po (Fig. 7)

It was also reported that expression of total cortical NCC was significantly increased in 

STZ-treated Sprague-Dawley rats (40, 67), which is consistent with our data in the Dahl SS 

rat background (Fig. 6). The role of NCC in salt sensitive hypertension was reported but 

findings are less straightforward. In patients with Pseudohypoaldosteronism type II, NCC is 

constitutively active and not properly suppressed by a high salt diet, leading to abnormally 

increased salt reabsorption and salt-sensitive hypertension. NCC is upregulated by the WNK 

-SPAK/OSR1 signaling pathway, which is activated by RAAS, insulin and low potassium 

diet (73). We also demonstrated that knockout of renin in the Dahl SS background reduces 

NCC expression (31). However, there is a number of evidence summarized by Zicha et al, 

indicating that salt-induced hypertension in Dahl SS rats is not dependent on NCC as it 

depends on ENaC and NKCC2, although some aspects of NCC regulation can activate 

ENaC (74).

A synergistic effect of hypertension and diabetes is recognized as a driving force causing 

kidney damage, and an increasing number of studies have addressed the interaction between 

all factors in the development of CKD (75, 76). ENaC contributes to salt and water 

imbalance in both conditions, however the channel activity (visible as differential subunits 

regulation or electrophysiological characteristics) is determined by local ROS levels which 

depend on the endocrine profile of major hormonal factors such as as RAAS, vasopressin 

and atrial natriuretic peptides (19, 71). ENaC regulation in the context of superposition of 

hypertensive and diabetic conditions requires additional investigations. Conway et al. 

reported that STZ-induced diabetes does not lead to renal injury if the animals remain 

normotensive. The development of hypertension induced with the genetic renin-2 gene 

activation dramatically increased kidney damage during hyperglycemia (77). It was further 

reported that hyperglycemic Dahl SS rats display moderate hypertension and sodium loss 

(25, 27). Williams’ group generated an obese leptin and inulin insensitive model in the Dahl 

SS background which exhibits hypertension, euglycemia, hyperlipidemia and massive renal 

damage on a 1% NaCl diet (78, 79). Further comparison of pressure-natriuresis sensitivity 

and sodium transporter activity in these models would be helpful to explore the differential 

hormonal regulation of sodium handling and water-electrolyte balance in polygenic 

cardiorenal conditions such as metabolic syndrome.
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AVP arginine vasopressin

ASDN aldosterone-sensitive distal nephron

CCD cortical collecting duct

DCT distal convoluted tubule

DKD diabetic kidney disease

EGF epidermal growth factor

ENaC epithelial Na+ channel

HS high salt

mTAL medullary thick ascending limb

NCC Na+-Cl− cotransporter

NOX4 NADPH oxidase 4

PGE2 prostaglandin E2

PI3-kinase Phosphoinositide 3-kinase

PIP3 phosphatidylinositol (3,4,5)-trisphosphate

ROS reactive oxygen species

SS salt-sensitive

SSNox4−/− Nox4 knock out in Dahl SS rat background

STZ streptozotocin
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Figure 1. 
Nox4 deletion increases diuresis in SS rats. A) Experimental protocol of the studies with 

high salt diet. Wild type male SS and SSNox4−/− rats were kept on a normal (0.4% NaCl) salt 

diet before switched to a high salt (4% NaCl) diet for three weeks. Urine samples were 

collected before and after (3 days and 3 weeks) switch to a high salt diet. Patch clamp 

analysis was performed at the same time points. B) 24-hr urine volumes collected in 

metabolic cages. Daily urinary excretion of sodium (C), albumin, (D) potassium (E) and 

creatinine (F) normalized to 100 g body weight. * p<0.05, ** p<0.01, *** p<0.001.
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Figure 2. 
Nox4 deletion prevents HS-induced ENaC activation caused by a HS diet. A, B) 

Representative current traces from cell-attached patches containing ENaC channels and 

recorded from the apical membrane of split-open cortical collecting duct tubules. Shown are 

representative traces from SS (A) and SSNox4−/− (B) rats fed a normal (0.4% NaCl) and high 

salt (4% NaCl; 3 days and 3 weeks). “c” and “oi” denote closed and opened states of the 

channel, respectively; scale bars for entire and expanded traces are shown; holding potential 

is −40 mV; channel openings are downward traces. C) Summary graphs of ENaC activity 

(NPo) in SS and SSNox4−/− rats fed corresponding diets. Number of experiments is shown. * 

p<0.05.
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Figure 3. 
Effect of H2O2 application on ENaC activity in CCDs of SS rat. A) Representative current 

trace of ENaC activity measured at test potential of −60 mV before (I) and after (II) the 

addition of 0.5 mM H2O2 to bath solution. Dashed lines show respective current levels with 

“c” and “oi” denoting closed and opened states, respectively. B) Summary graph of ENaC 

activity (NPo) recorded before and 3-5 min after application of 0.5 mM H2O2. *p < 0.05.
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Figure 4. 
SSNox4−/− rats exhibit lower renal H2O2 levels on a HS diet. A) An example of the 

preparation for the measurement of H2O2 levels in vivo by the biosensors amperometry. The 

kidney was exposed and mounted in a kidney cup. The biosensor was inserted into the 

kidney cortical or medullar layer and connected to a dual-channel potentiostat for 

amperometry recordings. The reference electrode was placed onto the kidney surface and 

attached to the potentiostat to ensure reduced electrical noise. Interstitial perfusion of 

catalase was simultaneously performed. B) Representative recording of interstitial H2O2 

levels. Perfusion of catalase (2 μg/ml) is shown. C) Summary graphs of the renal cortex and 

medulla interstitial H2O2 in SS and SSNox4−/− rats fed a HS diet. *p < 0.05.
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Figure 5. 
NOX4 deficiency prevents upregulation of ENaC activity in CCDs of STZ-injected SS rats. 

A) Representative current traces demonstrating ENaC activity in split-open CCDs isolated 

from vehicle- and STZ-treated SS and SSNox4−/− rats. “c” and “oi” denote closed and opened 

states of the channel, respectively; test potential is −40 mV. B, C) Summary graphs of total 

ENaC activity (NPo; B) and the open probability of individual channels (Po; C). Number of 

experiments is shown. * p<0.05, ** p<0.01, *** p<0.001.
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Figure 6. 
Nox4 deletion does not prevents upregulation of NCC expression in CCDs of SS rat in STZ 

model of type 1 diabetic nephropathy. A) Western blot analysis of total NCC (t-NCC) and 

phosphorylated form of NCC (p-NCC) in the renal cortex from vehicle- and STZ-treated SS 

and SSNox4−/− rats. β-actin was used as a loading control. B) Summary graphs of p-NCC and 

t-NCC representing the average relative density of the bands (normalized to β-actin) in the 

groups shown in A. * p<0.05, ** p<0.01, *** p<0.001.
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Figure 7. 
Schematic illustration of ENaC regulation by NOX4 in the Dahl SS rats. Elevated expression 

of NOX4 in hypertension and diabetic conditions increases H2O2 level in the interstitium 

and on the luminal side. Oxidative stress acts via intracellular pathways (such as modulation 

of expression and activity of EGF Receptor, PGE2, small GTPase Rac1, and other signaling 

pathways) to elevate expression of ENaC on the apical membrane (19). Apical H2O2 

production in diabetes facilitates ENaC open probability presumably by activation of PI3-

kinase signaling.
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