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Abstract

Purpose: We propose a fast, patient-specific workflow for on-line SAR supervision. An 

individualized electromagnetic model is created while the subject is on the table, followed by rapid 

SAR estimates for that individual. Our goal is an improved correspondence between the patient 

and model, reducing reliance on general anatomical body models.

Methods: A 3D fat-water 3T acquisition (~2 minutes) is automatically segmented using a 

computer-vision algorithm (~1 minute) into what we found to be the most important 

electromagnetic tissue classes: air, bone, fat, and soft tissues. We then compute the individual’s 

EM field exposure and global and local SAR matrices using a fast electromagnetic integral 

equation solver. We assess the approach in ten volunteers and compare to the SAR seen in a 

standard generic body model (Duke).

Results: The on-the-table workflow averaged 7’44”. Simulation of the simplified Duke models 

confirmed that only air, bone, fat, and soft tissue classes are needed to estimate global and local 

SAR with an error of 6.7% and 2.7%, respectively, compared to the full model. In contrast, our 

volunteers showed a 16.0% and 20.3% population variability in global and local SAR, 

respectively, which was mostly underestimated by the Duke model.

Conclusion: Timely construction and deployment of a patient-specific model is computationally 

feasible. The benefit of resolving the population heterogeneity compared favorably to the modest 

modeling error incurred. This suggests that individualized SAR estimates can improve 
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electromagnetic safety in MRI and possibly reduce conservative safety margins that account for 

patient-model mismatch, especially in non-standard patients.

Keywords

SAR; patient-specific; electromagnetic; segmentation

Introduction

The specific absorption rate (SAR) is commonly used for safety evaluation of MRI 

radiofrequency (RF) systems (1). Global SAR can be relatively well approximated by the 

total forward power since coil losses and radiated power are relatively low (<10%) and the 

vast majority of the power goes into the patient (2). Moreover, coil and radiative losses can 

be simply accounted for using a calibration procedure (3). Local SAR is more difficult to 

estimate, however, since it is not related in a straightforward manner to the total forward 

power (4). For example, local SAR hotspots can exist even for reasonable values of the 

global SAR (4–11). Such hotspots are heavily influenced by the local geometry and typically 

occur in the arms and the periphery of the body where large surface current loops can form 

since E-fields are shielded deep in the body and create current flow that largely follow the 

distribution of conductive tissues (12). The current approach for local SAR supervision is to 

calculate the 3D distribution of the electric fields (E-fields) in the body using 

electromagnetic (EM) simulation scaled to the RF excitation pulses. This is done in the 

factory using generic body models which are representative of the patient population, but of 

course, are not an anatomical match to the patient being imaged (13–15). A more 

conservative approach is to use multiple body models and require that the scan satisfies 

safety in the most conservative one (16–18) or in the model or subset of models most closely 

matched to the patient (19).

A major limitation of these approaches is that they utilize a relatively small population of 

body models and the “satisfy all models” approach becomes increasingly conservative as the 

model population is increased. The potential for patient to model-population mismatches 

becomes even more problematic when only standard body shapes and model positions are 

considered for medically diverse patients such as pregnant women, amputees, patients with 

implants, and subjects requiring unusual body positions/placement in the coil (20–23). Body 

model position within the coil has been shown to create a large variation in local SAR, with 

Wolf et al. (24) and Jin et al. (25) reporting a 14–22% change in local SAR due to only a 2.5 

cm change in body position. Body model posture can also lead to a large variation in local 

SAR. Homann et al. (8) reported a ~4-fold difference in local 10g SAR from when the arms 

were at the side compared to when the arms were crossed on top of the body. The resulting 

issue with the use of limited standard models analyzed off-line is that the conservative safety 

margin required to cover the potential patient-model mismatch translates to suboptimal 

scanning parameters. For SAR-intensive sequences such as turbo spin echo (26) and 

simultaneous multi-slice excitations (27,28), this may lead to suboptimal scan time duration 

and image acquisition data rate.
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Ideally, local SAR should be assessed on a patient-specific basis and in real time, capturing 

anatomical variations in the assessment and yielding more appropriate, potentially tighter 

safety margins even in those patients with non-standard shapes and body positions. To better 

account for this heterogeneity, a patient specific SAR estimation has been considered 

potentially valuable (8,29). While showing the potential benefit of the patient-specific 

approach, these studies could not perform the SAR calculation in a clinically relevant time 

due to the available EM solvers. For example, Homann et al. (8) reported a computation time 

of 45 minutes per Tx channel (8 channels) using a Finite Difference Time Domain (FDTD) 

solver. Other methods have been proposed for real-time assessment of an individual’s local 

SAR, including approaches based on Electrical Properties Tomography (EPT) (30–40), 

Global Maxwell Tomography (41–43), and thermoacoustic imaging (44). However, these 

methods present other challenges in the accurate and timely calculation of local SAR 

distributions and are not widely used. Recently, Meliado et al. (45) proposed deep learning 

(DL) as a potential way to rapidly estimate local SAR. Specifically, they trained a 

conditional generative adversarial network to operate on complex B1
+ maps acquired in 23 

prostate patients at 7T trained on associated SAR maps computed for those patients offline 

using FDTD. While very fast (a few ms to generate the local SAR prediction), the method 

overestimates SAR by ~21% and retains all the standard issues with understanding how a 

DL approach generalizes to body shapes and patient geometries outside of its training set.

In this work, we propose a fast, patient-specific local SAR estimation approach based on a 

low-SAR, rapidly acquired MR-generated, body model (46,47) analyzed with an ultra-fast 

EM solver (48). Since model generation for a patient still on the table necessitates a 

simplified tissue class set, we first identify the most important tissues for accurate estimation 

of SAR in the head and neck. We show that modeling only the fat, soft tissues, internal air 

and bone allows estimation of global and 10g local SAR within 7%, which is in agreement 

with previous studies (38,39). Guided by these results, we utilize a simple DIXON-based 

sequence and computer-vision segmenter to create a body model consisting of fat, water, 

bone, and air. We then compute the E-field distribution in this model using the MAgnetic 

Resonance Integral Equation (MARIE) software. The total time for creation of the patient 

specific SAR estimates is less than 8 minutes.

Methods

Overview of patient-specific SAR calculation

Figure 1 shows the flowchart of our methodology. The method is broken down in two 

portions. The offline portion is run only once for a specific coil and generates an adaptively 

meshed coil and an impendence matrix that is valid for all loads at a given frequency. Pre-

computation of this impedance matrix speeds up the subsequent on-the-table portion, since it 

is independent of the specific body model. The on-the-table portion consists of a fast 

DIXON scan followed by automatic segmentation of the air, bone, fat and soft tissue 

volumes using a rapid computer-vision segmenter. The final step is computation of the E- 

and B-fields using the fast EM solver MARIE.
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Which tissue classes are needed for accurate SAR evaluation?

We assessed the impact of the number and choice of tissue classes on global SAR, and local 

SAR by progressive simplification of the 5 mm isotropic Duke body model (49,50). The 

original Duke model contains 77 different labeled organs, with relative permittivity (ε), 

conductivity (σ), and density (ρ) assigned using the Gabriel database (51) (we refer to this 

full model as “Whole Body Duke”). Note that the Gabriel database only contains 57 tissue 

classes, so that some labeled organs in Duke are assigned the same tissue class. A truncated 

version of Duke (“Truncated Duke”) was generated by keeping only the top 425 mm of the 

original model (this removed some tissue classes that only exist below the thorax, thus the 

Truncated Duke model has 52 tissue classes). The 52 tissue classes of the Truncated Duke 

model were then further combined into six major groups: air, bone, fat, soft tissue (ST), 

eyes, and cerebrospinal fluid (CSF). The tissue groups are shown in Figure 2A and 

correspond to natural clusters in the relative permittivity vs conductivity graph. The 

dielectric properties of the groups were chosen as the mean of the dielectric properties of the 

tissues in each group. Eight simplified body models were then generated from Truncated 

Duke ( “Reduced Duke Models 1–8”) by further merging those tissue groups. When 

merging two groups, the dielectric properties of the resulting grouping were assigned the 

weighted-average (based on volume) of the dielectric properties of the original groups. The 

different grouping options are shown using a color code in Figure 2B and the resulting 

weighted-average group merging dielectric properties are shown in Supporting Table S1. 

Reduced Duke Model 4 (air, bone, fat and soft tissues) is of particular interest because it 

corresponds to the model that is the easiest to obtain using a single DIXON scan, and is 

therefore outlined in red.

Finally, three additional models were created to mimic the fact that, in reality, the portion of 

the torso located below the coil cannot be reliably imaged and therefore needs to be 

estimated by extension of the last slice available. We generated Truncated Duke - Chest, 

Truncated Duke - Muscle, and Truncated Duke - Soft Tissue by assignment of the 100 mm 

last-slice-extension portion of the model to the average chest properties, muscle and soft 

tissue, respectively. We used the results of this comparison to inform our segmentation and 

modeling strategy for the human volunteers.

A representative slice of the conductivity for six of the body models (Whole Body Duke, 

Truncated Duke, and Reduced Duke Models 1–4) is shown in Figure 3. The body models are 

placed with the eyes at isocenter. Supporting Figure S1 shows all the body models.

Fast generation of patient-specific models

We applied this methodology to 10 healthy volunteers imaged in compliance with our 

Institutional Review Board requirements using a body birdcage coil at 3 Tesla (Siemens 

Skyra). We scanned 5 males/5 females, age = 23–37 years old, height = 167–193 cm, weight 

= 134–250 lbs., BMI range = 19.9 to 32.1 kg/m2 (variability or standard deviation/mean = 

15.5%). The volunteers were scanned head-first and supine in the 3T scanner with the 

landmark (isocenter) placed just above the eyes. All subjects were scanned with their arms at 

their sides, but one subject had an additional scan with arms raised above the head.
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We chose the DIXON sequence to create the patient-specific body models since it generates 

distinct fat and water volumes and is fast, low-distortion, and low-SAR (33). The parameters 

of the sequence were as follows: 1’38” scan time, 500 × 500 × 397 mm3 FOV, 192 × 192 × 

128 matrix size, 2.6 × 2.6 × 3.1 mm3 resolution, 4 ms TR, 1.23/2.46 ms TE1/TE2, 10° flip 

angle, and 6/8 partial Fourier in the partition direction. The output of the DIXON scan is an 

in-phase and an out-of-phase volume that can be used to obtain the fat and water volumes.

The fat, water and in-phase volumes were segmented into fat, soft tissue, air and bone using 

a fast automatic computer-vision based segmentation algorithm described previously 

(46,47). First, all MR images were resliced to 5 mm isotropic resolution. The fat and water 

volumes yielded the fat and soft tissue classes, respectively, while the in-phase volume was 

used to estimate the air and bone tissue classes. Specifically, the in-phase volume was used 

to generate a pseudo-CT by using a groupwise patch-based approach and an MR–CT atlas 

dictionary built previously for the purpose of attenuation correction in PET/MRI (46,52–54). 

Segmentation of the bone compartment from the pseudo-CT is easily performed by 

thresholding the Hounsfield Units. Finally, the body model was extended 100 mm below the 

last slice in order to more realistically load the body RF coil, as was suggested in Wolf et al. 

(24). The properties of the extended portion of the body model were set to the average of 

tissue properties in the chest region of the Duke model (ε = 19.3, σ = 0.499 S/m, ρ = 943 

kg/m3). The final patient specific body model was a 5 mm voxel model of 101 × 80 × 108 

voxels.

Electromagnetic simulation using MARIE

The MARIE package (48) solves the EM fields in the patient by combination of two distinct 

solvers: A surface integral equation (SIE) solver, which is used for modeling the impedance 

matrix of the coil and the shield, and a volume integral equation (VIE) solver used for 

solving the polarization currents induced in the voxel body model. For this study, we 

simulated the scanner’s 32-rung high-pass body birdcage coil (diameter = 710 mm, length = 

450 mm) and RF shield (diameter = 744 mm, length = 1500 mm), accelerated on an Nvidia 

Tesla P100 graphical processing unit (GPU). The coil was tuned at 123 MHz (3T) by 

assigning tuning capacitors to the known values for this clinical coil. The coil was driven in 

quadrature (1 Amp excitation on the two ports). Figure 3A shows the coil model loaded with 

the voxel model of Truncated Duke.

It is known that accurate meshing of the coil and shield is crucial for accurate prediction of 

the EM fields. Thankfully, the optimal coil and shield mesh producing accurate field 

estimates do not depend strongly on the patient model and can therefore be determined 

ahead of time. A good mesh is one that is refined in regions where the current density varies 

rapidly and is coarse in regions where it does not, thus ensuring accuracy while minimizing 

computation time. We generated such a mesh by successive refinement of a coarse initial 

guess following the process summarized in Figure 4 which is similar to that described in 

Ref. (43). We first start with a coarse mesh and compute the surface current on the coil and 

shield by full wave simulation (SIE+VIE). We then select the triangle elements with the 20% 

greatest values of the current density and refine them by bi-section as shown in Figure 4B. 

Edges smaller than 20 mm are not considered for bisection however, which we found 
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necessary to avoid continuously bi-secting the same triangle elements, thus yielding 

unreasonably high levels of refinement in some areas of the conducting surfaces. Note that 

the bi-section may generate points that are not on the coil and shield surfaces anymore. 

Therefore, a necessary step is to “snap” the newly created point on the coil and shield 

surface by projection (the exact coil and mesh surface is defined by a high-resolution CAD 

file). This process is repeated until the maximum S-parameters variation compared to the 

previous iteration is smaller than 1%. To speed up this process, and since the mesh 

refinement is expected to be relatively independent from the load, we modeled a uniform 

sphere of radius 15 cm (ε = 52, σ = 0.55 S/m, ρ = 1000 kg/m3). We validated our mesh 

refinement process by comparison of the resulting mesh and EM fields to Ansys Electronics 

(ANSYS, Canonsburg PA), which uses a similar approach (the same loading sphere was 

simulated).

After refinement, we computed the S-parameters of the coil in the 100–150 MHz range both 

with MARIE and Ansys Electronics. For both the MARIE and the Ansys Electronics 

simulations, we optimized of the tuning and matching capacitors and inductors using Ansys 

Electronics (tuning @ 123 MHz, S11<−20dB) using the co-simulation approach described 

by Kozlov et al. (55). Fine tuning at the Larmor frequency and matching was performed 

using matching networks placed on the two quadrature ports (Supporting Figure S2). The 

equations relating the value of the tuning and matching lumped elements to excitations used 

in the field solver are shown in Supporting Table S2. These excitations were combined to 

obtain a single E-field and B-field for the coil. The tuning and matching circuit was 

optimized for Whole Body Duke and Truncated Duke body models only, with the circuit for 

Truncated Duke applied to all other models.

The next off-line step was computation of the SIE impedance matrix corresponding to the 

coil and shield. This impedance matrix depends on the frequency but not on the body model, 

and therefore can be stored for future simulations.

The “on-the-table” portion of the EM simulation focuses on the coupling between SIE and 

VIE, which is patient-dependent and therefore cannot be pre-computed. The way to properly 

couple the SIE and VIE solvers within MARIE is explained in details in Ref. (48) and is 

outside the scope of the present work. The first step of the “on-the-table” portion of the SIE

+VIE solution with MARIE consisted of assembly of the body and coil-body impedance 

matrices and iterative SIE-VIE solution. The SIE-VIE is in fact a nested iterative process. 

The inner iteration is the VIE solver. The outer iteration consists in updating the surface 

current flowing on the coil and shield, which are affected both by the input excitations at the 

ports and by the polarization current solutions of the VIE calculation. The details have been 

previously discussed (48,56).

We report fields and SAR values normalized to achieve a given flip-angle (as opposed to a 

reference input power), which is a more relevant metric for MRI. Specifically, the input 

power was calibrated for each simulation to generate a 90° average flip-angle in a 30 mm-

thick axial slab centered on the eyes after a 1 ms rectangular pulse (this corresponds to an 

average B1
+=5.87 μT) and a duty cycle of 100%. The 10g local SAR was calculated as 

described in Carluccio et al. (57).
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Results

It took four iterations of the refinement process outlined in Fig. 4 to yield S-parameter 

changes smaller than 1%. Total computation time was ~1 hour (pre-computation). The 

refined versions of the coil and shield are shown in Figures 4C/D and Figure 5B. Figure 5 

shows the coil and shield meshes, S-parameters, and the B1
+ and E-field of an axial slice at 

isocenter for the initial coarse MARIE mesh, the refined MARIE mesh, and the final Ansys 

Electronics mesh. The mesh refinement process did not significantly alter the coil mesh, but 

clearly had a large impact on the shield mesh. The position of the end-rings can be clearly 

seen on the refined shield mesh, which is also a feature of the Ansys Electronics mesh. The 

detail needed here is due to the fact that the E-field tends to vary rapidly in this region. This 

refinement impacted the shape of the S-parameter curves and the B1
+ and E-field 

distributions and was needed to achieve good agreement between the refined mesh MARIE 

predictions of the S-parameters and B1
+ and E-field maps and the predictions by Ansys 

Electronics. Although not a full validation, this simple sanity check insures that the mesh 

refinement process is working (MARIE was previously fully validated (48)).

Figure 6 shows the SAR, conductivity, and B1
+ maps of the Whole Body Duke, Truncated 

Duke, and the eight Reduced Duke models. The SAR map shown is the maximum intensity 

projection of the 10g local SAR. Figure 7A–D shows bar graphs of the global and 10g local 

SAR for all Duke models (full, simplified and truncated) as well as their percent difference 

compared to the reference (from the full-detail whole body model). The Reduced Duke 

model 8, which is truncated and composed of a single tissue class (uniform model), deviated 

the most from the reference (estimation errors of the global SAR and 10g local SAR are 

44% and 30%, respectively). Visually, the SAR distributions for the other 9 models were 

qualitatively similar, with SAR hotspot locations roughly at similar positions in the head and 

neck (see Supporting Figure S3). Reduced Duke model 4, which is the most easily obtained 

using a single DIXON scan and pseudo-CT registration, was associated with a 6.7% global 

SAR prediction error and a 2.7% 10g local SAR error. Reduced Duke model 2, which has 

the same tissue classes as model 4 plus CSF, had a 5.5% global SAR error and a 5.8% local 

SAR prediction error, indicating that addition of this high-conductivity compartment results 

in a negligible improvement of the modeling accuracy. Additionally, truncation below the 

shoulders did not have a considerable effect on SAR (estimation error of global SAR and 

10g local SAR for Truncated Duke was 3.0% and 10.5%, respectively). The B1
+ 

distributions across all Duke models were very consistent with an inter-body model 

variability of 0.4%.

Figure 8 shows the SAR, conductivity, and B1
+ maps for different below-the-shoulders 

model truncation strategies, namely no truncation (Whole Body Duke), truncation without 

uniform extension (Truncated Duke), and truncation with last-slice-based uniform extension 

(Truncated Duke - Chest, Truncated Duke - Muscle, and Truncated Duke - Soft Tissue). The 

10g local SAR was 5.7% and 6.5% greater in the Truncated Duke - Muscle and Truncated 

Duke-Soft Tissue models compared to the reference, while Truncated Duke - Chest had a 

percent difference relative to Whole Body Duke of only 4.2%. The global SAR prediction 

error was similar among all models (<5%), and B1
+ was very consistent. Based on these 

results, the relative permittivity, conductivity, and density of Truncated Duke - Chest (ε = 
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19.3, σ = 0.499 S/m, ρ = 943 kg/m3) was applied to the 100 mm body extension of the 

volunteers body model.

Figure 9 shows the 10g local SAR, conductivity, and B1
+ maps for the models of all ten 

volunteers. The global and 10g local SAR variability of the volunteers were 16.0% and 

20.3%, respectively. The range of global SAR values for all volunteers was 1.46–2.55 W/kg 

while the range of local SAR values was 7.6–15.1W/kg. The local SAR hotspots all tended 

to occur in the high curvature region of the neck, however there was significant variability of 

the anatomy in this region which yielded significantly different SAR distributions. 

Additionally, comparing the volunteer 10g local SAR results to Whole Body Duke (9.29 

W/kg) shows that using a generic body model can result in both under- (Volunteers 2–3 and 

5–10 by 14–62%) and over-estimations (Volunteers 1 and 4 by 18%) of local SAR in actual 

volunteers.

The importance of accurate modeling of the patient pose is illustrated in Figure 10, which 

shows a difference in the 10g local SAR between the arms up and arms down positions of 

nearly 50% (10.6 W/kg vs. 14.9 W/kg, greater in the arms up position within head and 

neck). Although we do expect greater SAR in the arms up position because of the greater 

proximity of the arms to the coil in this position, it is interesting to note that the SAR 

distributions in the upper torso, head and neck were also quite different in these two poses. 

In contrast, the B1
+ maps were much more consistent between volunteers (variability = 

1.2%) and poses (arms up = 5.3 μT, arms down = 5.2 μT).

The on-the-table timings for the volunteers were as follows: The DIXON scan for the 

segmentation required 117 s for each volunteer. The tissue segmentation and creation of the 

patient specific voxel model required an average ± SD of 56.4 ± 1.8 s for the 10 volunteers. 

The on-the-table portion of the electromagnetic simulations required an average and SD of 

290.3 ± 67.3 s for the 10 volunteers. Thus, the total on-the-table SAR determination time 

was 463.8 ± 67.9 s.

Discussion and Conclusion

In this study, we developed and demonstrated a new methodology for fast, patient-specific 

calculation of the SAR and B1
+ distribution which brings a personalized medicine strategy 

to safety prediction in MRI. A key component of the approach is the fast EM solver MARIE, 

which allows computation of patient-specific SAR in a total of ~8 min. Although this run 

time is still too long for routine clinical use, we believe it is a good first step in the effort to 

provide patient-specific safety monitoring. Importantly, we believe that we will be able to 

reduce this run time to below 2 minutes using a combination of software improvements and 

basic sequence acceleration methods, described below. Such a short computation time would 

make the approach more relevant in the clinical setting, especially because the EM 

computation portion of the method can be run in conjunction with the sequences in the 

protocols that are not SAR-limited and therefore do not require patient-specific safety 

monitoring. For example, clinical protocols could easily be rearranged so that the low-SAR 

sequences are played first, during which SAR is computed, and the high-SAR sequences 

second once the patient-specific safety parameters are known.
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Supporting Table S3 shows the breakdown of the total processing time for each volunteer 

(acquisition, segmentation, EM simulation). The segmentation time was very similar for 

each volunteer but the EM computation time was more variable. The longest component of 

the on-the-table portion was the EM simulation. Of all the EM computation steps (Fig. 1), 

the longest was the assembly of the coupling matrix (93.4 s in average for all volunteers) 

followed by the iterative solve (80.4 s average). These on-the-table computation times are 

longer for bigger volunteers since we use a constant body model resolution of 5 mm, 

yielding a larger solve domain for large individuals. As shown in Figure 1, some pre-

computation is performed offline, i.e. before the patient is being scanned. This takes about 1 

hour and is specific to the coil being modeled, but is not specific to the patient.

The DIXON acquisition was performed without any parallel imaging acceleration. It would 

therefore be rather straightforward to decrease the 117 s acquisition time significantly. 

Others have achieved CAIPIRINHA-accelerated DIXON acquisitions in the head of ~19 

seconds (58). The segmentation step used in this pipeline was implemented in Python, 

including a few C portions. Thus, faster compute times could be achieved utilizing a higher 

performance implementation such as those described in Alcain et al. (52) and potentially 

leveraging deep learning (59). Ultimately, this step can likely be sped-up to less than 10 s. 

Finally, the development team of MARIE will shortly release an updated version of the 

software, MARIE 2.0, which contains a number of improvements that dramatically decrease 

computation time. A first innovation is the possibility to precompute a compact basis for 

incident fields within the region of interest, which dramatically speeds up the calculation of 

the RF coil-patient coupling matrix. Although the precomputation is time-consuming, it is 

performed only once for a given coil and grid size/resolution. A second innovation is the 

implementation of a new iterative solver, which solves the full-wave EM problem 

simultaneously for the coil and for the body (60). This considerably speeds up convergence 

of the field calculation, in contrast with the version used in this work that requires a two-

level nested iterative solver to solve the SIE and VIE problems (detailed in ref. (48)). 

Preliminary results show a simulation time of ~20 s using these improvements, which is a 

significant reduction from the 4 minutes and 50 seconds reported in the present study.

Our current implementation of the methodology required manually transferring files from 

the MRI scanner to the segmentation step, and then transferring that output to the EM 

simulation step. However, the methodology presented here can easily be fully automated 

and, at term, will require no human intervention beyond starting the MRI pre-scans for 

generation of the body model. This is important to facilitate translation to the clinic and not 

slowing down the clinical workflow. To benefit from the additional computation speed up 

provided by MARIE 2.0, the grid size needs to be fixed, and therefore the acquisition 

protocols can also be fixed with a FOV large enough to accommodate all subjects. The 

segmentation and EM simulation steps are already fully automated Matlab implementations 

and do not require human supervision. While the methodology is not currently automatic, 

we believe the changes needed to make it fully automatic are straightforward to implement. 

Eventually, we foresee a completely automatic implementation of the processing and 

computation pipeline that will run in the background and override the “default”, likely more 

conservative, file containing the SAR limits with the patient-specific one once the pipeline is 

fully executed. Additionally, we envision to also include an automatic validation step based 
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on a comparison between the simulated and measured B1
+ maps. While we did not perform 

this comparison in our current implementation, we believe addition of this validation step 

would also be straightforward to implement for clinical use. Specifically, the B1
+ map may 

be acquired during the SAR computation step to avoid adding time to the overall 

methodology, and then quickly compared to verify the SAR calculation.

An important finding of our work is the inter-volunteer variation the 10g local SAR of 

20.3%. This was greater than the 10g local SAR estimation error due to grouping of the 

Duke tissues classes into four compartments, e.g. air, bone, fat and soft tissue (2.3%). This 

indicates that it is more important to generate patient-specific models of the patients being 

scanned, even imperfect ones with only four tissues classes, than using a highly detailed 

generic model applied to all patients. This point is clearly seen in Figures 6 and 9, where the 

variability of SAR and B1
+ due to slight changes in the anatomy are evident, and visually 

much more pronounced than the subtle changes associated with grouping of the Duke tissue 

classes. It is clear (Fig. 6) that changing the number of tissue classes in Duke does not affect 

dramatically the spatial pattern of the 10g local SAR distribution. The 10g local SAR 

distribution, scaled by its maximum, is essentially preserved across the Duke models 

simulated in this work except for the most extreme simplification (uniform model). In 

contrast, 10g local SAR patterns are quite different across the volunteers in this study, which 

shows that the underlying induced current distribution in different patients are shaped by the 

local anatomy and are therefore best modeled on a patient-specific basis. This situation is 

even more pronounced for the non-standard patient position shown in Fig. 10, where the 

volunteer was asked to place her arms above the head. In this case, the Duke-based 10g local 

SAR prediction failed dramatically (10.6 W/kg compared to 14.9 W/kg for the patient-

specific SAR calculation). Our inter-patient variabilities match up with previous studies, 

which have reported an inter-patient local SAR variability of 17–27% due to variability in 

body shape and size (8,24,50,61).

We found that a 5 mm isotropic resolution led to a reasonable tradeoff between accuracy of 

the body model and computation time. The full-wave simulation and coupling matrix 

assembly times for Duke truncated below the shoulder (with a 100 mm uniform extension) 

and discretized at 5 mm, 4 mm, and 3 mm isotropic resolutions are shown in Supporting 

Table S4. EM simulation times were 4.8, 11.3 and 20.2 min for the 5, 4, and 3 mm Duke 

models, respectively. Both the global and 10g local SAR increased by ~9.1% and ~16.9%, 

respectively, when the resolution changed from 5 to 3 mm isotropic. Similar results were 

seen for two of the volunteers in Supporting Table S4. For Volunteer 4, the global and 10g 

local SAR differed by ~10% and ~5%, respectively, between 5 and 2.6 mm isotropic 

resolution. For Volunteer 9, the global and 10g local SAR differed by ~7% and ~14%, 

respectively, between 5 and 2.6 mm isotropic resolution. The increase in SAR with 

increasing spatial resolution has been reported previously by Wang et al. (62), while earlier 

work by Collins et al. (63) in the head at 64 MHz and by Homann et al. (8) in the body did 

not show any significant difference in global or 10g local SAR between different spatial 

resolutions. Ideally, higher spatial resolutions should be used, however this may not be 

compatible with the limited time frame available for these computations (should be real-

time).
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The orbits are vulnerable to thermal damage because of the low perfusion and relatively high 

conductivity of the vitreous humor and because the lens is known to be particularly 

temperature sensitive. To further assess SAR values as a function of how the orbits are 

modeled we created a new model called Reduced Duke - Low Cond. Orbits, with model 

resolutions of 2.5 and 5 mm. This model is based on the Reduced Duke Model 1, but sets the 

orbit’s dielectric properties to those of soft tissues (no weighted combination). These results 

are shown in Supporting Figure S4. Interestingly, the SAR in the eyes of Reduced Duke - 

Low Cond. Orbits is in fact greater than that of Reduced Duke Model 1. This is due to the 

fact that the E-fields are greater in the Low Cond. Orbits model (because of the smaller 

conductivity) than in the Reduced Duke Model 1, and since SAR depends on the square of 

the electric field the result is also greater even after multiplying by the conductivity. 

However, comparison of the 2.5 and 5 mm resolution models shows that, although the peak 

local SAR was not achieved in the eyes, the small SAR hotspots present in the eyes at 2.5 

mm (red arrow) is not present in the 5 mm simulation. Therefore, it would be prudent to use 

a resolution of 2.5 mm or finer in order to capture the eye-SAR which, for some excitations, 

could very well prove to be the peak local SAR.

In our simulations of the Duke body models, we determined that four tissue classes (soft 

tissues, air, bone and fat) are sufficient for prediction of both the global and local SAR with 

reasonable accuracy (<7%). Interestingly, addition of the fifth and sixth most important 

tissue class for prediction of SAR in the head, eyes and cerebrospinal fluid, respectively, did 

not have much effect on either global or 10g local SAR. In consequence, we propose a 

simple body model generation pipeline based on a single DIXON acquisition followed by 

air, fat and soft-tissue segmentation and addition of the bone compartment using a computer 

vision-based algorithm. These conclusions echo previous work by Wolf et al (24) and Shao 

et al. (50). Our choice of truncation of the body model below the chest/shoulders was based 

on the work by Wolf et al. (24), who found that the computation time decreases substantially 

in this case without affecting significantly the SAR prediction. It was also shown by Wolf et 

al. that addition of a small, uniform “body extension” below the truncation line improves 

simulation of coil loading and thus the SAR prediction accuracy. Thus, we extend our 

volunteer body models 100 mm below the last z-slice. We found that a good choice of 

material for this additional dielectric layer was the average of the tissues present in the chest, 

i.e. soft-tissues, lungs, bone, and fat (ε = 19.3, σ = 0.499 S/m, ρ = 943 kg/m3).

While the workflow presented here was demonstrated for head imaging at 3T using a body 

coil, it can be adapted to other coils, field strengths, and anatomical locations. Parallel 

transmission (pTx) in particular can greatly benefit from our approach as safety monitoring 

is made more complex in this case by interference between the E-fields created by 

independent transmit channels (64,65). Additionally, our workflow can potentially be 

incorporated into the pTx workflow for real-time SAR monitoring and optimal pulse design 

(66,67) although the tissue-class truncation would need to be re-validated for this 

application. Additionally, an interesting possibility would be to extend the approach 

presented here to patient-specific temperature prediction. This could be done, for example, 

by rapid temperature simulation via the Pennes bioheat equation following the SAR 

calculation, which is relatively straightforward using, for example, GPU-accelerated finite 

difference temperature modeling (68,69). The Pennes bioheat equation links temperature, 
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SAR, the specific heat capacity of tissue, tissue density, blood perfusion rate and tissue 

thermal conductivity (1). While there are estimates of all these parameters in the literature, 

they are not patient-specific and likely have high inter-patient variability. This is similar to 

assignment of conductivity and permittivity values from databases to the different tissue 

classes for the EM simulation. The greater relevance of the temperature (and therefore 

thermal dose) on biosafety therefore needs to be balanced with the likely sensitivity of the 

temperature estimates to the particular database parameter values assigned, which are not yet 

completely agreed on and need further study.
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Figure 1: 
Flow chart depicting the methodology for fast computation of patient-specific SAR and B1

+ 

maps. The offline phase consists of adaptive mesh refinement and precomputation of the 

coil/shield impedance matrix at the Larmor frequency. The on-the-table phase consists of the 

MRI acquisition (3D DIXON), fast segmentation into air, bone, fat, and soft tissue using a 

computer-vision based segmenter, and EM simulation using MARIE.
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Figure 2: 
A. Conductivity and relative permittivity of the tissue classes present in the Duke body 

model. Tissues can be naturally classified into air, bone, fat, soft tissues (red oval), eyes, and 

CSF (marked by red X’s). The average relative permittivity (ε), conductivity (σ), and density 

(ρ) values for these six classes are also shown in the graph. B. Table summarizing the body 

model reduction levels studied in this work. The columns indicate different Reduced Duke 

models numbered from 1 to 8. The rows indicate tissue types. Reduced body models were 

obtained by grouping some tissue classes together, as indicated by the shared colors. When 

grouping N tissue classes, the permittivity and conductivity values of the new group were 

assigned to the weighted average of the N classes (by volume). Reduced Duke Model 4 is 

highlighted in the red box because it is the most complex model achievable using a single 

DIXON scan.
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Figure 3: 
A. Refined coil and shield meshes loaded with the Truncated Duke model. B. Conductivity 

maps (center coronal slice) of Whole Body Duke, Truncated Duke, and Reduced Duke 

models 1–4 Reduced Duke Model 4 is outlined in red because it corresponds to the tissue 

class grouping used in the following volunteer scans.
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Figure 4: 
A: Adaptive mesh refinement (AMR) process employed in this study The algorithm refines 

the mesh in areas with the highest values of the surface current (J) and uses the change in S-

parameters as the convergence metric. The complete algorithm for the coil/shield studied in 

this work took 51 minutes 46 seconds (4 iterations). B. Refinement by bisection of triangle 

edges. C. Final shield mesh showing important refinement close to the end-ring of the coil. 

D. Final coil mesh loaded with the 15 cm radius uniform sphere used during AMR. There is 

some refinement in the end rings, which is where the highest surface current is expected.
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Figure 5: 
Comparison of the coil & shield meshes, S-parameters, B1

+, and electric fields between the 

initial coarse mesh (top row), optimally refined mesh (center row), and Ansys simulation of 

the aforementioned 15 cm radius uniform sphere. The geometry of the refinement is similar 

for MARIE (with refinement) and Ansys with the areas of highest refinement close to the 

end rings in the coil. Correct refinement of the mesh clearly leads to more accurate S-

parameters and E-fields and B1
+ maps.
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Figure 6: 
SAR (maximum intensity projection) and B1

+ maps (center coronal slice) for the different 

Duke body models simulated in this work. The numbers in white below the SAR maps are 

the global and 10g local SAR, respectively. The numbers below the B1
+ maps are the mean 

and standard deviation in μT. Excluding Reduced Duke Model 8, the SAR distributions are 

similar among the different Duke simplifications and differ mainly in the amplitude of the 

SAR hotspot. Reduced Duke Model 4 is highlighted in red because it corresponds to the 

tissue grouping used in the volunteers.
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Figure 7: 
A. Global SAR in the Duke body models and simplifications. B. Global SAR percent 

difference for all Duke model simplifications, relative to Whole Body Duke. C. 10g local 

SAR for all the Duke models. D. 10g local SAR percent difference relative to Whole Body 

Duke. The percent difference for Reduced Duke Model 4 is in red in B since it represents the 

tissue grouping used in the volunteers. The percent differences for Reduced Duke Model 2 

are in black. This model corresponds to Reduced Duke Model 4 plus CSF.
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Figure 8: 
SAR (maximum intensity projection) and B1

+ maps (center coronal slice) of Whole Body 

Duke, Truncated Duke, Truncated Duke - Chest, Truncated Duke - Muscle, and Truncated 

Duke - Soft Tissue.

Milshteyn et al. Page 24

Magn Reson Med. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9: 
Conductivity (center coronal slice), SAR (maximum intensity projection), and B1

+ maps 

(center coronal slice) for the ten volunteers. The numbers in white below the SAR maps are 

the global and 10g local SAR. The number below the B1
+ maps are the mean and standard 

deviations in μT.
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Figure 10: 
Comparison of SAR and B1

+ for a volunteer scanned with her arms along her sides (arms 

down) and above her head (arms up).
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