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Abstract

Purpose—To develop and evaluate a neural network–based method for Gibbs artifact and noise 

removal.

Methods—A convolutional neural network (CNN) was designed for artifact removal in diffusion-

weighted imaging data. Two implementations were considered: one for magnitude images and one 

for complex images. Both models were based on the same encoder-decoder structure and were 

trained by simulating MRI acquisitions on synthetic non-MRI images.

Results—Both machine learning methods were able to mitigate artifacts in diffusion-weighted 

images and diffusion parameter maps. The CNN for complex images was also able to reduce 

artifacts in partial Fourier acquisitions.

Conclusions—The proposed CNNs extend the ability of artifact correction in diffusion MRI. 

The machine learning method described here can be applied on each imaging slice independently, 

allowing it to be used flexibly in clinical applications.
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1 | INTRODUCTION

The Gibbs phenomenon1,2 and noise are artifacts that affect all magnetic resonance imaging 

scans. The traditional solution for both low signal-to-noise ratio (SNR) and Gibbs artifacts 

has been to apply a smoothing filter to the image. Although smoothing can reduce the 
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variance of noise, it cannot directly correct for the Rician-biased signal present in low-SNR 

regimes, nor can it accurately reproduce images that are Gibbs-artifact-free. Methods using 

Gegenbauer polynomials have been shown to be able to detect edges and accurately estimate 

images up to the edge for the purpose of Gibbs removal.3 Subvoxel shifting is another 

method that can substantially reduce Gibbs ringing in acquisitions without partial Fourier 

encoding.4 Model-based reconstruction methods5–8 can improve SNR and/or reduce Gibbs 

ringing. In parametric protocols with repetitive acquisitions such as diffusion MRI, 

correlations across the diffusion directions can be used for denoising. Recently, a random 

matrix theory-based marchenko-pastur principle components analysis (MP-PCA) method 

has been developed that takes advantage of these correlations for noise estimation9 and 

removal.10 Also for diffusion, the DESIGNER pipeline11 based on MP-PCA and subvoxel 

shifting has been demonstrated and validated.

A drawback of many of these methods is that they rely on models that are not fully general. 

MP-PCA requires the distribution of the noise to be unaltered by processing, as well as 

many diffusion directions in order to take advantage of the corresponding correlations,9,10 

but many clinical protocols only use a small number of diffusion directions. Meanwhile, 

subvoxel shifting does not perform well on partial Fourier acquisitions.4 Partial Fourier 

imaging is a complex case due to the interaction between blurring effects from the 

undersampling and ringing effects from the Fourier series approximation of the image. The 

combination of these effects is difficult to model explicitly due to the presence of ringing 

artifacts of varying frequency and phase.4 As a result, some groups refrain from applying 

partial Fourier in diffusion imaging.

Machine learning offers a framework for building models that can be applied to 

simultaneously remove a variety of artifacts in an acquisition-flexible manner. One potential 

class of models suitable for these tasks would be convolutional neural networks (CNNs).
12,13 CNNs are models composed of simple building blocks—often convolution kernels only 

3 pixels wide followed by an activation function. When many convolution kernels are used 

together, they can approximate highly nonlinear functions of many variables. The use of 

simple components makes training such models ideally suited for parallelization and 

efficient implementation on modern computer architectures. Several recent papers have 

demonstrated the applicability of CNNs for medical imaging in areas including image 

reconstruction,14–18 image quality transfer,19 super-resolution,20 segmentation,21 and artifact 

correction.22

Diffusion MRI is an intriguing test application for Gibbs and noise removal models. Both 

effects can have drastic effects on diffusion parameter maps. The calculation of higher order 

diffusion parameters can require the application of b-values up to b = 2500 s/mm2,23 which, 

coupled with strong diffusion gradients and long echo times, leads to low SNR.24 The well-

known ≤9% intensity variation due to Gibbs ringing1,2 may translate into ~100% errors in 

the estimated signal moments or cumulants, in particular leading to the so-called “black 

voxels” (masked outliers) in kurtosis maps.6 Thus, systemic defects—such as Gibbs or 

effects from machine learning-based processing—are substantially amplified in the 

corresponding parameter maps.
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Here, our aim is to develop and evaluate a machine learning approach for Gibbs and noise 

removal. We show that the framework of CNNs allows the simultaneous removal of these 

artifact sources in an acquisition-flexible manner—specifically, we extend the ability for 

Gibbs artifact removal to the partial Fourier setting and noise removal to the setting with few 

diffusion directions. We accomplish this by training the model entirely on simulations of 

MRI acquisitions with images from the ImageNet data set.25 Prior to the evaluation stage of 

our experiments, networks trained this way have never seen an MR image, mitigating 

overfitting risk. Our results suggest that, with CNN processing, high-quality parameter maps 

can be calculated from abbreviated acquisitions with a little more than half of the encoding 

time required for traditional full acquisitions, opening up new possibilities for diffusion 

MRI. The method can be applied independently to each imaging slice, allowing application 

to clinical protocols with few repetitive scans.

2 | METHODS

In MRI, images are reconstructed by sampling a Fourier series at a discrete set of locations 

where the Fourier series coefficients are the acquired k-space points. This suffers from the 

Fourier series approximation error that manifests as the Gibbs phenomenon.1,2 In practice, 

the MRI scanner does not produce the true, noise-free Fourier series coefficients, but a 

noise-corrupted version of them. Here, we denote the true image at a given resolution as md 

and its noisy, Gibbs-corrupted version as xd, where d is an integer that indicates the dth 

image. Our goal is to learn a functional, fθ(·), that estimates md from xd where θ are the 

parameters of the functional. We accomplish this by solving the following optimization 

problem:

θ = argminθ ∑
d = 1

D
md − fθ xd 2

2, (1)

where D is the size of the training data set.

Solving (1) requires a data set of image pairs (md, xd), d ∈ [1, …, D] or a means of 

generating them. We choose to simulate both md and xd from a latent, high-resolution image 

that comes from the ImageNet data set.25 This restricts the method to operating 

independently on 2D images. Figure 1 shows our simulation pipeline. We describe the 

details of the steps in Section 2.2.1. Section 2.1 describes the model architecture for fθ(·). In 

Section 2.3.2, we describe test experiments that were conducted on data sets completely 

separate from that used for training, including gold standard segmented EPI, prospective 

diffusion data on healthy and subjects with pathology, and cervical spine imaging. In these 

real-world diffusion validation experiments, we test the performance of two different 

networks and compare to state-of-the-art (SoA) methods across partial Fourier factors. We 

show results from these experiments in Section 3.

2.1 | Model architecture

There are many potential model architectures for accomplishing deGibbsing. Architectures 

such as variational14 and cascaded15 networks offer the most flexibility for modeling system 

physics. However, these models often require access to the raw data and system parameters, 
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for tasks such as sensitivity map estimation. Use of such models may require accessing 

proprietary information or signing research agreements with vendors. Furthermore, the use 

of models that rely on raw data can incur substantial data storage requirements. Finally, they 

preclude the use of the model on previously acquired image data sets where the raw data has 

been discarded.

Due to these considerations, we address the Gibbs phenomenon with an image-to-image 

architecture. Our model comes from the class of U-Net26 architectures. Figure 2 shows a 

diagram of the architecture. At the midpoint of the U-Net (shown as the bottom of the U in 

Figure 2), convolution operations affect almost the entire image, enabling the network to 

learn global features such as conjugate k-space symmetry. We process complex images by 

inputting the real and imaginary components into the network as two separate channels.15 

After each convolution layer, we apply batch normalization.27 After batch normalization, we 

apply rectified linear unit (ReLU) activation functions, as is standard practice.28 Unlike the 

standard U-Net, our model includes wavelet transforms for downsampling and upsampling. 

The theoretical properties of these modifications were analyzed previously16 and 

demonstrated to better-preserve high-resolution features. Based on the intuition that it is 

easier to learn residuals rather than signals,29 we use a skipped connection over the entire 

architecture for the real and imaginary channels. For cases with complex inputs, we apply 

the magnitude operation as a final step after the skipped connection.

2.2 | Training

Code for training our models is available on Github at https://github.com/mmuckley/

dldegibbs. All models were trained and tested using the PyTorch package. Links to trained 

models will be included in the GitHub repository. We trained the network by simulating 

MRI acquisitions on photographs from the ImageNet data base,25 using resized, noise-free 

versions of the original photographs as target images md. The data set contained 1 281 167 

images in the training set and 50 000 images in the validation set. The “best” model was 

selected based on the minimal loss over the validation data set during the training epochs. 

Use of ImageNet for training requires specification of (a) an encoding simulation pipeline 

(Section 2.2.1) and (b) an optimization procedure (Section 2.2.2).

Although the images in ImageNet are not true MR images, we take this approach due to the 

fact that it is impossible to acquire large volumes of high-resolution diffusion images for the 

purpose of simulating Gibbs artifacts. Larger data sets are generally believed to be beneficial 

for learning,30,31 and the benefits of larger data sets for denoising have been directly 

demonstrated.32 An alternative would be to train from high-resolution anatomical data, but 

diffusion-weighted images (DWIs) can have substantially different features from their high-

resolution anatomical counterparts. Thus, training a network on simulated Gibbs artifacts 

from high-resolution anatomical data runs the risk of having the network reconstruct signals 

that would not be present in the corresponding diffusion data. Furthermore, an anatomical 

data set would be highly homogeneous, limiting the generalizability of the resulting 

network. Conversely, ImageNet is a highly heterogeneous data set, enabling the network to 

learn more generic features and potentially enabling application of this approach in other 

MRI modalities that suffer from Gibbs artifacts. A key determinant of the feasibility of this 
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approach is the simulation of encoding operations as they occur in vivo, which we discuss 

below.

2.2.1 | Simulation—The simplest Gibbs simulation could be accomplished by cropping 

the k-space representation of a high-resolution image. However, in practice, MR acquisitions 

are affected by many factors other than the Gibbs phenomenon. We simulate a subset of 

these effects. Figure 1 shows a flowchart of the simulation pipeline. Figure S1 of the 

Supporting Information shows diagrams with the effects of key steps on images. The 

simulation begins with raw grayscale ImageNet image (converted via BT.601 color 

standards), resized to a standard size of 256 × 256 using bilinear interpolation.33 The 

simulation then randomly flips and/or transposes the image, each with a 50% probability. 

After flipping and transposing, the simulation proceeds to the random phase step. The 

random phase simulation generates a random set of Gaussian radial basis functions for each 

simulated image—this is described in detail in Appendix A. An example of simulated phase 

compared to a true in vivo phase case is shown in Figure 1B,C. The random phase 

simulation requires a number of probabilistic parameters for specifying the distribution of 

the simulated phase—these are reported in the appendix.

Since most images have a no-signal background, following random phase simulation we 

apply random ellipsoid cropping to the images. We also include a 10% probability that no 

ellipsoid cropping occurs to handle cases that may not have a no-signal background. After 

image-domain cropping, the processing pipelines split. For the data, xd, we apply the FFT 

and crop the image from a 256 × 256 grid to a 100 × 100 grid in k-space to simulate the 

Fourier series truncation effect. The simulation adds noise at levels from 1 to 32 times the 

mean absolute k-space value, varying the noise level within this range on a uniform base-2 

logarithmic scale (average noise ratio of 10).

After the inverse FFT, both processing pipelines are merged into an image normalization 

layer where both images are divided by the maximum absolute value in xd. The absolute 

value operation is then applied to md. To simulate an artifact-free target, md, we interpolate 

md from a 256 × 256 grid to a 100 × 100 grid using cubic splines. Finally, to provide the 

complex-valued CNN with more information, we concatenate a standard partial Fourier 

reconstruction method34 to the complex-valued xd output in the channel dimension prior to 

input to the neural network.

When magnitude images are used, the inputs have Rician noise rather than Gaussian. We 

maintain most of the above processing stream aside from three modifications. (a) The 

absolute value operation is applied after inverse FFT in the xd stream, and (b) followed by 

dividing by the maximum value of the xd image for both the md and xd final images. This 

implicitly builds Rician bias correction into the network training.

2.2.2 | Optimization—Our optimization routine followed standard practice. We used the 

ImageNet data set25 with standard training and validation splits. Our convolution weights 

were initialized with a uniform distribution.35 ReLUs were initialized with zero parameters. 

We used the Adam algorithm36 with a learning rate of 1 × 10−3 over 10 epochs to minimize 

the mean-squared error cost function in (1). At each epoch, we calculated the loss over the 
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entire validation data set and saved the model with the best validation loss for the in vivo test 

experiments. Each model was trained independently on each partial Fourier factor. We 

implemented our models in the PyTorch deep learning framework.33 Training was 

performed on an IBM GPU computing cluster with Power9 8335-GTH compute nodes. Each 

node in the compute cluster had four Nvidia V100 GPUs with 16 GB of memory. Our 

specific trainings utilized one GPU with a batch size of 55. Training time took 

approximately 10 days.

2.3 | Testing

In the test phase, we evaluated the proposed CNN methods for their ability to process DWIs 

on different data sets. In all our test experiments, we define “SNR” to be the mean absolute 

image value divided by the complex Gaussian standard deviation. Note that this is different 

from the k-space ratio used during training. We conducted canonical signal processing 

experiments and in vivo experiments. To provide context for the performance of the CNN 

methods, we also processed the DWIs with a SoA method,11 as well as a method designed 

for partial Fourier imaging.34 In all cases with diffusion parameter maps, the raw DWIs were 

first processed by the designated method prior to parameter map estimation. To clearly show 

that our test data sets are distinct from our training data sets, we index test signals with t 
instead of d.

Raw—These parameter maps were calculated from the raw DWIs with no extra processing 

before the parameter estimation stage.

State-of-the-art11—Prior to parameter map estimation, the images were denoised using 

the random matrix theory-based MP-PCA method.10 The MP-PCA method applies low-rank 

denoising using a cutoff based on the Marchenko-Pastur law.37 We applied MP-PCA using a 

5 × 5 × 5 voxel kernel extent with Rician bias correction,10 followed by Gibbs removal via 

subvoxel shifting4 where each voxel was discretized into 20 subvoxel elements. The 

subvoxel shifting method searches in a subvoxel neighborhood for the minimum Gibbs 

distortion given by the sinc function and interpolates to that subvoxel location. Unlike the 

CNN methods, the SoA method is able to use information from low-b DWIs to denoise 

images from high-b diffusion gradients.

Magnitude-input CNN (MCNN)—The raw diffusion images after the magnitude 

operation, xt, are processed by a neural network trained with the simulation pipeline in 

Figure 1 with the target image mt being a magnitude, deGibbsed image without PF. This 

particular network attempts to restore the missing partial Fourier information. This network 

has 31 646 338 parameters.

Standard Partial Fourier (Standard PF)—The raw diffusion images are processed by 

using a standard partial Fourier reconstruction method that utilizes the phase maps from the 

symmetric region of k-space34 prior to parameter estimation.

Complex-input CNN (CCNN)—The raw complex-valued diffusion images, xt, are 

processed by a neural network trained with the simulation pipeline in Figure 1 with the 
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target image mt being a magnitude, deGibbsed image without PF. This particular network 

attempts to restore the missing partial Fourier information. This network has 31 646 338 

parameters.

2.3.1 | Canonical experiments—To characterize the deGibbsing and denoising 

performance of the network, we performed a set of canonical signal processing experiments 

with two data sets. The first data set consisted of a simple edge phantom, while the second 

data set consisted of the test split of the 2013 ImageNet challenge.38 Edge-spread function: 

Edge-spread functions are routinely used to study the resolution properties of image 

processing methods. Toward the goal of identifying when the network blur small lesions, we 

conducted tests with a digital edge phantom across a variety of contrast-to-noise ratios. The 

edge phantom consisted of a 2D digital image with half of the image filled with 1s and the 

other half filled with 0s. This image was generated at a 1024 × 1024 matrix size (cropped to 

a 100 × 100 matrix size during simulation). The location of the edge was varied by rotating 

it. Figure 3 includes a composite image of the phantom generated from fθ xt  at many 

different SNR levels. We performed two sets of experiments with the edge phantom: 

contrast-to-noise (CNR) and deGibbsing experiments. In a previous study,4 it was noted that 

deGibbsing performance could vary depending on the angle of the edge. To assess the 

performance of the method on removing Gibbs artifacts at different angles, we generated the 

phantom at a set of angles beetween 0 and 45 degrees at a 1024 SNR level and computed the 

CCNN deGibbsed image.

We also performed CNR experiments. The goal of the CNR experiments was to quantify the 

full-width-half-maximum (FWHM) of the network’s line-spread function across a variety of 

noise levels (analogous to a point-spread function in 1D). We accomplished this by applying 

the simulation pipeline in Figure 1 without random flipping and transposing at a variety of 

CNRs between 0 and 10, resulting in images at 100 × 100 matrix sizes. For each CNR, we 

applied both the CCNN model and the MCNN model (generating fθ xt  realizations for each 

one). This resulted in a series of edge-spread function images. To compensate for noise in 

calculating the FWHM values, for each row of the resulting image, we fit a summation of 

logistic functions39:

l(s) = c + ∑
i = 1

3 αi

1 + exp s − βi
γi

, (2)

where c, αi, βi, and γi, i ∈ [1, 2, 3] are fitting parameters. We computed the derivative of this 

function and used it to calculate a line-spread function for each row of the image. From the 

line-spread functions, we calculated the FWHMs and averaged across the rows. For each 

CNR level, we repeated and averaged this experiment 50 times.

ImageNet test data: The goal of the tests on the ImageNet data was to assess the network’s 

performance across a broad variety of signals. For this, we used the test split from the 2013 

ImageNet challenge.38 This data was not used at all in training and is distinct from the 

validation data set. The test set included 40 152 images. We applied the simulation pipeline 

in Figure 1 and computed the power spectral ratio on the resulting images.6 Let S(·) be the 
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operator that computes the power spectral density of the image. For each image-target pair in 

the validation data set, (xt, mt), we computed

ℎt(f) = S fθ xt
S mt

. (3)

Then, we averaged over all t ∈ [1, …, ntest] to compute a mean ℎ(f) for each partial Fourier 

factor and SNR level and computed profiles across f in the partial Fourier direction to assess 

resolution performance. As a last test, we calculated image metrics of MSE, SSIM, and 

PSNR over this simulated test set. The results are described in the Supporting Information 

and shown in Table S1.

2.3.2 | In vivo experiments—For our in vivo tests, we conducted four experiments:

1. A “gold standard” segmented EPI experiment. This was used to achieve a higher 

matrix size and produce reference diffusion images with almost no Gibbs 

artifact.

2. A prospective diffusion experiment. This tested the method vs the current SoA in 

a standard acquisition.

3. A pathology experiment. We acquired diffusion pathology data from a previous 

study and assessed stability of the MCNN model in the presence of MS lesions.

4. A cervical spine experiment. In addition to diffusion, Gibbs artifacts can 

confound clinical evaluations.40,41 In this experiment, we evaluated the method 

in an alternative anatomy.

“Gold standard” segmented EPI—We acquired segmented EPI data for the purpose of 

simulating realistic diffusion data that is nearly Gibbs-free. In many cases, segmented EPI 

scans are not practical due to time limitations and difficulties with reconstruction, but here 

we use this sequence for the purpose of creating a diffusion reference at a 100 × 100 matrix 

size using a segmented EPI acquisition at a 128 × 128 matrix size. A volunteer was scanned 

with a diffusion-weighted imaging protocol under IRB approval. The scan was done after all 

model and training parameters were complete, so that these data qualify as a true prospective 

test set. The sequence was applied on a 3T Prisma scanner with a 16-channel head coil 

(Siemens Healthineers, Erlangen, Germany). Using a segmented EPI readout, we were able 

to acquire images at a 128 × 128 matrix size with a 2 mm isotropic resolution. The images 

were acquired at b-values of 500, 1000, and 2000 s/mm2 in 39 isotropic directions. The 

acquisition had TE of 64 ms and a TR of 3 seconds. Reconstruction was accomplished with 

Siemens software via adaptive combine,42 saving the resulting magnitude and phase images.

For the “gold standard” processing, we applied MP-PCA, apodized the 128 × 128 k-space 

data, applied the inverse FFT, and interpolated to a 100 × 100 image grid. This produced 

DWIs that were essentially noise and Gibbs-free. For the experimental data sets, we cropped 

the 128 × 128 k-space to 100 × 100 and added noise to simulate an SNR of 10 at b = 0 s/

mm2. Then we applied partial Fourier masks at PF factors of 5/8ths, 6/8ths, 7/8ths, and fully 

sampled, prior to inverse FFT.

Muckley et al. Page 8

Magn Reson Med. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To process the experimental data, we applied the CCNN, MCNN, and SoA processing 

methods to the images with simulated Gibbs. Parameter map estimation for all methods was 

performed on the processed image using a constrained weighted linear least squares 

approach.43 Since the complex CNN can take into account smooth variations in the phase of 

the image to recover high-resolution information, we also included as a comparison a 

reconstruction using a standard partial Fourier method that estimates smooth phase from the 

symmetric region of k-space34 applied with our own custom software to the raw data.

Prospective in vivo diffusion—The prospective in vivo diffusion experiments mirrors 

the in vivo segmented EPI experiments with the absence of the “gold standard” 100 × 100 

parameter maps. DWIs were acquired with a spin-echo EPI sequence at a 100 × 100 matrix 

size with a 2-mm in-plane isotropic resolution over 38 slices and along 66 isotropically 

distributed directions at b-values of 0, 1000, and 1500 s/mm2. We applied the diffusion-

weighted acquisition four times: once for each PF factor of 5/8ths, 6/8ths, 7/8ths, and fully 

sampled, with the intention that the fully sampled DWIs with current SoA processing serve 

as a gold standard. The acquisition parameters were set based on the shortest values we 

could achieve for the fully sampled acquisition, leading to a TR of 9 seconds and a TE of 

105 ms. The partial Fourier acquisitions used a standard protocol. For this data set, we did 

not apply any other corrections such as eddy current correction or motion correction, only 

using the adaptive combine method42 outside of the vendor reconstruction software. As with 

the gold standard experiments, parameter map estimation was done with a weighted linear 

least squares approach.43

Diffusion pathology—To assess the method in the presence of pathology, we obtained 

data from a previous study of a patient with multiple sclerosis. For this, we had access to 

vendor-reconstructed DICOMs, so we were only able to process non-PF images with the 

MCNN and SoA models. The images were acquired using parallel imaging with an in-plane 

acceleration factor of 2 and a multiband factor of 2 with b-values of 0, 1000, and 2000 

s/mm2 over 89 isotropic directions with a TE of 100 ms and a TR of 3.5 seconds. The 

images were reconstructed at a 130 × 130 matrix size with a 1.69 mm isotropic resolution. 

This required retraining the MCNN model for the new target matrix size. After processing 

with the MCNN and SoA methods, we estimated parameter maps with a weighted linear 

least squares approach43 after processing with the MCNN and SoA models.

Cervical spine experiments—To assess the performance of the method on other 

anatomies, we also acquired T2-weighted cervical spine data. The cervical spine data set 

was acquired with a standard clinical protocol that involved a 2D tubo spin-echo acquisition 

with 75% phase undersampling 240 × 320 acquisition matrix size with a TE of 103 ms and a 

TR of 3.8 seconds. The reconstructed images had a 0.625 isotropic resolution in the sagittal 

plane. The frequency-encoding direction was in the A/P direction. For performing 

deGibbsing at this resolution, we retrained the network, adjusting the MCNN model to 

produce a target image that included the 75% phase undersampling, but with Gibbs artifacts 

removed. This was accomplished by applying a phase undersampling mask in the simulation 

and altering the target resolution to 320 × 320. This adjustment discourages the network 
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from trying to fill in the missing high-resolution information. We applied mild dithering to 

the resulting image—a practice applied in previous works with CNN-based models.44

3 | RESULTS

3.1 | Canonical experimental results

Figure 3A,B shows the performance of the network in a canonical deGibbsing experiment 

with a hard edge with the edge oriented at 0 and 45 degrees, respectively. Both the CCNN 

and the MCNN methods performed similarly at both angles, with the main difference being 

the sharpness of the edges with the MCNN method both at the simulated edge and the image 

boundaries. These image boundary residual artifacts do not appear in the 45° plot since this 

profile does not reach the image boundaries.

Figure 3C,D shows the response of the CCNN in the edge experiments across a range of 

contrast-to-noise ratios. Above a CNR of 1, the CNN FWHM rapidly converges toward 1. 

Below a CNR ratio of 1, the network’s FWHM increases as the CNR approaches 0. Figure 3 

also shows a composite image of CNN image estimates, fθ xt , across CNR factors. Figure 3 

shows visually how as the CNR decreases, the edge begins to blur.

Figure 4 shows profiles of the mean spectral response, ℎ(f), in the partial Fourier direction 

of the CCNN model across different partial Fourier factors and SNR levels over the entire 

test set. The spectral responses were calculated from the 2013 test split of ImageNet as 

described in Section 2.3.1. As the SNR decreases, the network applies more smoothing, 

resulting in a decrease of the spectral magnitude at high frequencies of about 30% at an SNR 

value of 1. The MCNN method exhibited similar profiles, but with more smoothing at low 

SNR—the MCNN smoothing without partial Fourier at an SNR of 1 led to about 50% 

attenuation of the high frequencies. In all cases, we observed features in the spectral 

responses around spectral cutoff points—this included the ripples at the edge of the sampled 

k-space in the No PF setting, with further cusps developing near the PF cutoff points in the 

PF settings.

Quantitative results on the ImageNet test set are shown in Table S1 in the Supporting 

Information. For MSE, the CCNN model performed better than the MCNN model at 

equivalent partial Fourier factors, and performance generally decreased with increased 

acceleration. This trend was repeated for PSNR, but MCNN models displayed higher SSIM 

values.

3.2 | In vivo results

“Gold standard” segmented EPI—Figure 5 shows b = 0 s/mm2 images, average b = 

1000 s/mm2 images, and mean diffusivity (MD) images without partial Fourier (No PF) and 

with 5/8ths partial Fourier (5/8 PF) calculated from the segmented EPI experiments. The far 

right column shows the “gold standard” segmented EPI diffusion processing results. This 

data has minimal Gibbs artifacts. The other columns consist of experimental data processing 

methods that should approach the “gold standard” column.
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Mean diffusivities calculated from the raw DWI data (Raw) show notable noise and Gibbs 

ringing artifacts, while this is removed with the SoA method. However, the SoA method 

begins to lose its ability to compensate for the Gibbs ringing and resolution loss when partial 

Fourier is utilized in the acquisition. Partial Fourier artifacts are reduced in the CNN 

methods. Other slices from this data are shown in the Supporting Information in Figures S7–

S11.

Prospective in vivo diffusion—Figure 6 shows examples of images from the 

prospective data before and after processing at low (b = 0 s/mm2) and high (b = 1 500 s/

mm2) diffusion gradient strengths. The raw images (Raw) served as the input for the 

magnitude deep learning (MCNN) and complex deep learning (CCNN) methods. Figures 7 

and 8 show parameter maps for prospective diffusion data. Figure 7 shows DWIs and mean 

diffusivity, whereas Figure 8 shows fractional anisotropy and mean kurtosis. Aside from the 

MCNN method, results are similar to those shown in Figure 6, with the SoA, MCNN, and 

CCNN methods all removing artifacts without partial Fourier, whereas the CCNN method is 

the only method able to remove artifacts at 5/8 partial Fourier. This is most obvious in the 

MD parameter maps. Similar trends are observed in the other diffusion parameter maps. The 

effects of denoising are primarily visible in the mean kurtosis images, where SoA, MCNN, 

and CCNN achieve substantial noise reduction.

Figure 9 compares MD maps across various partial Fourier factors between the MCNN, 

CCNN and SoA methods. The methods perform similarly without partial Fourier 

acceleration, but as partial Fourier acceleration increases, the image is continually degraded 

in the SoA method, with “black voxels” appearing around the lateral ventricles. The CCNN 

method mitigates the appearance of these artifacts in the parameter maps. Other slices from 

this data set are shown in the Supporting Information in Figures S12–S16.

Diffusion pathology—Figure 10 shows results from in vivo diffusion pathology. In this 

case, we only had access to magnitude DICOMs with iPaT acceleration, so only the MCNN 

method was used. We observed similar artifact characteristics as in the previous Figures 5, 7, 

and 8. In this case, all three methods provide similar diffusion parameter maps for MD, FA, 

and MK. Other slices from this data set, including zoomed images of pathology, are shown 

in the Supporting Information in Figures S17–S22.

Cervical spine experiments—We show cervical spine results in the Supporting 

Information in Figure S24.

4 | DISCUSSION

Our results indicate that with carefully crafted simulations, it is possible to train CNN 

models based solely on MR encoding operators that can be applied to in vivo MR imaging 

data. We characterized the performance of this method with canonical experiments, showing 

Gibbs removal capability with hard edges, as well as providing evidence that the network’s 

denoising capability depends on signal-adaptive smoothing, and that this smoothing largely 

takes place at contrast-to-noise ratios below 1. In principle, there are no restrictions on 

applying the method in new applications other than retraining based on the application 
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image matrix size. When reconstruction and preprocessing steps failed to remove artifacts, 

the network also generally preserved them.

4.1 | Effects of in vivo reconstruction method

The results diverged depending on the reconstruction method between the segmented EPI 

and prospective diffusion experiments. This could be due to the ordering of partial Fourier 

versus adaptive coil combination. In the segmented EPI experiment, the partial Fourier 

masking was done after coil combination (as coil combination was done by the vendor 

reconstruction software). This exactly matched the partial Fourier masking of the simulation. 

In the prospective diffusion experiment, coil combination was done after partial Fourier 

masking, which did not match the simulation. This may be the reason for the failure of 

MCNN for prospective diffusion at extreme partial Fourier factors. The effect seems to have 

been benign for MCNN method at lower partial Fourier accelerations. The effect was also 

benign for the CCNN method, as it was trained to use smooth phase. As the prospective 

diffusion experiment is more representative, we would only recommend the CCNN method 

out of the methods we tested when using extreme partial Fourier acceleration. For other 

balanced accelerations like parallel imaging (eg, the pathology data), we did not observe 

effects on either model. The in vivo results here should be considered an initial 

demonstration of the potential of the method. Validation studies, particularly those studying 

the effects of reconstruction method, are necessary before adoption in target applications.

4.2 | Data set considerations

Practically, the success of the approach can be attributed to (a) having a sufficiently deep 

neural network able to adequately capture the difference between Gibbs-corrupted and 

ground-truth images and (b) to the heterogeneity of the synthetic training set and the 

richness of the encoding simulations providing ample training data. During training, the 

models saw over 10 million candidate phase maps simulated on over 1 million baseline 

images. Data sets of this size are difficult to acquire in medical imaging, and impossible to 

acquire for the purpose of simulating Gibbs artifacts in diffusion-weighted imaging. We ran 

one experiment on a smaller data set size, using 1% of ImageNet (about 12 000 images). 

Although the resulting models performed reasonably on ImageNet validation data, they 

failed on in vivo data, producing diffusion parameter maps outside of physiological ranges 

(shown in Figure S23 of the Supporting Information). This suggests that the proposed 

approach overfits on 1% of ImageNet, but this overfitting is mitigated when using the full 

ImageNet data set. Training such a model requires careful consideration of the simulation 

process and its relationship with the test data set. As we see in Figures 6 and 7, subtle or 

benign artifacts in the DWIs are substantially magnified in the corresponding parameter 

maps. To consider the effects of overfitting, we designed our experiments to have not only 

separate training, validation, and test data sets as different groups of images, but to have the 

test phase of the experiments consider images of a different class. Prior to our diffusion 

imaging experiments, we did not use MR images. In principle, this would allow detection of 

overfitting errors when testing on healthy subjects. As shown in Figure 10, we did not detect 

issues using the model on patients with pathology.
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4.3 | Future directions

Our results were achieved by processing each DWI separately, which could be advantageous 

in that the processing of each image is independent of artifacts that may be present in other 

images. However, a disadvantage is that the proposed methods do not fully leverage the 

repetitive correlations present in applications such as diffusion MRI. It is difficult to denoise 

images at high b-values without access to information from low b-value images. Such 

relations are considered in the random matrix denoising method.10 This suggests that one 

avenue to explore in the future for diffusion would be to combine the random matrix theory-

based denoising10 as a preprocessing step, able to incorporate the correlations between 

different DWIs, with the subsequently improved performance of CCNN-based removal of 

Gibbs and other artifacts.

Lastly, we note that an independent work recently appeared on the topic of Gibbs removal in 

MRI.45 Although this and the present paper share target applications, they differ 

fundamentally in approach, with ours focusing on simulations and the effects of Gibbs on 

higher-order diffusion parameters such as mean kurtosis, while the cited work uses a k-space 

masking framework on in vivo MR data. Both these methods represent interesting 

approaches, with an item of future work being to explore relative benefits and tradeoffs in 

target applications.

5 | CONCLUSION

We have shown that Gibbs artifacts and noise can be substantially reduced by training a 

convolutional neural network with simulations of the image acquisitions. We demonstrated 

our method on canonical experiments and in vivo data that includes healthy subjects and 

those with pathology, and showed its potential for artifact removal. The method can be 

applied independently on each slice of the imaging data set, enabling its use in many clinical 

settings such as clinical diffusion MRI where few diffusion directions may be available. In 

the future, we will examine possible extensions, including consideration of 3D anatomical 

structures, correlations across repetitive acquisitions, explicit incorporation of physics into 

the model, and validation on other clinical applications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A

PHASE SIMULATION

Inspired by results from functional approximation theory46,47 and machine learning,48 we 

approximate the phase as being a summation of Gaussian radial basis functions:

psim(r) = exp i ∑
s = 1

S
∑

b = 1

Bs
ab, se− 1

zs
r − r0, b, s 2

2
, (A1)

where psim(r) is the phase map, r is a 2-length vector for spatial position, ab,s is the 

amplitude of the (b,s)th basis function, r0,b,s is the center of the (b, s)th basis function, and zs 

governs the width of the basis functions in the sth subset. In functional approximation 

theory, formulations like (A1) are used to build a candidate for psim(r) given a set of points, 

(ab,s, r0,b,s), b ∈ [1, …, Bs] (zs is usually chosen to be fixed). However, rather than estimate 

psim(r) from a measured cloud of points, our goal is to randomly generate an example from a 

synthetic cloud of points. For each training example, we randomly generate psim(r) 

according to the following model:

S ∼ Poisson λS
Bs ∼ Poisson λB
zs ∼ N μz, σz

ab, s ∼ N μa, σa
r0, b, s, j ∼ V rmin, j, rmax, j ,

where N indicates a Gaussian distribution, N  is a folded Gaussian distribution, and V
indicates a uniform distribution. The parameters λS, λB, μz, σz, μa, and σa are set for 

training, and rmin,j and rmax,j are the minima and maxima for r in the jth imaging dimension. 

Contrary to practice in the approximation literature, we allow zs to vary to avoid the 

degenerate training case where networks create filters to detect Gaussian functions of a fixed 

width.

When Bs and S are not too large, psim(r) will typically be smooth as in real application 

settings; however, sharp changes can also occur during training when basis function centers 

are near each other. As a further form of data augmentation, we include a 1% probability 

that no phase at all is simulated. Figure 1B,C shows an example of simulated phase 

compared to real phase from in vivo data. For our experiments, we used λS = 12, λB = 15, 

μz = 64 pixels2 σz = 100 pixels2, μa = 0°, and σa = 5°. We set rmin,j and rmax,j to restrict the 

center of the Gaussian basis function to the image support in the jth dimension.
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FIGURE 1. 
A, Simulation pipeline and (B,C) example phase maps. The simulation pipeline begins with 

a 256 × 256 ImageNet image. Then, after random flipping and transposing, random phase 

and random ellipsoid cropping are applied. Then, the network input xd has Gibbs ringing 

simulated along with noise and partial Fourier masking, followed by normalization. The 

target md images have the absolute value operation applied followed by spline resizing to the 

target image matrix size. An example of a phase map from this simulation is shown in (B), 

while a comparison in vivo phase map is shown in (C). Phase maps can have substantial 

variations that must be considered when applying partial Fourier imaging
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FIGURE 2. 
Model architecture (A). Boxes with sharp boundaries denote images with the number of 

channels displayed above the box. Boxes with rounded boundaries are submodules. Also 

shown are example downsampling (B), upsampling (D), and intermediate (C) submodules at 

a constant network depth. The model as shown here has 31,646,338 parameters
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FIGURE 3. 
Responses of CNN models to the edge phantom at different angles and across CNR levels. 

(A) and (B) show profiles across the edge phantom for the raw, Gibbs-corrupted data, xt, and 

the CCNN/MCNN models, fθ xt , for edges at different angles. Both the CCNN and the 

MCNN method reduce the Gibbs artifacts. (C) shows a composite image of CCNN network 

estimates across a variety of CNRs from 0.25 to 10, while (D) shows the change in estimated 

FWHM as a function of CNR for the CCNN model. Above a CNR of 1, CNN performance 

is fairly stable. Below a CNR of 1, the FWHM increases as the CNR approaches 0
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FIGURE 4. 
Spectral responses in the partial Fourier direction across different partial Fourier factors and 

SNR levels for the CCNN model. “PFC” indicates the partial Fourier cutoff. Ripples can be 

seen that are related to the Gibbs effect and the PF cutoffs. In the partial Fourier cases, the 

CCNN response has a cusp in the frequency response at the level of the partial Fourier 

factor. The response beyond the PFC characterizes the ability to restore the missing Fourier 

harmonics. At lower SNRs, the PFC singularity gradually disappears, and the CCNN model 

becomes a low-pass filter, applying more smoothing to compensate for the increased noise. 

Profiles for the MCNN method were similar, but resulted in smoothing at the lower SNR 

levels
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FIGURE 5. 
DW and MD images from various methods performed on segmented EPI data. At the top are 

shown the b = 0 s/mm2 and averaged b = 1000 s/mm2 images from Raw, SoA, MCNN, and 

CCNN methods. The final column shows the “gold standard,” results from apodizing the full 

segmented EPI data set and cropping. Comparisons with and without partial Fourier are 

shown for b = 1000 s/mm2 images and mean diffusivity images. Partial Fourier artifacts are 

mitigated in the CNN methods
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FIGURE 6. 
Examples of images from in vivo data at low b (b = 0 s/mm2) and high b (b = 1500 s/mm2). 

Artifacts in the Raw image, xt, are corrected by the MCNN and CCNN models, fθ xt . Also 

shown are the residuals between the CNN corrections and the original Raw image with 

Rician bias correction Ric(xt).10 The Gibbs and noise artifacts removed by the methods are 

observed in the residuals. Gibbs removal is prevalent at b = 0 s/mm2, whereas noise removal 

is more prevalent at b = 1500 s/mm2
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FIGURE 7. 
DW and MD images from various methods performed on prospective diffusion data. At the 

top are shown the b = 0 s/mm2 and average b = 1000 s/mm2 images from Raw, SoA, 

MCNN, standard partial Fourier, and CCNN methods. Rows 3 and 4 show results for mean 

diffusivity. The SoA method and both deep learning methods perform well without partial 

Fourier acceleration; however, at the 5/8ths partial Fourier factor, artifacts are present for all 

methods other than the CCNN method
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FIGURE 8. 
Parameter maps from various methods with CSF masks. Rows 1 and 2 show the FA images 

from Raw, SoA, MCNN, standard partial Fourier, and CCNN methods, with MK images 

being in rows 3 and 4. Succeeding rows alternate the inclusion of partial Fourier encoding
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FIGURE 9. 
Comparison of mean diffusivity (MD) parameter maps across PF factors of 5/8ths, 6/8ths, 

7/8ths, and without PF (No PF). The methods include SoA, MCNN, and CCNN methods. 

Without partial Fourier, all methods are similar; however, as the PF factor increases, 

substantial artifacts are introduced in the SoA and MCNN methods. The CCNN method is 

able to reduce the introduction of artifacts
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FIGURE 10. 
Parameter maps calculated for a patient with multiple sclerosis. MS lesions are visible in all 

three parameter maps. Both the SoA and magnitude-input CNN (MCNN) methods are able 

to denoise parameter maps relative to the original (Raw) data. Images zoomed on the lesions 

are shown in the Supporting Information
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