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Abstract

Purpose: This report introduces and validates a new diffusion MRI based method termed MRI-

Cytometry that can non-invasively map intravoxel, non-parametric cell size distributions in tissues.

Methods: MRI was used to acquire diffusion-weighted signals with a range of diffusion times 

and gradient factors, and a model was fit to these data to derive estimates of cell size distributions. 

We implemented a two-step fitting method to avoid noise-induced artificial peaks and provide 

reliable estimates of tumor cell size distributions. Computer simulations in silico and experimental 

measurements on cultured cells in vitro and animal xenografts in vivo were used to validate the 

accuracy and precision of the method. Tumors in seven patients with breast cancer were also 

imaged and analyzed using this MRI-Cytometry approach on a clinical 3T MRI scanner.

Results: Simulations and experimental results confirm MRI-Cytometry can reliably map 

intravoxel, non-parametric cell size distributions and has the potential to discriminate smaller and 

larger cells. The application in breast cancer patients demonstrates the feasibility of direct 

translation of MRI-Cytometry to clinical applications.
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Conclusion: The proposed MRI-Cytometry method can characterize non-parametric cell size 

distributions in human tumors, which potentially provides a practical imaging approach to derive 

specific histopathological information on biological tissues.
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INTRODUCTION

Cell size is one of the fundamental properties of living cells and plays an important role in 

metabolism(1), proliferation (2), and cell death (3). At the organ level, biological tissues 

contain a large variety of cells with different sizes. Most epithelial tissues show a “striking 

regularity” in cell size, and size heterogeneity often indicates neoplastic growth (4). 

Therefore, quantifying cell size distributions may provide important information on the state 

of tissues for diagnosis or monitoring responses to interventions. Currently, cell size 

information is widely used in blood analyses of anemia (5,6) and cancer (7) but its full 

potential has not been realized in solid tumors. Biopsy is the standard-of-care method for 

cell size measurements, but it is invasive, especially for tumors in critical organs. Therefore, 

it would be valuable to characterize cell size information using non-invasive imaging 

methods.

Several attempts have been made to acquire cell size information using Diffusion-weighted 

magnetic resonance imaging (DWI); however, it remains challenging to accurately estimate 

cell size distributions non-invasively. Two approaches have been reported to overcome this 

challenge: measuring mean cell size and pre-defining a parametric distribution function for 

cell size. The first approach measures mean cell size only, simplifying the problem and 

retaining the most important histopathological information. Mean axon sizes have been 

measured using q-space imaging (8), AxActive (9), DDE (double diffusion encoding) (10), 

and qTDS (quantitative temporal diffusion spectroscopy) (11) methods. Mean cell sizes in 

tumors have been measured using VERDICT (vascular, extracellular and restricted diffusion 

for cytometry in tumors) (12,13), IMPULSED (imaging microstructural parameters using 

limited spectrally edited diffusion) (14,15), and POMACE (pulsed and oscillating gradient 

MRI for assessment of cell size and extracellular space) methods (16). However, these 

methods do not characterize cell size heterogeneity, which may itself be a diagnostic 

biomarker. The second approach pre-defines a parametric distribution function for cell size, 

such as a gamma distribution (17). This analysis provides information on the heterogeneity 

of cell sizes while adding only one more fitting parameter compared with the first approach. 

However, cell size distributions likely change during disease progression and in response to 

treatment (4) making it is inappropriate to pre-define a specific functional form of cell size 

distributions. Therefore, there is a need to develop an imaging method that can characterize 

cell size distribution without any pre-defined functional forms.

Estimating non-parametric compartment size distributions without a priori knowledge of the 

distribution function has been performed to estimate: (i). pore size distribution of glass 

capillaries (18); (ii) non-parametric axon size distributions in fixed tissues using PGSE 
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(pulse gradient spin echo) (19), NOGSE (non-uniform oscillating gradient spin echo) (20), 

or DDE (21); and (iii) cell size distributions in asparagus and animal allografts (22). All of 

these methods addressed the complex optimization problems without assuming any specific 

distribution forms, ensuring the generalizability of both normal and abnormal tissues. 

However, these approaches either used special preclinical hardware or focused on animal 

applications only.

Here, we introduce a new framework, MRI-Cytometry, that estimates cell size distribution 

without a priori knowledge using clinical MRI scanners. We report the theoretical basis that 

links DWI signals to cell size distributions and provide validation of MRI-Cytometry using 

computer simulations in silico, cell culture experiments in vitro, and animal xenograft 

experiments in vivo. We also show its clinical applicability in patients with breast cancer.

THEORY

Assumptions

Similar to previous studies (12,14,16,23), MRI-Cytometry assumes DWI signals arise from 

two compartments, i.e., intra- and extracellular spaces without transcytolemmal water 

exchange. The following assumptions were made.

1. Intracellular diffusion: Cells are modeled as spheres (12,14,16,23). Each 

spherical cell has a cell size, i.e., diameter d and an intracellular diffusion 

coefficient Din, both of which can differ from cell to cell. For example, a cell in 

an early apoptotic stage may have both smaller d and Din than a normal cell (24). 

Therefore, each image voxel contains cells characterized by P(d) and P(Din), the 

distributions of d and Din, respectively. This is more realistic than the assumption 

of a mean cell size d and a single Din for all cells.

2. Extracellular diffusion: We adapt the concept of spin packets (25) for 

extracellular diffusion. The extracellular DWI signals are described as a sum of 

signals from a large number of individual spin packets originating from different 

positions in the extracellular spaces within the voxel. Each spin packet has its 

own diffusion time-dependent diffusion coefficient which can be approximated 

as (14) Dex = Dex0 + βexf when a narrow frequency range is used, where f is the 

gradient frequency, Dex0 represents Dex at very long diffusion time, and βex is the 

diffusion dispersion rate. Because spin packets originate from different positions, 

diffuse through different pathways, and encounter different restrictions and 

hindrances, a voxel contains both P(Dex0) and P(βex), the distributions of Dex0 

and βex, respectively. This is different from previous studies that assumed a 

single extracellular diffusion coefficient (12).

3. Transcytolemmal exchange: Transcytolemmal water exchange is ignored here. 

This assumption has been widely used in other cell size measurements such as 

IMPULSED (14,24) and VERDICT (12). This could bias the estimation of 

intracellular volume fraction but may not affect the estimation of mean cell size 

(26).
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Basic equation

The DWI signals of a voxel can be written as

S = ∫
Din

∫
d

ρinPin d, Din v d sin d, Din dddDin

intracellulardiffusion

+

∫
βex

∫
Dex0

ρexPex Dex0, βex exp −b Dex0 + βexf dDex0dβex

extracellulardiffusion [1]

and S0 = S b = 0 = ∫Din∫dρinPin d, Din v d dddDin + ∫βex∫Dex0ρexPex Dex0, βex dDex0dβex, 

v(d) = πd3/6 is cell volume, Pin(d, Din) is the normalized distribution function of the number 

of cells with a diameter d and an intracellular diffusivity Din, Pex(Dex0, βex) is the 

normalized distribution function of the number of spin packets with Dex0 and βex, ρin and 

ρex are the T2-weighted intra- and extracellular DWI signals per unit volume, respectively, 

and sin is intracellular signal attenuation of an impermeable spherical cell. The analytical 

equations for sin linking geometric features (d and Din) to DWI signals have been reported 

for sine- and cosine-modulated gradient waveforms (27) and cosine-modulated trapezoidal 

OGSE waveforms (23). Unlike previous studies that enforced a known distribution function 

(28), Eq. [1] does not assume any specific distribution function for any microstructural 

parameters.

A general fit of Eq. [1] to data is a complex non-linear optimization problem, especially with 

the inclusion of variable cell volumes (see below). To address the difficulty of directly fitting 

Eq.[1] to data reliably, we propose the following two-step fitting approach.

MRI-Cytometry fitting – step#1

Discretization of signal equation—First, we define two weighting parameters: 

win′ = ρinPin d, Din v d  is proportional to the cell-volume-weighted distribution of the 

number of cells with d and Din and wex = ρexPex(Dex0, βex) is proportional to the distribution 

of spin packet volumes with Dex0 and βex. Second, Eq. [1] can be discretized based on 

physiologically relevant parameter ranges, i.e., 0 ≤ d ≤ dmax, 0 ≤ Din, Dex0 ≤ Dfree, and 0 ≤ 

βex ≤ βex,max. dmax denotes the largest cell size that can be reliably fit depending on the 

longest diffusion time used in acquisition e.g. in this study dmax is set as 25 μm because the 

root-mean-square displacement of free water diffusion for tdiff = 70 ms is ~21 μm. The 

βex,max = 10 μm2 was determined by previous simulations and animal studies in vivo (24). 

We empirically discretize d, Din, Dex0, and βex with N = 50, M = 16, P = 16, and Q = 21 

possible values, respectively. Larger numbers of possible parameter values can increase the 

“resolution” in the parameter space but will significantly increase the computing time. 

Therefore, for a number of K measurements (each with a combination of experimental 

parameters such as tdiff and b value), Eq. [1] can be discretized as the kth measurement 

becomes
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Sk = ∑
n = 1

N
∑

m = 1

M
win n, m′ sin d n , Din m | bk, fk + ∑

p = 1

P
∑

q = 1

Q
wex p, q

exp −bk Dex0 p + βex q ⋅ f
[2]

here S0 = ∑n = 1
N ∑m = 1

M win n, m′ + ∑p = 1
P ∑q = 1

Q wex p, q  win n, m′  and sin(d(n), Din(m)|bk, fk) 

are the intracellular signal fraction and signal arising from a combination of d(n) and Din(m), 

respectively, and wex(p,q) is the extracellular signal fraction arising from spin packets with a 

combination of Dex0(p), and βex(q).

Construction of a dictionary (signal basis matrix)—We create a dictionary 

containing all possible intra- and extracellular signal forms. Specifically, Eq.[2] can be 

rewritten as

S =

S1

⋮

SK

=

min (1 1) ⋯ min N × M 1

⋮ ⋱ ⋮

min (1 K) ⋯ min N × M K

intracellular
mex (1 1) ⋯ mex P × Q 1

⋮ ⋱ ⋮

mex (1 K) ⋯ mex P × Q K

extracellular

×

win 1′
⋮

win N × M′
wex 1

⋮
wex P × Q

= M ⋅ w′

[3]

Where M is the basis signal matrix (dictionary) containing both intra- and extracellular 

signal forms: min(n,m|k) = sin(d(n), Din(m)|bk, fk), and mex(p,q|k) = exp[−bk(Dex0(p) + βex(q) f)]. 
Note that any win …′ , wex(…) ≥ 0.

Fitting—We use a regularized non-negative least-squares (NNLS) analysis (29–31) to fit 

Eq.[3] to data. This approach incorporates a priori information of non-negative signal 

intensities and finite signal energy to prevent the non-negative least-squares analysis from 

over-fitting the noisy data while retaining the numerical accuracy of the solution. The 

resulting regularized non-negative least-squares problem formulation is given as

argmin
w′ ≥ 0

M
ξI w′ − S

0 2

2
, [4]

Where I is a unity matrix with a size of N × M + P × Q and ξ is a regularization penalty 

parameter. Of note, larger values of ξ result in more regularization but increase fitting errors, 

while smaller ξ may decrease fitting errors while increasing the risk of overfitting. We used 

computer simulations to empirically determine ξ = 0.01 to achieve reasonable fits in the 

presence of experimental noise with SNR < 150 on T2w images.

Fitting results – step#1—After the regularized NNLS fitting, the vector w′ can be split 

and converted into two matrices, i.e., a N × M matrix win′  for intracellular and a P × Q wex 

matrix for extracellular spaces. The projection of each matrix to each dimension provides a 

distribution. Namely, the cell-volume-weighted cell size distribution can be obtained as
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Pvw d n = ∑
m = 1

M
win n, m′ / ∑

n = 1

N
∑

m = 1

M
win n, m′ [5]

the distribution function for extracellular diffusion coefficient at long diffusion times as

P Dex0 p = ∑
q = 1

Q
wex p, q / ∑

p = 1

P
∑

q = 1

Q
wex p, q [6]

and the distribution of βex as

P βex q = ∑
p = 1

P
wex p, q / ∑

p = 1

P
∑

q = 1

Q
wex p, q [7]

Note that P(Din), the distribution of Din, will be obtained in step#2 (see below). In addition 

to the distributions of microstructural parameters, some other parameters can also be 

estimated using MRI-Cytometry. For example, the apparent intracellular volume fraction can 

be calculated as

vin = ∑
n = 1

N
∑

m = 1

M
win n, m′ [8]

and the cell-volume-weighted mean cell size

dvw = ∑
n = 1

N
∑

m = 1

M
d n win n, m′ / ∑

n = 1

N
∑

m = 1

M
win n, m′ [9]

MRI-Cytometry fitting – step#2

The fitted Pvw(d) is cell-volume-weighted, which may not meet the needs of many biological 

and clinical studies that require true cell size distribution (5). A natural approach to convert 

cell-volume-weighted cell size distributions to cell size distributions is

Pcal d n = ∑
n = 1

N Pvw d n
d n

3 / ∑
n = 1

N 1
d n

3 [10]

However, this is usually not optimal in practice because this conversion serves as a low-pass 

filter that could amplify noise-induced artificial peaks in the distribution which appear at 

small cell sizes. To overcome this problem, we adopt a second fitting step.

Based on the win′  obtained in step#1, the fitted intracellular signals Sin can be obtained as

Sin =
Sin 1

⋮
Sin K

=
min (1 1) ⋯ min N × M 1

⋮ ⋱ ⋮
min (1 K) ⋯ min N × M K

×
win 1′

⋮
win N × M′

[11]
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We then generate another basis matrix (dictionary) for intracellular diffusion only, namely,

Sin =
d 1

3 min (1 1) ⋯ d N
3 min N × M 1

⋮ ⋱ ⋮
d 1

3 min (1 K) ⋯ d N
3 min N × M K

/ ∑
n = 1

N
d n

3 ×
win 1

⋮
win N × M

= Minwin [12]

Where Min is the intracellular signal basis matrix and win(n,m) is proportional to the 

distribution of the number of cells with a combination of dn and Din(m). Like the fittings in 

step#1, we perform another regularized NNLS fitting as

argmin
win ≥ 0

Min
ξ2Iin

win −
Sin
0 2

2
[13]

Where Iin is a unity matrix with a size of N ×M and ξ2 is a regularization penalty parameter 

usually different from ξ in step#1. We used computer simulations to find ξ2 in the range of 

0.0001 to 0.001 could provide reasonable estimations and empirically determine ξ2 = 0.0005 

throughout this work. Finally, the fitted win can be converted to a N × M matrix and the 

projections to each dimension provide the distributions of d and Din, respectively. Namely,

P d n = ∑
m = 1

M
win n, m / ∑

n = 1

N
∑

m = 1

M
win n, m [14]

and

P Din m = ∑
n = 1

N
win n, m / ∑

n = 1

N
∑

m = 1

M
win n, m [15]

Moreover, the overall mean cell size can be obtained as

d = ∑
n = 1

N
d n P d n / ∑

n = 1

N
P d n [16]

mean intracellular diffusivity as

Din = ∑
m = 1

M
Din m P Din m / ∑

m = 1

M
P Din m [17]

and the standard deviation of cell sizes as

σd = ∑
n = 1

N
P d n d n − d 2 / ∑

n = 1

N
P d n [18]

Figure 1 shows the diagram of the two-step MRI-Cytometry fitting of a simulated tissue 

with a Gaussian cell size distribution (actual mean cell size d = 16 μm with a standard 
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deviation σd = 3 μm). Details of all other simulation parameters can be found in the 

Simulation section.

METHODS

Because MRI-Cytometry is a general framework, we used the data acquired previously for 

IMPULSED (23), including validation data using cultured cells, animal xenografts, and in 

vivo data from patients with breast cancer; however, we use the analyses described above. 

We generated new simulation data, in which the ground-truth microstructural parameters 

followed distributions of values, in contrast to the single values used in the IMPULSED 

simulations. All acquisition details for experiments in cultured cells, animal xenografts, and 

breast cancer patients have been reported previously (23). Brief descriptions are provided 

below.

Acquisition protocol

All studies in this work, including computer simulations, cultured cells, animal xenografts, 

and cancer patients, used the same protocols as in (23). Briefly, three acquisitions with 

effective diffusion times 70, 10, and 5 ms, respectively, were used with the highest b values 

of 1800 s/mm2, 1000 s/mm2, and 300 s/mm2, respectively. The highest gradient strength was 

80 mT/m, gradient rise time 0.9 ms, and the total scan time ~7 mins.

Computer simulations in silico

DWI signals were generated using Eq.[2] with distributions of d, Din, Dex0, and βex and 

noise at different signal-to-noise ratios (SNR). Each simulation was repeated 100 times each 

with different noise but at the same SNR level to investigate the accuracy and precision of 

MRI-Cytometry. For simplicity, all input parameters were selected to obey Gaussian 

distributions. Unless otherwise specified, the distributions used in terms of (mean, STD, 

discretization step) were (16, 2, 0.5) μm, (1.58, 0.5, 0.2) μm2/ms, (2, 0.5, 0.2) μm2/ms, and 

(2, 0.25, 0.25) μm2 for of d, Din, Dex0, and βex, respectively. These values were determined 

from our previous fittings of solid tumors (15,32,33). The input vin was 70%. Four specific 

simulations were performed:

1. Influence of SNR. Six SNRs (20, 40, 60, 80, 150, and ∞) were simulated to 

investigate how SNR affects MRI-Cytometry results.

2. Influence of distribution median. Five medians (dcen = 4, 8, 12, 16, and 20 μm) 

with the same σd = 2 μm were simulated.

3. Influence of distribution width. Five standard deviations (σd = 1, 2, 3, 4, and 5 

μm) with the same median cell size of dcen = 16 μm were simulated.

4. Influence of bi-modal distribution. A bi-model distribution consisting of two 

peaks (8(2) and 16(2) μm in terms of median(STD)) with five different vd,small 

values, i.e., cell number fractions of the small cells were simulated at SNR = 40. 

d = 10 μm was used as the threshold to separate small and large cells.

Xu et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Validation using cultured cells in vitro

Three types of breast cancer cell lines (MDA-MB-231, MCF7, and MDA-MB-453), one 

acute T cell leukemia (Jurkat) cell line (all purchased from American Type Culture 

Collection (Manassas, Virginia, USA)) and the mixture of primary lymphocytes (extracted 

from human peripheral blood) were prepared from either culture or separation, and then 

pelleted for MRI experiments. Light microscopy was used to estimate the true cell size 

distribution.

Validations using animal xenografts in vivo

All procedures were approved by the Institutional Animal Care and Usage Committee at 

Vanderbilt University Medical Center. MDA-MB-231 (n = 6) and two MCF7 (n = 4) 

subcutaneous xenografts in the hind limbs were developed in female Athymic nude mice 

(Harlan Laboratories, Inc., Indianapolis, IN). Animals were scanned on a Varian/Agilent 

4.7T MRI when tumor sizes reached 200 – 300 mm3 and then euthanized for histology using 

H&E staining for cellularity and Na+/K+-ATPase (ab76020, Abcam) staining for cell size. 

Histology images were analyzed using CellProfiler™ to obtain quantitative information on 

cell sizes.

Applications in patients

The human imaging study was approved by the Institutional Review Board at Vanderbilt 

University Medical Center. Following written informed consent, seven female patients with 

breast cancer (age 55.3±8.0 years) with tumors ≥ 1 cm were recruited. All human imaging 

was performed on a Philips 3T Achieva MRI scanner using a 16-channel breast coil.

Data analyses

All DWIs were co-registered to T2-weighted b = 0 images using FSL (34,35) to reduce 

motion-induced artifacts. Regions-of-interest (ROIs) were manually drawn on PGSE DWIs 

with b = 1000 s/mm2. MRI-Cytometry data fittings were performed using in-house code 

with Matlab (Mathworks, Natick, Massachusetts) inside ROIs only. As a means of 

validation, MRI-Cytometry derived cell size distributions were compared with light-

microscopy or histology derived distributions in the cultured cells and animal xenografts 

studies, respectively.

RESULTS

Computer simulations in silico

Figure 2 shows the influence of SNR on the MRI-Cytometry fits. Except for βex, the mean 

distributions of 100 repeats of all other parameters match the ground-truth distributions, 

suggesting reasonably good accuracy of MRI-Cytometry. Even without noise, MRI-

Cytometry still cannot fit P(βex) accurately, indicating MRI-Cytometry has very low 

sensitivity to βex. Recall that Pcal(d) is the cell size distribution calculated directly from the 

cell-volume-weighted size distribution Pvw(d) using Eq.[10]. Because Eq.[10] serves as a 

low-pass filter, Pcal(d) shows large artificial peaks at small cell sizes, which are presumably 
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caused by noise. These artificial peaks are removed in P(d) obtained by the step#2 MRI-

Cytometry.

The shaded areas in Figure 2 are standard deviations of 100 repeated fits, representing fitting 

precisions. SNR has a very strong impact on fitting precisions of all distributions obtained 

with MRI-Cytometry. For typical SNRs such as from 20 to 60 on human scanners, the 

precisions are relatively low. For SNR=150, the precision is significantly improved, 

especially for P(d) and P(Din), and their corresponding coefficients of variation are less or 

around 10%, indicating reasonably accurate fittings. This is encouraging because a recent 

report (36) has shown that voxel-wise SNR=150 is achievable in DWI on clinical MRI 

scanners. It does, however, result in increased scan times (4 acquisitions) and decreased 

spatial resolution (2.5×2.5×5 mm). Note that P(d) and P(Din) obtained by step#2 above show 

much higher precisions than those of Pcal(d) and Pvw(Din) obtained in step#1, indicating the 

regularization in step#2 further minimizes the influence of noise. This is another benefit of 

the two-step approach, in addition to improving accuracy by removing artificial peaks at 

small cell sizes.

Figure 3 shows the influences of mean cell sizes d on MRI-Cytometry fits at SNR=40, a 

typical SNR achievable in our human breast cancer scans. MRI-Cytometry overestimates 

P(d) at smaller d = 4 μm, while providing more accurate estimations of P(d) for larger d. 

Similarly, estimates of P(Din) are significantly biased at smaller d and the accuracy increases 

at larger d. This is expected because the detection sensitivity to cell size and intracellular 

diffusivity decreases at smaller restriction sizes. Figure 3b summarizes the accuracy and 

precision of MRI-Cytometry derived parameters dependent on d. The estimated vin seems 

independent of d. Both dvw and d reflect the change in d. The large standard deviations of 

Din suggest that it is hard to estimate reliably, consistent with our previous findings in 

IMPULSED (23). The fitted σd (standard deviations of each fitted P(d)) shows good 

accuracy but lower precision. The coefficient of variation of d (COV(d)) decreases to ~ 10% 

only when d > 16 μm, indicating P(d) width can be reliably fit only with larger d using the 

current acquisitions.

Figure 4 shows the influences of the width of P(d) (in terms of STD) on MRI-Cytometry fits 

when d = 16 μm. Although vin, dvw, d, and Din can be fit with reasonable accuracy, MRI-

Cytometry derived σd overestimates the width of P(d) when ground-truth σd is < 2 μm. On 

the other hand, it underestimates the width of P(d) when ground-truth σd > 3 μm. COV(d) is 

larger than 10%, indicating it is challenging to fit P(d) width reliably at SNR = 40. 

Therefore, MRI-Cytometry provides higher accuracy to estimate d than σd.

Figure 5 shows how MRI-Cytometry fits bi-modal distributions of d. Recall that the bi-

modal distributions consist of two peaks, one of small cells (8 μm) and one of large cells (17 

μm), and their relative cell number fractions vary. Note Pvw(d) (i.e., cell-volume-weighted 

size distributions) barely show bi-modal patterns even if the cell number fraction of small 

cells reaches 50% (i.e. half of the cells are small). This is because small cells have much 

smaller cell volumes, so their signal contributions are much smaller than those of larger 

cells. As a result, Pvw(d) is more sensitive to large cells. As shown in Figure 5b, MRI-
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Cytometry derived dvw shows good accuracy for all combinations of small and large cells, 

but d is slightly overestimated when both small and large cells are present. The MRI-

Cytometry derived apparent fractions of cells smaller than 10 μm, vd, small, shows a 

monotonic dependence on ground-truth values, suggesting MRI-Cytometry can characterize 

the cell number fractions of small cells. This information cannot be obtained using previous 

methods that report mean cell sizes (12,14,16).

Cultured cells in vitro

Figure 6 shows comparisons of MRI-Cytometry and light microscopy derived cell size 

distributions P(d) using cultured cells in vitro. For the three breast cancer cell lines (MDA-

MB-231, MCF-7, and MDA-MB-453) and Jurkat leukemia cancer cells, P(d) obtained using 

MRI-Cytometry matched those from light microscopy. For the smallest lymphocytes, MRI-

Cytometry found accurate mean values for P(d) but with a broader width. Figure 6b shows 

the correlation between MRI-Cytometry and light microscopy derived mean cell size d and 

standard deviation σd. Although there is a good correlation in d, there are discrepancies in σd 

which is consistent with simulated results that MRI-Cytometry provides more accurate 

estimates of d than those of σd.

Animal xenografts in vivo

Figure 7a shows comparisons of MRI-Cytometry and histology derived cell size distribution 

of two types of mouse xenografts (MDA-MB-231 and MCF-7) in vivo. There is a good 

match in all five representative animals. Because it is challenging to distinguish small cells 

from other small structures such as cell debris, cells only with a size larger than a threshold 

of 5.5 μm were included. Note this exclusion did not affect our overall results significantly 

because the fractions of very small cells (< 5.5 μm) are low, and hence they make minor 

contributions to overall signals. Figure 7b shows the agreement between MRI-Cytometry 

and histology derived mean cell size d and standard deviation σd. The 95% limits of 

agreement are 1.6 μm and 1.4 μm for d and σd, respectively, suggesting good agreements.

Breast Cancer patients in vivo

Figure 8 shows representative cell size distributions P(d) and MRI-Cytometry derived vin 

and d parametric maps of a human breast tumor. SNR was ~45 on T2w images. Four 

examples of cell size distributions from four representative image voxels are provided. For 

the voxels in the viable tumors (#1, #2, and #4 shown in Figure 8a, e, and g), the shapes of 

P(d) are similar to each other. However, voxel #2 shows hyperintensity on the T2-weighted b 
= 0 image and reduced vin. This might be due to increased extracellular water. By contrast, 

P(d) appears very differently as a small peak at large cell sizes (> 20 μm) for the voxel #3 in 

the necrotic region. This is because the necrotic core consists of mainly fluid and cell debris 

with few restrictions. This leads to a small fitted intracellular volume fraction vin (< 10%) 

and large fitted cell sizes ≥ 20.5 μm, the root-mean-square-displacement of free water at 

body temperature 37°. Figure 8d and h demonstrate the MRI-Cytometry derived vin and d
parametric maps, which show low vin and high d in the necrotic core compared with viable 

tumors. Note that transcytolemmal water exchange may be responsible for the 

underestimation of vin, but it may have minor influence on d, as we reported previously (26).
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In addition to the voxel-wise fitting shown above, MRI-Cytometry was also fitted to the 

whole-tumor signals to investigate the overall cell size distribution of each tumor as shown 

in Figure 9a. P(d) displays different locations and widths of distributions in different breast 

tumors. This finding is consistent with previous reports that human breast tumors have large 

variations in cell sizes (37). For a direct comparison, the averaged cell size distributions 

from voxel-wise spectra were also provided. The latter shows broader spectra and peaks 

close to large d indicating voxels in the necrotic regions. Note that the whole tumor data had 

a much higher SNR than the voxel-wise data, which may contribute to the discrepencies 

between two results. Unfortunately, the current study lacks histopathological analysis in 

breast cancer patients to validate the fitted P(d) directly. All fitted distributions are smooth, 

presumably due to the regularization effect. Figure 9b shows the comparison of MRI-

Cytometry and IMPULSED derived cell-volume-weighted mean cell size dvw. Pearson’s 

correlation coefficient is r = 0.83 and p < 0.02. This is consistent with previous reports that 

NNLS fitted results agree well with those fitted using non-linear procedures (31), suggesting 

the information on mean cell size from IMPULSED can be provided by MRI-Cytometry as 

well. Figure 10 shows a direct comparison of the mean cell size maps of seven patients 

obtained using IMPULSED and MRI-Cytometry. The maps are slightly different from each 

other. Notably, IMPULSED provides more high fitted d values > 20 μm especially at tumor 

boundaries, indicating MRI-Cytometry might be more robust and less sensitive to partial 

volume effects.

DISCUSSION

The two-step MRI-Cytometry method is a framework for mapping arbitrary cell size 

distributions without assuming any parametric distribution. As a general framework, MRI-

Cytometry can incorporate combinations of any DWI acquisition methods with appropriate 

adjustments of fitting basis matrices (dictionaries) as long as the measurements are sensitive 

to changes in restriction size. We chose data acquisitions used in the IMPULSED method 

because it is clinically feasible (23). Future directions include using the same MRI-

Cytometry framework but with different diffusion acquisition methods (such as PGSE, 

OGSE, and DDE) and compare the results with the same hardware limitations.

An attractive potential application of mapping cell size distribution is to distinguish different 

cell populations. For example, immunotherapy provides cutting-edge anti-cancer treatments 

usually associated with T cell infiltration in tumors (38). Because T cell sizes (7 – 9 μm) are 

usually smaller than relatively larger cancer cells (10 – 25 μm) (39), mapping cell fractions 

at different cell sizes may provide an opportunity to characterize T cell infiltration, which is 

currently not achievable using conventional MRI. Our simulations (Figure 5) suggest that 

MRI-Cytometry can separate the fractions of small (< 10 μm) cells from relatively larger 

cancer cells. This may provide an indirect means to probe T cell infiltration in tumors. 

However, many confounding effects may make this characterization challenging, such as the 

presence of macrophage and the much smaller contributions of small cells to DWI signals. 

Stronger gradient coils would improve the ability of MRI-Cytometry to detect smaller cells, 

which may provide more accurate estimates of T cell infiltration. The current work used a 

gradient strength up to 80 mT/m and a slew rate < 100 mT/m/sec, both of which limit the 
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shortest diffusion time to be ≈ 5 ms with a corresponding maximum b = 300 s/mm2. Such a 

diffusion time range decreases the detection sensitivity to small cell sizes and intracellular 

diffusivities, leading to lower fitting precision for MRI-Cytometry derived distributions and 

parameters such as vd’small and Din. If stronger gradients such as the Human Connectome 

coil with 300 mT/m (40) can be used, the detection sensitivity of MRI-Cytometry to smaller 

cell sizes and intracellular diffusivities may significantly increase. For example, our previous 

animal study (15) could achieve ≈ 1.7 ms (b = 600 s/mm2) and ≈ 2.5 ms (b = 1320 s/mm2) 

with a gradient strength up to 360 mT/m. Importantly, intracellular diffusivity Din of cancer 

cells can be fit reliably with these much shorter diffusion times. We have recently 

demonstrated success with this approach using the stronger gradients available on animal 

scanning systems (15,24).

MRI-Cytometry is based on a two-compartment (intra- and extracellular) model with free 

water naturally included in the extracellular compartment with Dex0 = Dfree and βex = 0. 

However, the peak corresponding to free water on the Dex spectra may not be resolved 

independently due to the regularization used in the MRI-Cytometry fittings, but the free 

water alters the estimated distribution of extracellular diffusivities P(Dex0). Fitting 

multiparametric diffusion models to data is an ill-posted problem and the influence of free 

water on DWI signals may be similar to having different distributions of extracellular 

diffusivities, leading to the possibility of multiple solutions. The inclusion of another 

dimension of measurements using, e.g., varying echo times, may provide additional 

information to assist in solving this problem. Moreover, the influences of free water fraction 

and cell membrane permeability, amongst other factors, on MRI-Cytometry fitting need 

further investigation.

Due to the limited long tdiff ranges used in the current work, our results suggest MRI-

Cytometry has a low sensitivity to βex. This is consistent with our previous findings in 

patients (23) that Dex could be assumed to be a constant, which enhances fitting precisions 

of other parameters. As a general framework, MRI-Cytometry should not be limited by the 

practical parameters and it could fit βex reliably if a broader range of frequencies can be 

used, such as up to 150 Hz suggested in a previous animal study (24). However, if only 

limited frequency ranges are used, it is possible to simply MRI-Cytometry by removing βex 

from the free fitting parameters.

MRI-Cytometry was implemented voxel-wisely on images obtained from breast cancer 

patients. However, as shown in Figure 8c, it may not be a suitable model for necrotic regions 

of the tumor, where water is less restricted. A similar example has been reported that 

suggests models such as IMPULSED may not always be appropriate in very heterogeneous 

brain tumors (33). A possible solution is to perform a model selection first to determine the 

suitability of each model before any data fitting is performed (33).

CONCLUSIONS

A novel and fast MRI-Cytometry imaging method is introduced for mapping intravoxel, 

non-parametric cell size distributions using diffusion MRI. With validations using computer 

simulations in silico, cultured cells in vitro, and animal xenografts in vivo, we demonstrate 
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the accuracy and precision of MRI-Cytometry. The applications in breast cancer patients in 

vivo suggest MRI-Cytometry may be translated to clinical applications.
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Figure 1. 
Diagram of two-step MRI-Cytometry fitting of a simulated tissue with a Gaussian cell size 

distribution. The calculations of marginal distributions are shown in Eqs.[5], [6], [7], [10], 

[14], and [15].
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Figure 2. 
Simulated influence of noise at different SNR levels on MRI-Cytometry fitted distributions 

of microstructural parameters. For each SNR, the fittings were repeated 100 times each with 

different noise but at the same SNR level. The red dash lines represent the ground truth, blue 

solid lines represent the mean fitted distributions of 100 repeats, and the shaded areas 

represent standard deviations.
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Figure 3. 
Simulated influence of true median cell size on MRI-Cytometry fitted (a) distributions of 

microstructural parameters and (b) MRI-Cytometry derived parameters. Figure legends are 

the same in Figure 2.
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Figure 4. 
Simulated influence of the standard variation of true mean cell size distribution on MRI-

Cytometry fitted (a) distributions of microstructural parameters and (b) MRI-Cytometry 

derived parameters. Figure legends are the same in Figure 2.
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Figure 5. 
Simulated influence of small cell fractions on MRI-Cytometry fitted (a) distributions of 

microstructural parameters and (b) MRI-Cytometry derived parameters. Figure legends are 

the same in Figure 2.
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Figure 6. 
Comparison of MRI-Cytometry and light microscopy derived cell size distribution P(d) 

using cultured cells in vitro. (a) comparison of distributions of five different cell samples. (b) 

correlations of MRI-Cytometry and light microscopy derived mean cell size d and standard 

deviation σd.
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Figure 7. 
Comparison of MRI-Cytometry and histology derived cell size distribution P(d) of mouse 

tumors in vivo. (a) comparison of distributions of five tumors (top: MDA-MB-231. Bottom: 

MCF-7). (b) Bland-Altman plots show the agreement of MRI-Cytometry and light 

microscopy derived mean cell size d and standard deviation σd
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Figure 8. 
Representative cell size distributions and MRI-Cytometry derived parametric maps of a 

breast tumor. (b) is T2-weighted b = 0 image of the tumor and (f) is an enlarged view. 

(a,c,e,g) are four examples of cell size distributions. (d) and (h) are MRI-Cytometry derived 

vin and d maps of the same tumor.
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Figure 9. 
(a) MRI-Cytometry derived cell size distributions of all seven breast cancer patients. Red 

solid lines and blue dashed lines represent the distributions fitted from the whole tumor data 

and the averaged voxel-wise spectra, respectively. (b) the comparison of MRI-Cytometry 

and IMPULSED derived cell-volume-weighted mean cell size dvw. The Pearson’s 

correlation provides r = 0.83 and p < 0.02. The red dash line represents identity.
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Figure 10. 
Comparison of mean cell size maps obtained by IMPULSED (top) and MRI-Cytometry 

(bottom). Each column is a representative slice from a patient.
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