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Abstract

Purpose: Intensity-modulated proton therapy (IMPT) is sensitive to uncertainties from patient 

setup and proton beam range, as well as interplay effect. In addition, respiratory motion may vary 

from cycle to cycle, and also from day to day. These uncertainties can severely degrade the 

original plan quality and potentially affect patient’s outcome. In this work, we developed a new 

tool to comprehensively consider the impact of all these uncertainties and provide plan robustness 

evaluation under them.

Methods: We developed a comprehensive plan robustness evaluation tool that considered both 

uncertainties from patient setup and proton beam range, as well as respiratory motion 

simultaneously. To mimic patients’ respiratory motion, the time spent in each phase was randomly 

sampled based on patient-specific breathing pattern parameters as acquired during the 4D-CT 

simulation. Spots were then assigned to one specific phase according to the temporal relationship 

between spot delivery sequence and patients’ respiratory motion. Dose in each phase was 

calculated by summing contributions from all the spots delivered in that phase. The final 4D 

dynamic dose was obtained by deforming all doses in each phase to the maximum exhalation 

phase. Three hundred (300) scenarios (10 different breathing patterns with 30 different setup and 

range uncertainty scenario combinations) were calculated for each plan. The dose-volume 

histograms (DVHs) band method was used to assess plan robustness. Benchmarking the tool as an 

application’s example, we compared plan robustness under both 3D and 4D robustly optimized 

IMPT plans for 10 non-randomly selected patients with non-small cell lung cancer.
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Results: The developed comprehensive plan robustness tool had been successfully applied to 

compare the plan robustness between 3D and 4D robustly optimized IMPT plans for 10 lung 

cancer patients. In the presence of interplay effect with uncertainties considered simultaneously, 

4D robustly optimized plans provided significantly better CTV coverage (D95%, p=0.002), CTV 

homogeneity (D5%-D95%, p=0.002) with less target hot spots (D5%, p=0.002), and target coverage 

robustness (CTV D95% bandwidth, p=0.004) compared to 3D robustly optimized plans. Superior 

dose sparing of normal lung (lung Dmean, p=0.020) favoring 4D plans and comparable normal 

tissue sparing including esophagus, heart, and spinal cord for both 3D and 4D plans were 

observed. The calculation time for all patients included in this study was 11.4±2.6 minutes.

Conclusion: A comprehensive plan robustness evaluation tool was successfully developed and 

benchmarked for plan robustness evaluation in the presence of interplay effect, setup and range 

uncertainties. The very high efficiency of this tool marks its clinical adaptation highly practical 

and versatile, including possible real-time intra-fractional interplay effect evaluation as a potential 

application for future use.

1. Introduction

Intensity-modulated proton therapy (IMPT) provides dosimetric benefits when treating 

various tumors as compared to conventional photon therapy1–4. However, it is more sensitive 

to changes of water equivalent depths penetrated by proton beams compared to passive 

scattering proton therapy and intensity-modulated X-ray based radiation therapy5–7. Robust 

optimization and robustness evaluation methods that consider patient setup and proton range 

uncertainties have been studied by multiple groups and adopted in clinical practice2,8–28. A 

robustly optimized plan may better spare organs at risk (OARs) while providing acceptable 

target coverage under perturbed scenarios (robustness) compared to the conventional 

planning target volume (PTV)-based methods9,15,20.

In addition to patient setup and proton range uncertainties, the targets and patient anatomy 

(air, lung parenchyma, and mediastinal soft tissue) is constantly changing due to respiratory 

motion when treating lung cancer. Therefore, interplay effect resulting from the interference 

between the time-dependent spot delivery and tumor motion should be considered. Studies 

have shown that interplay effect degrades the dose distribution significantly29–41. They can 

be assessed by simulating the temporal relationship between the spot delivery and patients’ 

respiratory motion and evaluating the resulting dose distribution.

However, most of studies published so far about interplay effect evaluation were assuming 

that patients’ respiratory motion was regular and would breathe exactly with the same 

breathing pattern during the treatment course as observed in the 4D-CT simulation. In fact, 

respiratory motion can be irregular and unpredictable, especially in lung cancer patients with 

compromised pulmonary function and past smoking history42. The respiratory period may 

vary from cycle to cycle within any given treatment session and from day to day during the 

treatment course43. The relative time spent in each phase in one cycle may also change (or 

so-called asymmetric breathing)43–45. Respiratory motion pattern changes may happen such 

as the respiratory amplitude variations and the baseline drift due to hysteresis46 during the 

patient treatment. Thus, a large number of uncertainties may be involved in the evaluation of 
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interplay effect. In addition, the resulting dose distribution is also affected by setup and 

range uncertainties. Therefore, it is important to consider the impact from both breathing and 

treatment uncertainties in the plan robustness evaluation simultaneously47,48. This 

comprehensive plan robustness evaluation would generate dose distributions that are more 

representative of the actual dose delivered in patients, providing more realistic dosimetric 

data for IMPT plan evaluation. Unfortunately this important topic has been rarely reported in 

the literature.

Recently, a number of studies have been performed using IMPT to treat lung cancer with 4D 

robust optimization19,49–52 instead of the previous 3D robust optimization without breathing 

motion considered19,49,51–53. The 4D robust optimization involves full 4D-CT-based 

planning, while 3D robust optimization is planned on 4D averaged CTs. Previous 

investigations have found that 4D robust optimization achieved an IMPT plan more resilient 

to interplay effect compared to 3D robust optimization in lung cancer treated by IMPT19. 

Unfortunately, in that reported study, the impacts of uncertainty and interplay effect were 

considered separately in the plan robustness evaluation. More importantly, interplay effect 

evaluation was performed with regular respiratory motion only. A comprehensive evaluation 

of plan robustness is needed for accessing the impact from both treatment uncertainties and 

interplay effect with irregular respiratory motion considered simultaneously for 4D robust 

optimization compared to 3D robust optimization. If plausible, the dual evaluation plan will 

serve as one excellent example of application to benchmark the comprehensive plan 

robustness evaluation tool if such a tool has been developed.

In this study, we developed a comprehensive plan robustness evaluation tool that considered 

interplay effect under irregular respiratory motion and treatment uncertainties 

simultaneously to achieve a more realistic estimation of the delivered dose. Benchmarking 

the tool as an application’s example, we used the developed tool to compare the plan 

robustness of 3D vs. 4D robustly optimized IMPT plans in lung cancer.

2. Materials and methods

2.1 Development of the comprehensive plan robustness evaluation method

2.1.1 Modelling patient setup and proton range uncertainties—To evaluate the 

plan robustness to patient setup and proton range uncertainties, we calculated the dose 

distributions in randomly sampled scenarios with patient setup and proton range 

uncertainties (Figure 1a). The setup uncertainty was modeled by shifting the iso-center of 

the patient in the Anterior-Posterior (A-P), Superior-Inferior (S-I), and Right-Left (R-L) 

directions. The shifted displacement was modelled by a Gaussian distribution with zero 

mean and a standard deviation of 2.5 mm in all directions. The proton range uncertainty was 

simulated by scaling the CT number conversion relative to water-stopping-power ratios, 

which was again modelled by a Gaussian distribution with zero mean and a standard 

deviation of 1.75%. The standard derivations of both Gaussian distributions for plan 

robustness evaluation were determined as half of the values that were used in plan 

optimization (see Sec. 2.2.2).
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2.1.2 Post-processing spot-repainting considerations—The iso-layer repainting 

procedure was used to mitigate interplay effects and was considered in all comprehensive 

plan robustness evaluations10–12,18. The minimum and maximum MU limits of our proton 

beam delivery system were considered in the repainting procedure as follows. For a spot 

with intensity larger than the maximum MU limit, it would be split into multiple spots, 

which would be appended to the end of the spot list in the same energy layer to be re-painted 

ultimately. For a spot with planned intensity less than the minimum MU limit, by checking 

whether its intensity is larger or smaller than the half of the minimum MU limit, its intensity 

would be rounded up to be the minimum MU limit, or otherwise be dropped. Therefore, not 

all of the spots with intensities smaller than the minimum MU limits are ignored; on the 

contrary, some of those spots might be assigned a larger intensity to compensate for the 

dropped spots. Thus the loss of the total MU is generally negligible. All of the appended 

spots were delivered after delivering all spots of the same energy layer.

In practice, we also adopted a patient-specific maximum MU limits for repainting according 

to patients’ respiratory amplitude that were measured in 4D-CT (listed in the seventh 

column of Table 1). If the respiratory motion was greater than 5 mm, a smaller maximum 

MU limit of 0.01 MU was used to provide more repainting; otherwise a larger maximum 

MU limit of 0.04 MU was applied. The energy-dependent number of protons per MU was 

defined according to IAEA TRS 398 during the absolute dosimetry commissioning for our 

commercial treatment planning system (TPS). The minimum and maximum MU limits used 

in the post-processing have been carefully designed to minimize the resulting plan quality 

degradation during the commissioning of our commercial TPS.

2.1.3 Modelling patients’ respiratory motion—In this study, we investigated the 

impact of irregular breathing motion upon interplay effect but limited to asymmetric 

breathing and/or respiratory period variations43–45. We did not consider respiration 

amplitude variation or baseline drift46. Structural change from respiratory motion was 

captured by 4D-CT during the patient simulation. 4D-CT data is obtained from a low-pitch 

helical54,55 CT scan that oversamples each couch position and a simultaneously-recorded 

real-time position management system (RPM) (Varian Medical Systems, Palo Alto, CA). 

The phase from the RPM data was used to sort CT slices into 3D images of the respiratory 

cycle in 10 phases (i.e., phase-based sorting54–57 was used). Thus every respiratory cycle 

was divided equally into 10 phases. To simulate the irregularity in patient breathing pattern, 

we analyzed the breathing pattern data from RPM. During patients’ 4D-CT simulations, 40 

to 50 respiratory cycles were usually scanned, although patients’ respiratory periods varied 

from cycle to cycle (Figure 1b). The respiratory cycle of every patient was modelled as a 

normal distribution with two patient-specific parameters: the mean and standard deviation of 

the respiratory cycle, which can be easily derived based on the 40 to 50 respiratory cycles 

from the corresponding patient’s RPM data during the 4D-CT simulation before the 

treatment. The breathing length for each phase of every patient was 1/10 of the respiratory 

cycle sampled based on the aforementioned patient-specific normal distribution. One 

respiratory cycle would be formed after 10 sampling: each sampling corresponding to one of 

the ten phases within one respiratory cycle. The respiratory cycle thus generated would have 
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the breathing length varying from phase to phase (or so-called asymmetric breathing)43–45. 

Details of the parameters were listed in Table 2.

2.1.4 Interplay effect evaluation—We used the characteristics of the proton machine 

at our hospital including energy layer switching time, dose rate, spill length, spill interval 

length, and spot interval length to model the time structure of spot delivery (Hitachi 

ProbeatV5, with detailed parameters listed in Table 3)58. To simulate interplay effect, the 

final dose (referred as 4D dynamic dose hereafter) was computed by simulating the 

accumulated dose through this delivery process (Figure 1b). Each spot was temporarily 

registered to a phase according to the temporal relationship between patients’ breathing 

patterns and the time-dependent spot delivery process determined by the proton machine 

characteristics. Dose received on each phase was calculated using the spots assigned to that 

phase and its corresponding 4D-CT using an in-house-developed dose calculation engine59. 

These phase-specific doses were finally deformed to a reference phase (the maximum 

exhalation phase, T50) using deformable image registration60, and the 4D dynamic dose was 

obtained by summing doses from all phases. Interplay effect was then evaluated by 

comparing the 4D dynamic dose with the 4D cumulative dose (see the definition in Sec. 

2.2.2). For each field per fraction, randomization of the initial phase by evenly selecting one 

of the 10 possible phases modeled by a uniform distribution was performed.

2.1.5 Evaluation with patient setup, range uncertainties, and interplay effect 
considered simultaneously—To evaluate plan robustness of a treatment plan, we 

considered the impact of interplay effect with uncertainties considered simultaneously. For 

uncertainties, we sampled a total of 30 uncertainty scenarios with setup and range 

uncertainties considered for each plan as described in Sec. 2.1.1 (Figure 1a). For each 

uncertainty scenario, an influence matrix, indicating the contribution of each spot of unit 

weight to every voxel, was calculated and stored in the computer memory for efficient 

subsequent dose computation. For every uncertainty scenario, we derived 10 possible 4D 

dynamic dose distributions corresponding to 10 asymmetric breathing patterns. Each of the 

10 irregular motion pattern includes tens to a hundreds of respiratory traces. The number of 

the respiratory traces for each irregular motion pattern equals to the number of fraction times 

the number of fields (i.e., for each fraction of each field, a different respiratory trace 

independently sampled as described in Sec. 2.1.3 will be used). The temporal length of each 

respiratory trace is sufficiently long for the delivery of the corresponding field for the 

corresponding fraction (the delivery time is modeled as in Sec. 2.1.4) with randomized 

initial phase (described in Sec. 2.1.4). For example, for a patient treated with 3 field and 30 

fractions, 90 respiratory traces will be simulated for each irregular motion pattern. The 

initial phase will be sampled 90 times in this case. If the patient has a mean respiratory 

period of 3 seconds and 90 seconds are needed to delivery one field, each respiratory trace 

will have at least 30 respiratory cycles. The related interplay effect was evaluated by 

calculating the corresponding 4D dynamic doses as described in Sec. 2.1.4.

Dose-volume histogram (DVH) curves were generated for each calculated 4D dynamic dose 

distribution. With 30 uncertainty scenarios considered for every asymmetric breathing 

scenario, a total of 300 DVHs were computed for each treatment plan to represent the 
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possible perturbed doses in the presence of both uncertainties and interplay effect (Figure 

1c). In this study, we used the DVH band method20,61–63 for plan robustness quantification, 

in which all DVHs from the corresponding perturbed scenarios were plotted, and the width 

of the envelope from all DVHs was used as an indication of plan robustness (Figure 1d). The 

narrower the DVH band, the more robust the treatment plan would be. Details of the 

sampling variables in this comprehensive plan robustness evaluation are listed in Table 2.

2.2 Application of the developed method to compare the plan robustness between 3D 
and 4D robustly optimized plans for lung cancer

Lung cancer treatment was extremely vulnerable to respiratory motions and uncertainties. 

Although previous evaluation indicated a superior plan robustness of 4D robustly optimized 

plans than that of 3D robustly optimized plans in lung cancer19, no plan robustness 

assessment has been performed under combined effect from both treatment uncertainties and 

interplay effect with irregular respiratory motions. Here, we evaluated the overall 

comprehensive robustness of 3D and 4D robustly optimized IMPT plans in lung cancer 

using the developed tool for clinical application.

2.2.1 Patient selection—In this study, we performed plan robustness evaluation using 

our novel method on 10 non–small cell lung cancer (NSCLC) patients who had been treated 

at our hospital, and re-planned them for IMPT using 3D and 4D robust optimizations. The 

spot sizes (σ) in air at the isocenter were 6–14 mm, depending on energy. The patients were 

not consecutively selected based on clinical volumes, but rather were carefully chosen to 

represent varying tumor stages, target volumes, and respiratory motion patterns (Table 1) so 

that the cases sampled by our method represented a comprehensive clinical experience. The 

statistics such as mean, median, standard deviation, and range for the patient cohort was 

shown in Supplementary Table 1.

2.2.2 Development of 3D and 4D robustly optimized IMPT plans—For each 

patient, one 3D robustly optimized plan (3D-RO) and one 4D robustly optimized (4D-RO) 

plan were generated with identical dosimetric goals by our in-house GPU-accelerated TPS 

as described in Sec. 2.3. The number of spots and their positions before optimization were 

the same for both 3D and 4D robust optimization. The prescription dose, number of 

fractions, tumor location, stage, target size, beam angles, proton energy, and repainting 

information are reported in Table 1.

The 3D robustly optimized plans were generated using the voxel-wise worst-case robust 

optimization method with the 4D-averaged CTs as the planning CTs16. Thirteen (13) 

uncertainty scenarios of setup and range uncertainty (5 mm rigid shift in all Anterior-

Posterior [A-P], Superior-Inferior [S-I], and Right-Left [R-L] directions combining ±3.5% 

proton range rescaling, as a total of 12 scenarios, plus one nominal scenario) were 

considered. The setup and range uncertainties were set twice as much as those used in the 

robustness evaluation (σ = (2.5mm, ±1.75%)), for deriving the worst-case scenario in plan 

optimizations7,15,20,63. The CTV’s at the exhalation phase (CTVT50) were contoured by 

experienced thoracic radiation oncologists and then propagated to other phases. All the other 

OARs were contoured by the experienced dosimetrists and verified by the treating radiation 
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oncologists on the average 4D-CT. The optimization target was set to be the internal target 

volume (ITV), which was formed by consideration to motion extents of the clinical target 

volumes (CTV) using all phases of the 4D-CT’s. The details regarding the 3D robust 

optimization process and workflow for proton lung cancer in our practice have previously 

been published10

The 4D robustly optimized plans were generated using the 4D robust optimization method 

described in Liu et al.19. Note that no irregular respiratory motion was considered in the 4D 

robust optimization. The 4D CTs were used as the planning CT with the CTVT50 as the 

optimization target. In this case, the same aforementioned 13 scenarios of setup and range 

uncertainty were considered for every respiration phase without interplay effect considered 

during the plan optimization. Computed dose distributions for the 10 phases were 

accumulated to the reference phase (T50) using deformed image registration to get the 4D 

cumulative dose for all 13 uncertainty scenarios. 4D cumulative dose represents an equally-

weighted dose accumulation from all respiratory phases. The voxel-wise worst-case dose 

distribution among 13 4D cumulative dose distributions was then generated and optimized to 

generate the 4D robustly optimized IMPT plan.

The post-processing procedure as described in Sec. 2.1.2 was not considered in the 3D and 

4D plan optimization, but was considered in the comprehensive plan robustness evaluation 

as described in Sec. 2.1. The minimum MU limit (0.003 MU) of our machine was carefully 

chosen to minimize the possible plan degradation due to the post processing. The median 

and range of repainting number among all energy layers from 3D and 4D robustly optimized 

plans of all patients were listed in the eleventh and twelfth column of Table 1, and details in 

Supplementary Table 2.

2.2.3 Plan quality evaluation—The 4D cumulative dose distributions as described in 

Sec. 2.2.2 of both 3D and 4D robustly optimized plans of each patient were calculated. The 

4D cumulative dose for all plans was checked to ensure that the institutional dose-volume 

constraints were met (Table 4). The 3D robustly optimized plan was normalized to have the 

same CTV D95% (the dose covering the hottest 95% of the structure’s volume) as the 4D 

robustly optimized plans for fair comparisons.

After normalization, both 3D and 4D robustly optimized plans were evaluated with both 

uncertainties and interplay effect simultaneously considered as described in Sec. 2.1.5. The 

4D cumulative and 4D dynamic doses from both plans were used for plan evaluation.

D95% (the dose covering the hottest 95% of the structure’s volume) was derived from the 

CTVT50 DVH to evaluate the target coverage. CTVT50 D5% and D5%-D95% were also used 

to assess CTV hot spots and homogeneity. The absolute dose covering certain percentage of 

the structure’s volume (D%) was compared for organs at risk (OARs). We used D1% dose for 

the spinal cord and D33% dose to the esophagus. In addition, the mean dose (Dmean) to the 

total normal lung and heart were also used.
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2.3 Graphic Processing Unit (GPU)-accelerated treatment planning system

A large number of time-consuming computations were needed for this study. In order to 

speed up the calculation, we migrated our in-house developed treatment planning system 

(TPS) to a Graphic Processing Unit (GPU)-based computing platform, including the 

following 3 components: (1) a modified ray-casting-based dose and linear energy transfer 

(LET) calculation engine59,64, with the enhanced capability to account for inhomogeneity 

more accurately65; (2) voxel-wise worst-case-based 3D10,12–17,20,25–28,66–69, 4D19, and 

LET-guided26,70 robust optimization; and (3) DVH-band method20,61,63 to quantify plan 

robustness. The TPS was highly parallelized using Compute Unified Device Architecture 

(CUDA). Dose calculations for a typical patient could typically be completed within 20 

seconds and one 3D robust optimization within several minutes running on Intel Xeon® 

CPU E5–2680 CPU equipped with 8 Tesla K80s (Nvidia, Santa Clara, California). The dose 

calculation results from our TPS agreed well with Monte Carlo-based dose calculation 

results (Supplementary Table 3). The details of this GPU-accelerated TPS will be reported in 

a separate study.

2.4 Statistical Considerations

All DVH evaluation metrics as described in Sec. 2.2.3 were compared with the non-

parameter Wilcoxon signed rank test, using Matlab 2019a (MathWorks, Massachusetts, 

USA). A p-value of <0.05 was considered statistically significant.

3. Results

We first compared the 4D cumulative doses in the nominal scenario (no uncertainties or 

interplay effect considered) of both 3D and 4D robustly optimized plans. Compared to the 

3D robustly optimized plans, the 4D robustly optimized plans achieved better target 

homogeneity in the nominal scenario (CTV D5%-D95%: 0.050 vs 0.024 [3D vs 4D robustly 

optimized plans, normalized to nominal D95% dose, for all CTV-related quantification later 

on], p=0.006, Figure 2a). We also examined the normal tissue sparing of both 3D and 4D 

robustly optimized plans. Compared to 3D robustly optimized plans, better lung sparing was 

observed from 4D robustly optimized plans (lung Dmean: 9.48 Gy[RBE] vs 9.16 Gy[RBE] 

[3D vs 4D robustly optimized plans, absolute dose, for all OAR-related quantification later 

on], p=0.027). Comparable dose distributions to esophagus (esophagus D33%: 20.79 

Gy[RBE] vs 20.82 Gy[RBE], p=0.131), spinal cord (spinal cord D1%: 16.69 Gy[RBE] vs 

16.01 Gy[RBE], p=0.770), and heart (heart Dmean: 2.42 Gy[RBE] vs 2.46 Gy[RBE], 

p=0.846) were observed (Figure 3a).

To investigate the impact from interplay effect with uncertainties considered simultaneously, 

we studied the 4D dynamic dose distributions from all 10 patients for both the 3D and 4D 

robustly optimized plans (as described in Sec. 2.1.5). The worst-case dose derived from the 

300 sampled scenarios was used for comparison. In the worst-case scenario, 4D robustly 

optimized plans showed significant improvements in CTV coverage (CTV D95%, 0.913 vs 

0.979, p=0.002), CTV dose homogeneity (CTV D5%-D95%, 0.158 vs 0.050, p=0.002), and 

reduction in hot spots (CTV D5%, 1.072 vs 1.030, p=0.002) for all 10 cases (Figure 2b). 

Compared to 3D robustly optimized plans, better sparing of lung (Dmean, 9.27 Gy[RBE] vs 
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8.98 Gy[RBE], p=0.020) and comparable dose distributions in esophagus (D33%, 24.20 

Gy[RBE] vs 22.90 Gy[RBE], p=0.232), spinal cord (D1%: 31.21 Gy[RBE] vs 29.93 

Gy[RBE], p=0.695) and heart (Dmean: 4.30 Gy[RBE] vs 4.53 Gy[RBE], p=0.492) from 4D 

robustly optimized plans were observed (Figure 3b).

We further studied plan robustness by quantifying the bandwidth of those DVH indices from 

the calculated 300 scenarios. Compared to 3D robustly optimized plan, 4D robustly 

optimized plans had improved target coverage robustness (CTV D95% bandwidth, 0.090 vs 

0.048, p=0.004) and comparable hot-spot insensitivity (CTV D5% bandwidth, 0.035 vs 

0.033, p=0.846) to uncertainties and interplay effect, and thus, appeared more robust (Figure 

2c). Otherwise, no significant difference in plan robustness to multiple OARs was observed 

(esophagus D33% bandwidth, 8.63 Gy[RBE] vs 6.87 Gy[RBE], p=0.492; spinal cord D1% 

bandwidth: 16.96 Gy[RBE] vs 15.89 Gy[RBE], p=0.557; lung Dmean bandwidth, 6.33 

Gy[RBE] vs 6.25 Gy[RBE], p=0.625; heart Dmean bandwidth: 5.92 Gy[RBE] vs 6.85 

Gy[RBE], p=0.106) (Figure 3c).

Figure 4 illustrates the axially calculated dose distribution of one typical patient (patient #2) 

near the inferior pole of the tumor. Without uncertainties or interplay effect considered, the 

4D cumulative dose distribution (top row) of the 3D robustly optimized plan (left column) 

was outperformed by the 4D robustly optimized plan (right column). With uncertainties and 

interplay effect simultaneously considered (bottom row, displaying one out of the 300 

scenarios), the target coverage dropped substantially for the 3D robustly optimized plan but 

was mostly maintained for the 4D robustly optimized plan (minimum CTV D95% of 300 4D 

dynamic doses, 0.870 vs. 0.969).

The average total computation time for evaluating one plan was 11.4 minutes with a 

standard deviation of 2.6 min for all 10 patients included in this study. Individual 

computation times for each patient are listed in Table 5.

4. Discussion

We have successfully developed a comprehensive plan robustness evaluation tool to consider 

the impact of interplay effect, setup, and range uncertainties simultaneously. As an example 

of application, we used the developed tool to compare the performance of 3D and 4D 

robustly optimized plans for 10 lung cancer patients on a GPU-accelerated computing 

platform. Without sacrificing the dose coverage of the target, the 4D robustly optimized 

plans significantly reduced the target hotspot (CTV D5%) and increased the target 

homogeneity (CTV D5%-D95%) in the nominal scenario without uncertainties and interplay 

effect considered. Compared to the nominal scenario, the target coverage (CTV D95%) of 

both 3D and 4D robustly optimized plans was significantly degraded (p= 0.002 for both 3D 

and 4D plans) in the presence of uncertainties and interplay effect (comparing first panels of 

Figure 2a and 2b). However, significantly better target coverage was observed comparing the 

4D robustly optimized plans to the 3D robustly optimized plans (p= 0.002), suggesting an 

enhanced mitigation effect against the plan quality deterioration due to uncertainties and 

interplay effect comparing 4D robust optimization to 3D robust optimization (Figure 4).
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Compared to the 3D robustly optimized plans, 4D robustly optimized plans showed 

improvements in tumor coverage (average CTV D95% increased from 91.3% to 97.9%, 

p=0.002), tumor dose homogeneity (average CTV D5%- D5% decreased from 0.158 to 0.050, 

p=0.002), and reduction of hot spot distributions (averaged CTV D5% decreased from 1.072 

to 1.030, p=0.002) in the worst-case scenario with uncertainties and interplay effect 

considered simultaneously. 4D robustly optimized plans also achieved superior plan 

robustness in tumor coverage compared to 3D robustly optimized plans (D95% bandwidth 

decreased from 0.090 to 0.048, p=0.004). These observations are consistent with previous 

studies with the impact of uncertainties and interplay effect considered independently19, 

supporting the validity of the proposed comprehensive plan robustness evaluation method. 

Generally, both 3D and 4D robustly optimized plans achieved similar normal tissue sparing 

and plan robustness in OARs. However, compared to 3D robustly optimized plans, 4D 

robustly optimized plans delivered significantly lower mean doses to normal lung. This 

would potentially reduce the risk of radiation pneumonitis, pending clinical correlative 

studies in the future71,72.

We developed this comprehensive plan robustness evaluation tool by simultaneously 

assessing the impact from both uncertainties and interplay effect. Different from the 

previous plan robustness evaluation approach using Monte Carlo simulation48, we 

demonstrated clinical applications of our current method on 10 patients by comparing 

performance between 3D and 4D robustly optimized plans for non-small cell lung cancer. 

With the help of fast GPU-based computation platform and effective implementation of 

parallelization using CUDA, we significantly speeded up the calculation of interplay effect, 

which used to be a technical barrier in the interplay effect evaluation when uncertainties 

were simultaneously considered19. Therefore, we were able to calculate 300 scenarios (10 

different breathing patterns with 30 uncertainty scenario considered for each breathing 

pattern) for each plan very quickly. Among the 10 different breathing patterns, irregular 

respiratory motion was modelled by parameters derived from patient-specific RPM data73. 

The average total computation time for evaluating one plan with 300 uncertainty scenarios 

was 11.4 minutes, substantially reduced compared to the estimated 1,500 to 3,000 hours 

running on a non-GPU-accelerated computing platform if 300 scenarios based on 10 

respiratory phases were considered. This new software implementation that is GPU 

computational platform-based may be able to perform real-time, intrafractional evaluation 

daily for patients undergoing IMPT treatments by using the delivery log-file data on the 

proton machine74,75.

We evaluated the interplay effect by mimicking machine delivery procedure and patient’s 

breathing patterns as much as possible. The machine delivery is modelled based on the 

proton machine characteristics at our proton center. In the current practice, the 

reconstruction of 4D-CT based on equally-divided respiratory phase54–57 or respiratory 

amplitude76–78 can be problematic and could introduce imperfection in the reconstructed 

images and consequentially impact the interplay effect evaluation. In addition, we simulated 

irregular breathing patterns from patient-specific RPM data with varying breathing length of 

each phase only (or so-called asymmetric breathing)43–45. This method does not consider the 

possible respiratory motion pattern changes such as the respiratory amplitude variations and 

the baseline drift due to hysteresis that may occur during the patient’s treatment. More 
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precise models may help perfect this method by including these variables in the future. The 

respiratory amplitude variation can be modelled by scaling of the magnitude in the 

deformable vector fields, and the baseline drift can be simulated by shifting the tumor 

position accordingly.

Our current interplay effect evaluation from breathing motion is based on 4DCT. More 

sophisticated representation of patient breathing motion can be achieved using new 

techniques such as cine-MRI79–82 or 4D MRI83–85 with finer time resolution. These MRI 

based approaches provide more precise respiratory motion modelling and therefore the 

resulting anatomical changes. The 4D dynamic dose calculation method based on the 

synthetic 4D CT-MRI has been used for interplay effect evaluation with irregular respiratory 

motion considered86. With the technique becoming available to us, we will adapt our 

mathematical models according to these new data in the future.

It is important to validate the accuracy of the tool by phantom measurements. However, 

experimentally validating and benchmarking such a tool can be challenging. To mimic the 

realistic clinical scenario as much as possible, an inhomogeneous phantom with complicated 

3D target motion, rather than 1D translational motion, is needed87,88. This is a subject for 

further research by our group in the future. For more comprehensive tests of the software, 

other proton plans generated by different methods such as using Monte Carlo dose engine, 

based on proton machines by other vendors, with different delivery techniques such as single 

field optimization (SFO), etc. should be considered. This will be included in the future 

studies as well.

This developed tool has certain limitations. To reduce the evaluation time required, we used 

the same values for both range and setup uncertainties (30 combined scenarios) for every 

fraction. In reality, the patient setup uncertainties may behave more randomly from fraction 

to fraction during the treatment course. Although the approximation to consider patient setup 

uncertainties being the same for every fraction may overestimate the actual impact due to 

setup uncertainty, we had 30 randomized setup and range uncertainty considered and 

covered. The result, therefore, may reasonably represent most, if not all, of the possible 

perturbations from these uncertainties throughout the entire treatment course. It would be 

beneficial if a more efficient dose calculation computational approach can be developed in 

the future. Besides, additional uncertainties from inter-fractional anatomic changes are not 

considered in the current method, along with its potential induced motion variations. Further 

studies are warranted to evaluate the impact of these anatomic changes possibly by taking 

into account repeated weekly 4D CTs in the current method or by on-line real time interplay 

effects evaluation using on-board volumetric imaging. This will be considered in a follow-on 

study.

We presented a new tool to evaluate interplay effect with uncertainties considered 

simultaneously. This evaluation method may be adopted in a new 4D robust optimization 

strategy51,52,89 by optimizing the worst-case dose distribution from this comprehensive plan 

robustness evaluation method. The resulting new 4D robust optimization method can 

potentially generate IMPT plans more resilient to irregular respiratory motion in an effective 

manner.
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5. Conclusion

We have successfully developed a new plan robustness evaluation tool by accessing interplay 

effect with uncertainties considered simultaneously in IMPT for non-small cell lung cancer 

treatments, accounting for irregular respiratory motion modelled by parameters derived from 

patient-specific RPM data. We validated this method using 10 lung cancer patients and 

compared the plan robustness between 3D and 4D robustly optimized plans. Improved plan 

quality and robustness were achieved using 4D robust optimization. The proposed method 

may provide clinicians with comprehensive assessment of plan robustness in the presence of 

interplay effect and setup and range uncertainties, and thus enabling more realistic 

estimation of the delivered dose in IMPT for thoracic radiotherapy applications.
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Figure 1. Diagram and workflow of comprehensive robustness evaluation.
a) Setup and range uncertainties were modelled by shifting the patient’s iso-center and 

rescaling the proton range; b) Interplay effect was simulated by evaluating the interference 

between spot delivery and respiratory motions; c) The comprehensive plan robustness was 

evaluated by calculating interplay effect with the impact of both uncertainties considered; d) 

DVH-band graph derived from 300 combined scenarios for each plan that was used for plan 

robustness evaluation.
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Figure 2. Comparisons of 3D and 4D robustly optimized plans for the IMPT targets.
a) Box-and-scatter plot of D5%-D95% CTV 4D cumulative doses from 10 patients for both 

3D and 4D robustly optimized plans in the nominal scenario; b) Box-and-scatter plot of 4D 

dynamic doses of CTV D95%, D5%, and D5%-D95% from 10 patients for both 3D and 4D 

robustly optimized plans in the worst-case scenario; c) Box-and-scatter plot of bandwidth for 

D95% and D5% derived from the 300 calculated 4D dynamic dose scenerios of 10 patients for 

both 3D and 4D robustly optimized plans. * indicates p<0.05.

Shan et al. Page 19

Med Phys. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Comparisons of 3D and 4D robustly optimized plans for OARs.
a) Box-and-scatter plot of 4D cumulative dose of esophagus D33%, spinal cord D1%, lung 

mean dose and heart mean dose from 10 patients for both 3D and 4D robustly optimized 

plans in the nominal scenario; b) Box-and-scatter plot of 4D dynamic doses of esophagus 

D33%, spinal cord D1%, lung mean dose and heart mean dose from 10 patients for both 3D 

and 4D robustly optimized plans in the worst-case scenario; c) Box-and-scatter plot of 

bandwidth of esophagus D33%, spinal cord D1%, lung mean dose and heart mean dose 

derived from 300 4D dynamic doses of 10 patients for both 3D and 4D robustly optimized 

plans. * indicates p<0.05.
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Figure 4. Doses (in color wash presentation) for the 98% prescription iso-dose distribution 
comparison between a 3D robustly optimized plan (left column) and a 4D robustly optimized 
plan (right column).
The top row shows the 4D cumulative doses in the nominal scenario. The bottom row shows 

the 4D dynamic doses with the presence of both uncertainties and interplay effect considered 

simultaneously; the red lines contour represents the CTV.
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Table 2

Summary of parameters for comprehensive robustness evaluation

Uncertainty Type Distribution Parameter Sampling frequency Number of 
uncertainty 

cases

Setup and range 
uncertainties

Setup Normal μ = 0; σ = 2.5 mm Once per course
30

Range Normal μ = 0; σ = 1.75% Once per course

Interplay effect

Initial respiratory 
phase Uniform Phase 1 to Phase 10 Once per field per 

fraction

10
Breathing length of 
respiratory phase Normal

μ = patient-specific mean length 
of respiration cycle;

Once per respiratory 
phaseσ = 18% of patient-specific 

mean length of respiration 

cycle*

*
Since most of patients included in this study were treated a long time ago, the associated RPM data acquired during the initial 4D CT simulations 

for these patients were deleted (per our institution policy, the RPM data would only be stored in the 4D CT simulator for 3 months); only the mean 
lengths of respiratory cycles of these patients were available to us. We analyzed the RPM data for 40 patients currently available to us and found 
that roughly the ratio of the standard deviation over mean length of patients’ respiratory cycles was 18%. Thus we had set the patient-specific 
standard deviation of patients’ respiratory cycles to be 18% of patient-specific mean length of respiratory cycles for every patient included in this 
study. We believe that this assumption would not affect our final conclusions.
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Table 3

Proton Machine Characteristics for Spot Delivery as Used in IMPT Planning

Parameters Values

Spot Size (In-air at Isocenter) Energy-dependent (σ: 2–6 mm)

Spot Spacing 5 mm

Minimum MU Limit (MU
a
)

0.003

Maximum MU Limit (MU
a
)

0.04

Energy Layer Switching Time (s) 1.9

Spill Length (s) 7.9

Effective Magnet Scanning Speed in Horizontal Direction, Vx (m/s) Medium Energy Group: 5.7

Low Energy Group: 7.0

Effective Magnet Scanning Speed in Vertical Direction, Vy (m/s) High Energy Group: 17.1

Medium Energy Group: 18.2

Low Energy Group: 22.2

Magnet Preparation/Verification Time (ms
b
)

1.93

Proton Spill Rate (MU
a
/s)

High Energy Group: 9.8

Medium Energy Group: 8.1

Low Energy Group: 8.5

a
MU: Monitor Unit;

b
ms: Millisecond;
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Table 4

Suggested Dose-Volume Constraints for Conventionally Fractionated Thoracic IMPT Planning

Target/Critical 
structure

Dose limits (Gy) or Constraint Goals

Clinical target volume > 99% volume receiving > 95% of the prescription dose in the worst-case scenario

Brachial plexus Minimum dose to 0.03 cc highest dose volume < 60 Gy[RBE]

Esophagus 1/3 volume < 65 Gy[RBE]; 2/3 volume < 55 Gy[RBE], as low as reasonably achievable

Liver Mean dose to liver < 25 Gy[RBE]; 1/3 liver < 35 Gy[RBE]

Total lung Mean lung dose < 20 Gy[RBE], V20 Gy[RBE] < 37% of volume

Spinal cord Maximum dose to 0.03cc highest dose volume < 50 Gy[RBE]

Heart 1/3 volume < 60 Gy[RBE]; 2/3 volume < 45 Gy[RBE]; mean heart dose < 30 Gy[RBE], as low as reasonably 
achievable
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Table 5

Average Total Computation Time for Plan Evaluation

Patient # Calculation time (min)

1 13.0

2 9.2

3 10.9

4 7.1

5 14.8

6 9.7

7 10.9

8 10.3

9 12.3

10 15.4
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