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Abstract

We used graph theoretical measures to investigate the hypothesis that structural brain connectivity 

constrains the influence of functional connectivity on the relation between age and fluid cognition. 

Across 143 healthy, community-dwelling adults 19–79 years of age, we estimated structural 

network properties from diffusion-weighted imaging (DWI) and functional network properties 

from resting-state functional magnetic resonance imaging (fMRI). We confirmed previous reports 

of age-related decline in the strength and efficiency of structural networks, as well as in the 

connectivity strength within and between structural network modules. Functional networks, in 

contrast, exhibited age-related decline only in system segregation, a measure of the distinctiveness 

among network modules. Aging was associated with decline in a composite measure of fluid 

cognition, particularly tests of executive function. Functional system segregation was a significant 

mediator of age-related decline in executive function. Structural network properties did not 
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directly influence the age-related decline in functional system segregation. The raw correlational 

data underlying the graph theoretical measures indicated that structural connectivity exerts a 

limited constraint on age-related decline in functional connectivity.
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function; statistical mediation

1. Introduction

1.1 Age-related differences in brain connectivity and cognition

Fluid cognitive abilities, which depend on the rapid and flexible coordination of attention 

and memory, decline during healthy aging, relative to knowledge- and expertise-based 

(crystallized) abilities, which often exhibit age constancy (Craik and Bialystok, 2006; 

Kramer et al., 1994; Park et al., 2002; Salthouse, 1996). Previous neuroimaging studies with 

positron emission tomography (PET), structural magnetic resonance imaging (MRI), and 

functional MRI (fMRI) have demonstrated that aging is associated with alterations in brain 

structure and function, including a decrease in the integrity of white matter and decrease in 

the functional connectivity among cortical regions, which may contribute to the age-related 

decline in fluid cognition (Bennett and Madden, 2014; Fjell et al., 2016; Fjell and Walhovd, 

2010; Grady, 2017; Hedden et al., 2016; Madden et al., 2017; Ruiz-Rizzo et al., 2019; Salat, 

2011). Broadly, both structural connectivity (usually assessed from the integrity of the white 

matter pathways connecting cortical regions) and functional connectivity (usually assessed 

from the correlation of resting-state fMRI time series between cortical regions) tend to 

decrease with increasing age (Damoiseaux, 2017; Ferreira and Busatto, 2013; Sala-Llonch et 

al., 2015). The age-related decline in structural connectivity is consistent across studies. 

However, the functional connectivity between cortical regions may be indirect or rely on 

multiple white matter pathways (Damoiseaux and Greicius, 2009; Honey et al., 2009), and 

as a result, both increases and decreases in functional connectivity with age have been 

observed across selected cortical regions (Betzel et al., 2014; Biswal et al., 2010; Song et al., 

2014; Tomasi and Volkow, 2012).

Studies of younger adults suggest that structural connectivity constrains functional 

connectivity, though these studies have focused primarily on the medial prefrontal and 

posterior cingulate regions comprising the default mode network (Greicius et al., 2009; 

Hermundstad et al., 2013; Honey et al., 2007; Zhu et al., 2014). Networks of structural and 

functional connectivity are not isomorphic, however, and tend to diverge in higher-order 

association cortical regions (Batista-García-Ramó and Fernández-Verdecia, 2018; Mišić et 

al., 2016; Vázquez-Rodríguez et al., 2019). Under the best of circumstances, structural 

connectivity accounts for 50% of the variance in functional connectivity(Suarez et al., 2020). 

In the first study to combine measures of structural and functional connectivity in the 

context of aging, Andrews-Hanna et al. (2007) reported age-related decline in functional 

connectivity strength of default mode cortical regions (e.g., posterior cingulate and medial 

prefrontal regions) and a dorsal attention system (e.g., intraparietal sulcus and frontal eye 
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field). Andrews-Hanna and colleagues also found that the decline in functional connectivity 

was associated with declines in both white matter integrity and fluid cognition. Later studies 

have confirmed that structural and functional connectivity are statistical mediators of the 

relation between age and fluid cognition (Chen et al., 2009; Fjell et al., 2016; Hedden et al., 

2016; Li et al., 2020; Madden et al., 2017).

The relation between age-related effects for structural and functional connectivity, however, 

is less clear. Andrews-Hanna et al. (2007) and Chen et al. (2009) both reported a positive 

relation between functional connectivity and regional white matter integrity (fractional 

anisotropy; FA) for older adults. Zimmerman et al. (2016) proposed that a specific pattern of 

structural-functional connectivity coupling predicted age more reliably than did either form 

of connectivity alone. Fjell et al. (2016) observed that structural connectivity was a better 

predictor of longitudinal decline in executive function than functional connectivity. In 

contrast, Fjell et al. (2017) found that functional connectivity within anatomically defined 

white matter tracts was not consistently higher than functional connectivity to regions 

outside of the tracts. Further, the cross-sectional age-related trajectories differed for 

structural and functional connectivity, and these measures changed in a largely independent 

manner across a 3.3 year longitudinal span, leading Fjell et al. (2017) to conclude that 

structural connectivity only weakly constrained the age-related differences in functional 

connectivity. Similarly, Tsang et al. (2017) found that cross-sectional age-related differences 

in structural and functional connectivity were unrelated to each other.

1.2. Graph theoretical measures of brain connectivity

As noted previously, structural connectivity is typically defined from some microstructural 

property of cerebral white matter pathways, such as FA or the number of white matter 

streamlines, derived from tractography. In contrast, functional connectivity is based on the 

correlation of fMRI time series, often measured during a resting state, obtained either from 

anatomically or functionally defined cortical regions of interest (ROIs), or from the whole 

brain in voxelwise analyses (e.g., independent component analysis; ICA). As a result, 

however, the variables comprising structural and functional connectivity data have 

qualitatively different measurement properties, which may contribute to the inconsistent 

findings that have been reported. Graph theory (Rubinov and Sporns, 2010; Rubinov and 

Sporns, 2011; Sporns and Betzel, 2016; Sporns et al., 2004; van den Heuvel and Sporns, 

2013) provides a potentially useful conceptual and measurement framework in which to 

investigate age-related differences in both structural and functional connectivity. In graph 

theory, the brain is viewed as a network of nodes with structural or functional connections 

(edges) between them. Nodes are ROIs that can be defined either anatomically, as a set of 

cortical and subcortical gray matter regions (Desikan et al., 2006; Jao et al., 2013; Tzourio-

Mazoyer et al., 2002), or functionally, as regions with consistent patterns of task-related or 

resting-state activity (Laird et al., 2011; Power et al., 2011; Wig et al., 2014; Yeo et al., 

2011). The matrix of all possible connections between pairs of nodes represents the whole-

brain network. If a network (either structural or functional) is not random, then it will 

comprise a number of communities, or modules, which are distinct sets of nodes that are 

highly interconnected.
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To date, MRI findings, derived primarily from younger adults, suggest that brain structure 

and function exhibit characteristically small-world properties, expressed as a limited number 

of modules that have high within-module connectivity, and fewer long-range connections 

across modules (Bassett and Bullmore, 2006; Bullmore and Sporns, 2009). These small-

world properties, especially the presence of modules, are hypothesized to be an evolutionary 

adaptation that maximizes the efficiency of responding to task demands and resilience to 

focal damage (Achard and Bullmore, 2007; Crossley et al., 2013; Mišić and Sporns, 2016; 

Wig, 2017). Graph theoretical measures provide a fine-grained characterization of different 

properties of connectivity both within and between modules (Figure 1). In addition to the 

efficiency of information transmission (the number of intervening edges), the strength of 

connectivity can be defined for both structural data (e.g., the number of streamlines between 

nodes) and functional data (e.g., the strength of the correlation between nodes). Further, 

system segregation, defined as the relative preponderance of within-module connections to 

between-module connections, reflects the degree to which modules are distinct or 

differentiated from each other.

Previous MRI investigations applying graph theoretical measures to age-related differences 

in functional brain connectivity have been concerned primarily with resting-state 

connectivity. Age-related trends in functional network properties are not entirely consistent, 

but findings from several studies suggest that functional connectivity between modules is 

better preserved as a function of age than within-module connectivity (Damoiseaux, 2017; 

Sala-Llonch et al., 2015; Wig, 2017). As a result, functional modules become less distinct or 

separate with increasing age, expressed in graph theoretical terms as decreased modularity 

and system segregation. Chan et al. (2014), for example, have reported that system 

segregation in resting-state fMRI data declined with increasing age in healthy adults 20–89 

years of age, reflecting a greater age-related decrease in the strength of within-module 

functional connectivity relative to between-module connectivity, particularly for modules in 

association cortex. This pattern of functional connectivity was more prominent for 

individuals over 50 years of age and was predictive of long-term memory function, 

independently of age. Chong et al. (2019) reported a longitudinal decline in system 

segregation, as well as a cross-sectional association between worse cognitive performance 

and lower module segregation and distinctiveness in older adults. Several other 

investigations have reported age-related decline in the distinctiveness of modules, based on 

measures of the strength and efficiency of within- and between-module connectivity 

(Bagarinao et al., 2019; Betzel et al., 2014; Cao et al., 2014; Geerligs et al., 2015; Grady et 

al., 2016; Song et al., 2014; Spreng et al., 2016). Overall, the graph theoretical investigations 

of resting-state functional connectivity support the concept of age-related neural 

dedifferentiation, the idea that aging is associated with a decline in the specialization or 

separation of functional neural modules (Geerligs et al., 2014; Goh, 2011; Park et al., 2004).

Graph theoretical investigations of age-related differences in brain structure more 

consistently report age-related decline in structural connectivity, with some variation in the 

degree to which strength and efficiency decline. The first application of graph theoretical 

measures to this issue (Gong et al., 2009) found that, in a sample of 95 healthy adults 19–85 

years of age, the overall structural connectivity strength between cortical nodes declined 

with age, whereas the global efficiency of the connections (i.e., the shortest path between 
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any two nodes in the whole network) was constant. Age-related differences were evident, 

however, in the efficiency of nodes within specific regions, such that the efficiency of nodes 

in occipital and parietal cortical regions decreased with age, whereas the efficiency of nodes 

in frontal and temporal regions increased. Zhao et al. (2015) reported a different pattern, in 

which both the global and local efficiency of network connections (both within-module and 

between-module) decreased with increasing adult age, particularly in bilateral prefrontal and 

temporal regions. Wu et al. (2012) found that structural global efficiency declined with 

increasing age to a greater extent than did local efficiency, and that fewer between-module 

connections were evident in the older adults’ data, yielding a more localized and segregated 

network.

1.3. Age-related differences in the interaction of structural and functional connectivity

A critical issue, which we address in this research, is the interactive influence of structural 

and functional connectivity on age-related differences in fluid cognition. Previous studies of 

these different forms of connectivity, in the context of aging (Andrews-Hanna et al., 2007; 

Chen et al., 2009; Fjell et al., 2016; Hedden et al., 2016; Madden et al., 2017), have most 

often treated structural and functional connectivity measures as parallel or separate variables 

and did not test their potential interactions. Applying graph theoretical methods, Betzel et al. 

(2014) observed that nodes with direct (efficient) structural connections exhibited relatively 

little age-related change in functional connectivity, whereas nodes with less efficient 

structural connections were more likely to exhibit an age-related increase in functional 

connectivity. This pattern suggests that the age-related decrease in functional system 

segregation reported in other studies (Chan et al., 2014; Chong et al., 2019) may be a result 

of decreased structural efficiency, with functional connections between structurally 

disconnected regions relying on indirect paths.

In this investigation, we obtained graph theoretical measures for both structural and resting-

state functional connectivity, to determine the influence of these variables on age-related 

differences in fluid cognition. In a previously published analysis of this cross-sectional data 

(Madden et al., 2017), we established that measures of executive function exhibited age-

related decline beyond that associated with perceptual speed and memory. Estimates of both 

structural and functional connectivity exhibited age-related decline, and functional 

connectivity within sensorimotor regions (visual, motor, and basal ganglia/thalamus) 

mediated the relation between age and executive function. However, as noted above, the 

earlier investigation did not test the potential influences between structural and functional 

connectivity, and the ICA methods used to define functional networks did not assess 

between-network connectivity.

We extend the earlier findings by using graph theoretical measures to characterize different 

aspects of network connectivity: strength, efficiency, and system segregation, for both 

structural and functional data, with three overarching hypotheses. First, in the functional 

connectivity data, we expected to confirm previous findings indicating that with increasing 

age, modules tend to become less distinct, as expressed in the age-related decline in the 

graph theoretical measure of functional system segregation (Chan et al., 2014; Chong et al., 

2019; Wig, 2017). Second, based on prior findings of a positive relation between functional 
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system segregation and memory performance, with age controlled statistically (Chan et al., 

2014), we hypothesized that across a range of adult age (19–79 years), functional system 

segregation would have a mediating influence on the negative relation between age and fluid 

cognition. Finally, given the evidence that anatomy exerts some degree of constraint on 

functional connectivity (Greicius et al., 2009; Hermundstad et al., 2013; Honey et al., 2007; 

Zhu et al., 2014), and the previous findings indicating an association between age-related 

differences in structural and functional connectivity measures (Andrews-Hanna et al., 2007; 

Betzel et al., 2014; Chen et al., 2009; Fjell et al., 2016; Zimmermann et al., 2016), we 

hypothesized that structural connectivity would have a direct influence on functional 

connectivity in the context of neurocognitive aging.

2. Materials and methods

2.1. Participants

This research was conducted in accordance with the Code of Ethics of the World Medical 

Association (Declaration of Helsinki) for experiments involving humans. The protocol was 

approved by the Duke University Institutional Review Board, and participants gave written 

informed consent at the start of the study. The participants were 153 community-dwelling 

individuals between 19 and 79 years of age. One hundred and forty-five of these individuals 

were included in the Madden et al. (2017) study. Eight participants had been excluded from 

the 2017 study due to missing data from another scan sequence (T2-weighted fluid-

attenuated inversion recovery; FLAIR), which was not included in the present analyses, and 

these participants were added to the current data set. All participants were right-handed, had 

completed at least 12 years of education, did not report any major health issues, including 

atherosclerosis, neurological, and psychiatric disorders (Christensen et al., 1992).

The participants completed an initial screening session, which comprised the Freiburg Visual 

Acuity Test (FRACT; Bach, 1996), Dvorine color vision test (Dvorine, 1963), Beck 

Depression Inventory (BDI; Beck, 1978), Mini-Mental State Exam (MMSE; Folstein et al., 

1975), vocabulary subtest of the Wechsler Adult Intelligence Scale-III (WAIS; Wechsler, 

1997), and a practice version of the visual search task performed during the event-related 

functional imaging (reported separately). All participants had corrected visual acuity equal 

to or better than Snellen 20/40, scored 27 or higher on the MMSE, less than 11 on the BDI, 

higher than the 50th percentile on the WAIS-III vocabulary subtest, and 12 or higher on the 

Dvorine color vision test. Data from nine individuals were excluded due to technical 

problems with their functional or structural imaging data, and one individual had an 

unusually high studentized residual score in the psychometric data. The final sample (Table 

1) consisted of 143 participants (78 females) with 49 participants between the ages of 19 and 

39 years (M = 25.14 years), 43 participants between the ages of 40 and 59 years (M = 51.40 

years) and 51 participants between the ages of 60 and 79 years (M = 67.75 years).

2.2. Cognitive measures

The cognitive outcome measures comprised nine tests of fluid cognition, which targeted 

three domains: elementary perceptual speed, executive function, and memory, with three 

indicator variables per domain. With the exception of two memory tests and one executive 
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function test that were standardized psychometric tests, all of the tests were designed for 

computer administration within E-Prime (Psychology Software Tools, Sharpsburg, PA, 

USA), and responses were collected from response keys on the computer keyboard. The 

tests for perceptual speed included: a) simple reaction time (RT; pressing the space bar at the 

onset of a square); b) choice RT (pressing a left or right key at the appearance of a left- or 

right-facing arrow); and c) another version of choice RT drawn from the neutral trials of the 

Stroop task (pressing one of two keys to indicate the displayed color of a word). The tests 

for executive function included: a) a digit-symbol coding task (Salthouse, 1992); b) a verbal 

fluency task (Goodglass and Kaplan, 1972; Loonstra et al., 2001), using both letter and 

semantic category probes; and c) a version of Stroop interference (Stroop, 1935). The Stroop 

measure was RT to indicate the display color (red or blue) for the words red and blue, 
intermixed with the non-color (neutral) words art and game. The interference measure was 

the proportional increase in correct RT for the incompatible trials relative to the compatible 

trials. The tests for memory included: a) the WAIS Digit Span subtest (Wechsler, 1997); b) 

the delayed memory subtest from the California Verbal Learning Test (CVLT; Delis et al., 

1987); and c) a visual working memory task similar to that of Saults and Cowan (2007). 

This latter task involved a comparison of two sequentially presented displays, each 

containing six colored squares. Duration for each display was 1050 ms, and a blank, inter-

display interval was 1400 ms. The participant’s task was to make a yes/no keypress response 

as to whether one of the colored squares in the second display differed from the first display.

To define the cognitive outcome measures, we used a factor-analytic approach (Hedden et 

al., 2012; Hedden et al., 2016; Salthouse et al., 2015) to obtain domain-specific measures for 

perceptual speed, executive function, and memory. We obtained the first unrotated factor 

from a principal axis factor analysis of all nine cognitive tests, partialed for WAIS 

vocabulary and gender, and used the factor score (for each participant) from the first 

unrotated factor as a general summary measure of fluid cognition. We then used a similar 

approach to obtain the first unrotated factor for the three tests in each of the three domains of 

perceptual speed, executive function, and memory. Because all of the nine tests were 

intercorrelated, we obtained residual scores for each domain by partialing out the other six 

tests not associated with that domain, as well as gender and vocabulary. Madden et al. 

(2017) provide additional procedural details for the cognitive testing and construction of the 

factor scores.

2.3. MRI data acquisition

The MRI session was conducted approximately one month after the initial screening session. 

The functional and anatomical imaging data was collected on a 3 T GE MR750 whole-body 

60 cm bore MRI scanner (GE Healthcare, Waukesha, WI, USA) equipped with 50 mT/m 

gradients and a 200 T/m/s slew rate. The scanner possessed an 8-channel head coil that was 

used for radio frequency reception. Participants wore earplugs to reduce scanner noise and 

foam pads were used to minimize head motion. Three-plane (straight axial/coronal/sagittal) 

localizer fast spin echo images were acquired at the start of the scan to define the volume for 

data collection. Global field homogeneity was ensured by the use of a semi-automated high-

order shimming program. Two resting-state runs of T2*-weighted (functional) imaging 

sensitive to the blood oxygen-level-dependent (BOLD) signal, 4 or 5 runs of event-related 
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T2*-weighted imaging (depending on the in-scanner task, not reported here), 1 run of T1-

weighted anatomical images, 2 runs of diffusion-weighted imaging (DWI) and 1 run of T2-

weighted FLAIR imaging were recorded.

Anatomical T1-weighted images included 166 straight axial slices that were attained using a 

3D fast inverse-recovery-prepared spoiled gradient recalled (SPGR) sequence with repetition 

time (TR) = 8.13 ms, echo time (TE) = 3.18 ms, inversion recovery time (TI) = 450 ms, field 

of view (FOV) = 256 mm x 256 mm, flip angle = 12°, voxel size = 1 × 1 × 1 mm, 256 × 256 

acquisition matrix, and a sensitivity encoding (SENSE) factor of 2, using the array spatial 

sensitivity encoding technique and extended dynamic range.

The DWI data of 68 contiguous slices was acquired along the AC-PC plane using dual-echo 

spin-echo parallel EPI pulse sequence; TR = 9000 ms, TE = 81.3 ms, FOV = 256 mm x 256 

mm, flip angle = 90°, voxel size = 1 × 1 × 2 mm, acquisition matrix size = 128 × 128, and 

SENSE acceleration factor of 2. The DWI scan utilized 30 diffusion-encoding directions (b-

value = 1000 s/mm2) with 1 non-diffusion-weighted b0 (0 s/mm2).

For the resting-state scans, participants were instructed to remain awake with eyes open and 

to view a fixation cross throughout the run. T2*-weighted gradient-echo EPI functional 

images were 29 contiguous slices acquired at an axial oblique orientation, parallel to the 

plane including the anterior and posterior commissures (AC-PC plane) with TR = 1500 ms, 

TE = 27 ms, FOV = 240 mm x 240 mm, flip angle = 77°, voxel size = 3.75 × 3.75 × 4 mm, 

64 × 64 acquisition matrix, and a SENSE factor of 1. Each of the 2 resting-state functional 

MRI (fMRI) runs comprised a time series of 162 brain volumes, collected over a period of 

4.05 min. Four initial radio frequency excitations were performed to achieve steady state 

equilibrium and were subsequently discarded, resulting in 158 remaining brain volumes per 

run.

2.4. MRI preprocessing

Study-specific anatomical template—The image processing pipeline is illustrated in 

Figure 2. We created a study-specific anatomical template using the Advanced 

Normalization Tools (ANTs) script for multivariate template construction (https://

github.com/ANTsX/ANTs/blob/master/Scripts/antsMultivariateTemplateConstruction.sh). 

First, we made an average T1 brain image from all 143 participants in the data set. Each 

individual T1 brain was then warped to this starting point average brain. The resultant 

individually warped T1 images were merged together to create a new averaged template, 

which became the starting point for the next iteration of warping individual T1 images. The 

iteration continued until the mean image converged, yielding the final study-specific 

template.

Structural connectivity—To process the structural DWI data we used a custom shell 

script (https://github.com/ElectricDinoLab/Connectome/blob/master/connectome_maker.sh; 

Davis et al., 2019), which implements software packages in FSL (FMRIB Software Library) 

from the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki; Jenkinson et al., 2012), and MRtrix3 (http://mrtrix.org). 

Two runs of DWI scans were collected for each participant, which were concatenated to 
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generate one data set for the analysis. The concatenated data were first de-noised with 

MRtrix using the function dwidenoise, and the brain was extracted from the skull using BET 

(brain extraction tool) in FSL. The data were preprocessed using the MRtrix dwipreproc 
function. Head motion and eddy current distortion were corrected using the FSL eddy tool, 

and bias-field correction was completed with MRtrix function of dwibiascorrect. DWI 

intensity normalization was applied to the two DWI runs, which were averaged and prepared 

for tractography. Fiber orientation distribution (FOD) was calculated using dwi2fod with the 

option of constrained spherical deconvolution (CSD) followed by the generation of whole-

brain, probabilistic tractography. MRtrix includes a simplified version of the spherical 

harmonic model to calculate the coefficient that is used in FOD to generate tracts. For CSD 

map generation, the maximum number of spherical harmonic terms was set to 8, and a 

single-fiber response kernel was estimated from white matter voxels with FA > 0.3.

In the tractography, Anatomically Constrained Tractography (ACT) was adopted to define 

the interface between white matter and grey matter where the streamlines were seeded, to 

improve the definition of the streamlines. The T1 image was registered to the diffusion 

image and segmented in FSL into five tissue types: cortical gray matter, subcortical gray 

matter, white matter, cerebrospinal fluid, and pathological tissue. Following segmentation, 

the ACT option was added to the tckgen function of MRtrix to anatomically constrain the 

extent of streamline propagation for the tractography. For each participant, ten million tracts 

were generated from an iterative procedure with random placement of seeds within the 

mask, with a step size of 0.2 mm. These tracts were then filtered using SIFT (spherical-

deconvolution informed filtering of tractograms) in MRtrix, which identified the false 

positive tracts, from a cost-function based on the FOD (Yeh et al., 2016), yielding a final set 

of one million tracts per participant.

Regions of interest (ROIs) for both the structural and functional data sets were those defined 

by the subparcellated anatomical Harvard-Oxford Atlas (HOA; Jao et al., 2013; Monge et 

al., 2017) with 397 ROIs. This subparcellated atlas excludes the cerebellum, brain stem, 

cerebral white matter, and lateral ventricle regions. The regions were derived by sub-

sampling the larger regions defined by the automated anatomical labeling (AAL) template 

image (Tzourio-Mazoyer et al., 2002) to yield a finer-grained parcellation with all regional 

parcels or nodes comprising an approximately equal number of voxels. This approach 

yielded a spatial scale of resolution larger than the individual voxel but also smaller than the 

regions within the AAL template, which can obscure some regionally specific effects 

(Zalesky et al., 2010). It is also possible to define nodes on the basis of functional 

connectivity (Wig et al., 2014; Yeo et al., 2011). We believed, however, that using nodes 

from known anatomy for both structural and functional data would be the least biased 

approach for defining modules for both types of data. As noted previously in this section, a 

study-specific template was created based on all 143 participants. The HOA regions were 

registered to the study-specific template using FLIRT (FMRIB’s linear image registration 

tool) in FSL and then mapped to the individual participant’s native space to extract the 

numbers of tracts for each participant. The weighted connectivity matrix of 397 × 397 ROIs 

was then computed, for each participant, based on the number of streamlines traversing 

between all pairs of ROIs. All 397 × 397 cells of the averaged matrix were used, and each 

ROI contained a connectivity value from at least 87% of the participants, although some 
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matrix cells for individual participants were zero. The raw connectivity matrices 

(397×397×143) were then used for each participant as the basis for the graph theory 

analysis.

Resting-state functional connectivity—The resting-state fMRI data were 

preprocessed using an in-house pipeline (https://wiki.biac.duke.edu/

biac:analysis:resting_pipeline#download_source) and FSL tools. Four brain volumes were 

removed from the start of each of the two resting state runs to ensure that the steady state 

equilibrium was attained. Each of the two runs was then corrected for the sampling offsets 

inherent in slice-wise EPI acquisition sequences using FSL slicetimer. The two runs were 

then demeaned and concatenated into a single data set comprising the 8.10 min period. 

Motion correction using MCFLIRT (motion correction using FMRIB’s linear image 

registration tool) was applied to the concatenated data set (Jenkinson et al., 2002). Twenty-

four motion parameters that included the six realignment parameters, their temporal 

derivatives and squares were regressed from each voxel using linear regression (Friston et 

al., 1996). The brain was extracted from the skull with BET, and the data were first 

normalized into the study specific template and then the standard MNI152 T1 space using 

FLIRT and FNIRT (FMRIB’s nonlinear image registration tool). Next, signal from white 

matter and cerebrospinal fluid was regressed out on the basis of masks created with FAST 

(FMRIB’s Automated Segmentation Tool; Zhang et al., 2001). Global signal regression was 

not performed, because the global negative index (Chen et al., 2012) was greater than the 

critical value of 0.03 for each participant, indicating that regressing global signal would not 

be advantageous. Finally, temporal band-pass filtering limited the data to frequencies in the 

0.001– 0.08 Hz range.

We performed additional motion scrubbing of volumes with either > 0.5 mm for framewise 

displacement (FD) or 0.5% for timecourse variance (DVARS; Power et al., 2012). Two brain 

volumes before and after the marked volumes were also excluded. From the total 45,188 

volumes collected, 421 (0.93%) were excluded on the basis of these motion criteria. Motion-

scrubbed volumes did not exceed 22% for any participant. In exploratory analyses, we 

examined the correlations between FD and the graph theoretical measures that we used as 

our imaging outcome variables, and none of these correlations was significant.

The resting-state fMRI time series for each participant consisted of 316 brain volumes 

(concatenated 8.10 min period). For each of the 397 HOA ROIs, for each participant, we 

first obtained the average time series for all the voxels in the ROI, across the 316 volumes, 

and then normalized (z-scored) the ROI time series. The normalized resting-state fMRI time 

series for each of the ROIs was then correlated with the corresponding value for each of the 

other remaining ROIs, yielding a 397 × 397 correlation matrix for each participant. The 

Pearson r correlation value in each matrix cell was transformed to Fisher-z.

Because there is ambiguity regarding the interpretation of negative correlations, negatively 

weighted edges and the diagonals were set to zero, as recommended by Rubinov and Sporns 

(2010). However, we also conducted an exploratory analysis to examine the nature of 

connectivity among these negative correlations. We constructed functional matrices with 

only the negative correlations and then set the diagonals and positive values to zero. We 
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reversed the sign of the negative correlations, because the graph theoretical analyses require 

positive values. We derived both the network partitions and the modularity value (i.e., Q; the 

tendency of the network to segregate into partitions, as defined in the following section) for 

these negative functional matrices. The results indicated that our initial 397 ROIs (network 

nodes), were partitioned into 297 modules, with an average modularity value (Q) of 

essentially zero (0.0008). Because the negative correlations did not partition into a limited 

number of modules, these findings suggest that, in the present data set, the negative 

correlations were not a systematic source of variance in the functional connectivity data. All 

reported analyses are based on the positive correlations.

Functional matrices are typically more densely connected than structural matrices, reflecting 

the many indirect connections, with varying strength, in functional data. We conducted 

analyses on weighted matrices, rather than on thresholded binarized matrices, for both 

structural and functional data, to retain sensitivity to this variation in connection strength and 

to avoid introducing multiple statistical comparisons across different thresholds (Rubinov 

and Sporns, 2011).

2.5. Graph theoretical measures

In graph theory, a network consists of nodes and edges (connections between nodes), which 

can be segregated into non-overlapping modules or communities, characterized by stronger 

within-module and weaker between-module connections. Here, the network nodes were the 

397 subparcellated HOA ROIs and the edges were the structural or functional connections 

between the nodes. We averaged connectivity matrices of all participants to obtain a single 

structural matrix and a single functional matrix. Module definition is an estimate of the 

community structure of the network and is influenced by many variables, including the 

resolution of the partitioning algorithm and the degree of interconnectedness between pairs 

of communities (Fortunato and Barthélemy, 2007; Traag et al., 2019). Many studies have 

used previously defined sets of modules, based on patterns of resting-state or task-related 

fMRI data (Power et al., 2011; Yeo et al., 2011). However, we defined modules in a data-

driven manner, within the structural and functional domains, rather than using an 

independent definition of modular structure, so that the analyses would reflect the network 

community structure inherent in the data. To compute the optimal partitioning of the whole-

brain data into modules, we applied the Louvain algorithm (Blondel et al., 2008) from the 

Brain Connectivity Toolbox (www.brain-connectivity-toolbox.net; Rubinov and Sporns, 

2010) on the group-averaged structural and functional matrices.

For the structural data, using the default value (1.0) of the resolution parameter (gamma; y) 

of the Louvain algorithm yielded eight interpretable modules. For the functional data, 

however, using the default gamma of 1.0 yielded only four modules corresponding 

approximately to cortical lobes. Increasing the gamma to 1.15 yielded six modules that were 

more interpretable functionally and included anterior and posterior components of the 

default mode network. Increasing gamma further to 1.25 yielded seven functional modules, 

which were similar to the partitioning with gamma = 1.15 except that the posterior default 

mode region was divided into separate modules, which were less easily interpretable. We 
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therefore maintained gamma at 1.15 for the functional data, which produced a modular 

structure corresponding most closely to previous literature and known anatomy.

Other than different resolution parameters, definition of the modules proceeded in a similar 

manner, in separate analyses, for the structural and functional data. We used the consensus 

clustering approach to obtain the optimal partitioning of modules (Lancichinetti and 

Fortunato, 2012). We ran the Louvain algorithm 150 times on the averaged matrix and 

calculated an agreement matrix from those 150 iterations, to obtain the proportion of times 

each pair of nodes were assigned to the same module. To remove any weak or spurious node 

agreements, we then thresholded the agreement matrices at 0.50, thus retaining values for 

only those pairs of nodes that were assigned to the same module at least 50% of the time. 

We then applied the optimal structural and functional modules, derived from the averaged 

data, to the connectivity data for each participant. The averaged connectivity matrices 

comprising the eight structural modules and six functional modules are described in more 

detail in Results (section 3.2.2.).

The term modularity refers to the degree to which all of the nodes in the network (in this 

case the brain) partition into modules, that is, groups of nodes with strong within-module 

connections and weaker between-module connections. For a network with c modules, 

modularity Q is defined by Equation 1:

Q = 1
2m ∑i, j Aij − kikj

2m δ ci, cj , (1)

where Aij represents the weight of the edge between nodes i and j, ki = ∑jAij is the sum of 

the weights of the edges attached to node i, ci is the community to which node i is assigned, 

δ is the Kronecker delta function, and m = 1
2 ∑ijAij (Newman and Girvan, 2004).

In our primary analyses we imposed the group-averaged modular partition on the individual 

participants’ data, but we also examined individual differences in modular structure. When 

we estimated the structural modules at the individual participant level, the results yielded 

between eight and ten structural modules for 91.61% of the participants, and the correlation 

between the number of modules and age was not significant, r = 0.095, p = 0.261. The 

modularity value Q for the structural data (M = 0.682, SD = 0.011) did not vary significantly 

with age, r = 0.074, p = 0.382. For the functional data, 98.6% of the participants exhibited 

between three and six modules, and the number of modules did not vary significantly with 

age, r = −0.075, p = 0.372. However, Q (M = 0.174, SD = 0.039) decreased significantly 

with age in the functional data, r = −0.385, p < 0.001, indicating some age-related variation 

in modular structure.

We also measured the degree to which each person’s modular organization differed from 

that of the group-averaged data, using the partition_distance function from the Brain 

Connectivity Toolbox. This function estimates the variation of information (VI), which is a 

normalized information-theoretic measure of the distance between network organizations, 

where a VI of 0 represents perfect correspondence of partitions (Meilă, 2007). In the 

structural data, mean VI was 0.163 (SD = 0.032) and was not correlated with age, r = 0.026, 
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p = 0.7606 (uncorrected). The mean VI for the functional data (M = 0.386; SD = 0.039) was 

correlated positively with age, r = 0.298, p < 0.0003 (uncorrected), indicating a greater 

disparity in the modular structure, with increasing age, relative to the average structure. 

Thus, although the functional data exhibited some age-related differences in modular 

structure, both the structural and functional data exhibited a constancy in the number of 

modules consistent with the group-averaged data.

Our analyses focus on four graph theoretical measures that reflect the properties of network 

information transmission: global efficiency, local efficiency, strength, and system 
segregation. As described in more detail in the immediately following paragraphs, these 

measures were calculated both at the whole-brain level and at the individual module level, 

for each participant, for the analyses of their relation to age and the cognitive outcome 

measures.

2.5.1. Efficiency—Considering information transmission as a path between two nodes, 

efficiency represents the number of intervening edges between the nodes, with more efficient 

paths being characterized by fewer intervening edges (Latora and Marchiori, 2001). Global 

efficiency is the measure of efficient information propagation across the whole network. It 

represents the average inverse shortest path length in the network, that is, the minimum 

number of edges to be traversed between each pair of nodes, averaged across all node pairs. 

It was calculated by Equation 2:

Global efficiency = 1
n(n − 1) ∑i ≠ j ∈ G

1
li, j

(2)

where, n is the number of nodes in the network, l is the shortest path length, and i and j are 

nodes in graph G. Local efficiency, in contrast, represents information propagation in the 

neighborhood of an individual node (i.e., nodes that are directly connected to the node). It 

was calculated by Equation 3:

Local efficiency = 1
ni ni − 1 ∑j, k ∈ g

1
lj, k

(3)

where, ni is the number of nodes in the neighborhood of node i (excluding node i itself), l is 

the shortest path length, and j and k are nodes in subgraph g (consisting of neighborhood 

nodes of node i). At the whole-brain level, local efficiency was averaged across all nodes 

(i.e., the 397 ROIs), whereas at the module level, local efficiency was averaged across all the 

nodes within the module.

2.5.2. Strength—Strength refers to the strength of connections between two nodes, 

expressed as the number of streamlines in the case of the DWI data and the magnitude of the 

positive correlations in the case of the resting-state fMRI data. Three strength measures were 

obtained for each participant. First, average strength represents the strength of the 

connection of each node to every other node in the brain. At the whole-brain level, the 

estimate of strength was averaged across all nodes. At the module level, strength represents 

the averaged connection, for the nodes in the module, to all other nodes in the brain. Second, 

for each node, between-module strength represents the strength of a node’s connection to all 
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other nodes outside its associated module. At the whole-brain level, the estimate was 

averaged across all nodes, whereas at the module level the estimate represents the averaged 

connections from the nodes within the module to all other nodes outside the module. Third, 

within-module strength represents the averaged strength of the connections among the nodes 

within each module. At the whole-brain level, this estimate was averaged across all nodes, 

whereas at the module level, within-module strength represents only the nodes within the 

module.

2.5.3. System segregation—System segregation represents the degree to which 

modules are separated from each other, expressed as the magnitude of the within-module 

strength relative to between-module strength (Chan et al., 2014; Wig, 2017). It was 

calculated by Equation 4:

System segregation = Zw − Zb /Zw (4)

where, in the DWI data, Zw is the mean number of streamlines between nodes within each 

module and Zb is the mean number of streamlines between nodes of one module to nodes in 

all other modules. In the resting-state fMRI data, Zw is the mean normalized correlation 

between nodes within each module and Zb is the mean normalized correlation between 

nodes of one module to nodes in all other modules. For both modularity and system 

segregation, higher values indicate a more segregated network. At the whole-brain level, 

system segregation was averaged across all nodes, whereas at the module level, system 

segregation was defined on the basis of the nodes within the module.

2.6. Statistical analyses

Statistical analyses were conducted using SAS 9.4 (SAS Institute, Inc., Cary, NC, USA) 

within the general linear model. Mediation analyses were conducted to test models of the 

relation between age, the graph theoretical measures, and the cognitive outcome variables. 

The mediation analyses were conducted with the PROCESS macro for SAS (Hayes, 2013). 

We used the network-property measures that were available for analyses at both the whole-

brain and individual module levels (efficiency, strength, and system segregation) as mediator 

variables. In each model, age was the predictor, the graph theoretical measures were the 

mediators, and the outcome variables were the cognitive measures (factor scores). In models 

with multiple mediators, the effects of individual mediators are covaried with respect to the 

other mediators. For each model, parameter estimates and 95% bootstrap confidence 

intervals were based on 10,000 bootstrap samples. Significance testing of parameter 

estimates for individual paths was conducted by t-test, but mediation (path interaction) 

effects were assessed by the confidence intervals, as these latter effects are typically not 

distributed normally (Hayes, 2013). Mediation effects were considered to be statistically 

significant when the associated 95% confidence interval did not include zero.
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3. Results

3.1. Screening and cognitive measures

The screening measures in Table 1 indicate that increased age was associated with 

decreasing visual sensory function, as represented by declining visual acuity and color 

vision. A detectable decrease in MMSE with increasing age was also present, but this result 

is likely influenced by the limited variability associated with the inclusion criteria (MMSE = 

27–30). No age-related decline in WAIS vocabulary was evident, and the years of education 

increased with age.

Overall fluid cognition, comprising the first factor score for the nine cognitive tests, 

partialed for gender and WAIS vocabulary, declined significantly with age, r = −0.718, p 
<0.0001 (Figure 3, Panel A). The factor scores for the three tests within each of the three 

individual cognitive domains, partialed for gender and WAIS vocabulary, also declined with 

age: executive function, r = −0.629, p < 0.0001, memory, r = −0.447, p < 0.0001, and speed r 
= −0.580, p < 0.0001. As noted previously in the Methods (section 2.2.), to control for the 

shared variance among the tests, we partialed the factor scores in each domain for the six 

tests not associated with that domain (Madden et al., 2017; Salthouse et al., 2015). The 

residual executive function score exhibited a significant decline with age (Figure 3, Panel B), 

whereas the residual scores for memory and speed did not exhibit an age-related decline, 

independently of the variance shared with tests outside their domain (Figure 3, Panels C and 

D).

3.2. Graph theoretical measures

3.2.1. Whole-brain analysis—Correlation of whole-brain measures with age are 

presented in Table 2. Significance levels for the correlations are Bonferroni-corrected for six 

comparisons within the structural and functional domains. Five of the structural network-

property measures related to efficiency and strength of connectivity declined with age, 

although structural system segregation was constant with age. In the functional measures, 

only system segregation declined with age.

Because age-related decline was significant for overall fluid cognition and residual executive 

function (Figure 3), we constructed two separate mediation models for these variables (Table 

3). In each model, age was the predictor, and the outcome variable was either overall fluid 

cognition (Model 1) or residual executive function (Model 2). The potential mediators were 

the network-property measures that varied significantly with age: structural global 

efficiency, structural local efficiency, structural average strength, structural within-module 

strength, and functional system segregation. These were parallel mediation models, in the 

sense that the mediators were assessed simultaneously, covaried for each other (Hayes, 

2013). Within each of these models (Table 3), the a path (age ➔ mediator) was significant 

for all of the mediators, reflecting the basis for selecting these mediators. The b (mediator 

➔ outcome) path was significant only for functional system segregation in Model 2. That is, 

among all the mediators, only the relation between functional system segregation and 

residual executive function was significant independently of age. The parameter estimate 

was positive, indicating that increasing functional system segregation was related to a higher 
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level of executive function. The c path (total effect of age on the outcome measure) was 

significant for both models, with negative parameter estimates, because we selected the two 

outcome variables with age-related decline. Across the two models, the only mediation 

effect that was significant was associated with functional system segregation, which 

mediated the relation between age and residual executive function in Model 2 (Figure 4). 

The c ‘ path (direct effect of age) for residual executive function was not significant 

following mediation by functional system segregation.

To determine whether the structural network properties directly influenced functional system 

segregation, we constructed a model in which the structural measures of efficiency and 

strength were potential mediators of the relation between age and functional system 

segregation (Table 4). None of the structural measures, however, was a significant mediator, 

and none exhibited an age-independent relation to functional system segregation.

Although the direct influence of structural connectivity on functional connectivity was not 

significant in the context of the graph theoretical variables, we examined the relation 

between structural and functional connectivity in the raw matrix data underlying the graph 

theoretical analyses. We first restricted the data set to those cells in the structural 

connectivity matrix, for each participant, that contained a positive value, that is, pairs of 

nodes with a structural connection. We conducted four exploratory tests and Bonferroni-

corrected the significance levels for these tests. The average number of streamlines per cell 

(i.e., node to node connection) in each person’s structural matrix declined significantly with 

age (Figure 5, Panel A), r = −0.318, p < 0.001 (corrected). The Fisher-z transformed 

correlation of the fMRI time series associated with these streamlines, however, did not 

exhibit age-related decline (Figure 5, Panel B). As an estimate of structural-functional 

connectivity, we obtained, for each participant, the Pearson r correlation between those 

structural connections (i.e., number of streamlines) and the functional connectivity in the 

corresponding cells of the functional connectivity matrix. The resulting correlations (Fisher-

z transformed), were overall greater than zero, t(142) = 80.07, SE = 0.00418, p < 0.001 

(corrected), and declined significantly with age (Figure 5, Panel C), r = −0.402, p < 0.001 

(corrected).

3.2.2. Individual modules—The group-averaged structural data yielded eight modules 

(Figure 6). These essentially reflected four modules with both left and right hemisphere 

versions: occipitoparietal regions (Figure 6, Panels A and F), sensorimotor regions (Figure 6, 

Panels B and H), temporal regions (Figure 6, Panels C and E), and frontal regions (Figure 6, 

Panels D and G).

The group-averaged resting-state fMRI data yielded six functional modules (Figure 7). In 

contrast to the structural modules, which were all unilateral, the functional modules were all 

bilateral. These comprised sensorimotor regions (Figure 7, Panel A), anterior and posterior 

components of the default mode network (Figure 7, Panels B and F), limbic and 

orbitofrontal regions (Figure 7, Panel C), auditory (superior temporal) regions (Figure 7, 

Panel D), and occipitoparietal regions (Figure 7, Panel E).
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3.2.3. Age-related differences for individual modules—To investigate age-related 

differences for individual modules, we conducted a multiple regression model for each of 

the five network properties within both the structural and functional data for each module: 

local efficiency, average strength, between-module strength, within-module strength, and 

system segregation. (Because global efficiency refers to the whole-brain network, this 

measure was not analyzed at the level of the individual modules.) In each model, age was the 

outcome variable, and the individual modules (eight for the structural data, six for the 

functional data) were simultaneous predictor variables. Thus, a significant effect (beta value) 

for an individual module represented a contribution to the age-related effect above and 

beyond the other modules. Significance levels were Bonferroni-corrected for the five models 

in each domain.

These analyses indicated that significant age-related effects (from the combined effects of all 

modules) were present for local efficiency, average strength, between-module strength, 

within-module strength, and system segregation (Table 5). An age-related decline in 

structural connectivity (i.e., negative beta value) for the right frontal module contributed 

significantly to the overall age-related effects for average strength, within-module strength, 

and system segregation. In the structural data, the left occipitoparietal module also exhibited 

age-related decline in between-module strength. The right temporal module also exhibited a 

positive, though small, age-related effect for average strength (Table 5), which was also 

evident in the bivariate correlation between age and average strength, r = 0.159, p < 0.06 

(uncorrected).

The only age-related effect in the regression models of the individual functional modules 

was associated with system segregation (Table 6), as in the whole-brain analyses (Table 2). 

The only unique contribution from an individual module was the age-related decline in 

system segregation for the occipitoparietal module.

3.2.4. Alternative network partitions—The analyses reported above rely on one 

approach to defining structural and functional modules, in which the connectivity matrices 

for structural and functional data were each averaged across all participants, and the modules 

estimated from the averaged matrices were applied to individual participants’ data. We 

adopted this approach to identify a set of modules, within the structural and functional data, 

that would be comparable across participants and allow correlation with our cognitive 

outcome variables. We also explored two alternative methods of partitioning the networks, in 

which the structural modules were used to partition both the structural and functional data. 

In both of these approaches, we implemented consensus clustering, with 150 iterations of the 

Louvain algorithm, gamma = 1.0, and thresholding of the agreement matrices as described 

above (section 2.5., Graph theoretical measures). In the first approach, we used the averaged 

structural connectivity data to define the modules for both the structural and functional data, 

with the eight structural modules (Figure 6) applied to the functional data. In the second 

approach, we did not average the matrices, but instead used each participant’s module 

partition, from the structural data, for both the structural and functional data. That is, in this 

latter approach, we did not require that the individual modules be constant across 

participants.
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The results of these two alternative approaches to partitioning the data, reported in 

Supplementary Material, yielded both similarities and differences to the findings reported in 

this Results section. When using the averaged structural modules to define the functional 

modules, the functional connectivity results were comparable to defining the modules from 

the functional data as reported in this Results section. With this alternative method of 

defining the functional modules, the age-related decline in system segregation remained the 

only age-related effect (Table S1). In a mediation analysis with functional system 

segregation and the structural whole-brain measures of strength and efficiency as mediators, 

functional system segregation was the only significant mediator of the age-related decline in 

residual executive function (Table S2), and no mediation was evident for overall fluid 

cognition. This is exactly the pattern reported in this Results section.

When, however, we allowed the modules to vary across participants and applied each 

participant’s structural modules to their functional data, a different pattern of age-related 

effects occurred. The structural and functional connectivity data for global efficiency, local 

efficiency, and average strength were identical across the different methods, by definition, 

because modular structure does not contribute to these whole-brain measures. The within-

module and between-module strength values, however, do depend on modular structure, and 

in contrast to our primary analyses (Table 2), these latter values did not exhibit a significant 

age-related decline in structural connectivity when defined at the participant level (Table 

S3). In the functional data, system segregation continued to be the only variable exhibiting 

age-related decline (Table S3). When functional system segregation was included, along 

with structural global efficiency, local efficiency, and average strength, in a mediation model 

of the relation between age and residual executive function, none of the variables was 

significant as a mediator of either overall fluid cognition or residual executive function 

(Table S4).

4. Discussion

In the present analyses we used graph theoretical measures to characterize age-related 

differences in the strength and efficiency of structural brain connectivity (based on DWI) 

and functional brain connectivity (based on resting-state fMRI). Previous investigations have 

reported age-related decline in both structural and functional connectivity in relation to fluid 

cognition (Andrews-Hanna et al., 2007; Chen et al., 2009; Fjell et al., 2016; Hedden et al., 

2016; Li et al., 2020; Madden et al., 2017). Structural and functional measures have 

typically been treated as separate variables, however, without considering that structural 

connectivity may constrain functional connectivity (Damoiseaux and Greicius, 2009; 

Greicius et al., 2009; Hermundstad et al., 2013; Honey et al., 2007; Honey et al., 2009; Zhu 

et al., 2014). Although some findings suggest that that age-related decline in functional 

connectivity is dependent on structural connectivity (Andrews-Hanna et al., 2007; Betzel et 

al., 2014; Fjell et al., 2016; Zimmermann et al., 2016), other investigations have suggested 

that structural connectivity only weakly constrains age-related differences in functional 

connectivity (Fjell et al., 2017; Tsang et al., 2017).

Graph theoretical measures have provided a common framework for characterizing the 

properties of structural and functional networks. Recent graph theoretical studies 
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consistently observe age-related decline in structural connectivity (Gong et al., 2009; Wu et 

al., 2012; Zhao et al., 2015). Age-related differences in functional connectivity are more 

variable, but a decline in the segregation of functional modules (system segregation) has 

been a reliable pattern (Chan et al., 2014; Chong et al., 2019; Wig, 2017). However, no 

previous investigation has, to our knowledge, combined graph theoretical measures of 

structural and functional connectivity in the context of age-related differences in fluid 

cognition. Here, we investigated the relation between graph theoretical structural and 

functional brain network properties, in the context of age-related differences in fluid 

cognition. Our analyses were guided by three broad hypotheses: that the graph theoretical 

measure of functional system segregation would decrease with age, that functional system 

segregation would be a significant mediator of age-related decline in fluid cognition, and 

that structural connectivity would constrain the influence of functional connectivity on the 

age-cognition relation. We also investigated the potential contributions of individual 

modules comprising the structural and functional networks.

4.1. Age-related differences in brain connectivity and fluid cognition

We observed an age-related decline in functional system segregation (Table 2), which 

confirmed our first hypothesis, based on previous findings reported by Chan et al. (2014) 

and Chong et al. (2019). We extend these previous findings in two ways. First, the Chan et 

al. and Chong et al. studies did not include structural brain connectivity data. Our analyses, 

combining graph theoretical measures of structural and functional data, indicate that the age-

related decline in system segregation (at the whole-brain level) is specific to functional 

connectivity and is not a feature of structural connectivity (Table 2). Second, analyses of the 

individual functional modules demonstrate a specific contribution from the occipitoparietal 

module to the age-related decline in system segregation (Table 6 and Figure 7). This pattern 

corresponds to the previous ICA analyses of resting-state functional connectivity of this data 

set (Madden et al., 2017), in which an ICA network that included visual sensory cortex 

exhibited the most pronounced age-related decline. Chan et al. proposed that the age-related 

decline in functional system segregation was more pronounced for modules comprising 

primarily association cortex, compared to those comprising primarily sensory cortex (Suarez 

et al., 2020). Here, the parietal nodes within the occipitoparietal module would be consistent 

with the Chan et al. results, whereas the occipital nodes (at least those within primary visual 

cortex) would not. The method for assigning nodes to modules differs across these studies, 

being data-driven here and defined by the results of an independent data set (Power et al., 

2011) in the Chan et al. report, which may account for the different regional pattern.

Our second hypothesis was that functional system segregation would mediate the relation 

between age and fluid cognition. Previous analyses of this data set with ICA-based measures 

of connectivity (Madden et al., 2017), as well as other studies of brain connectivity not 

derived from graph theory (Chen et al., 2009; Fjell et al., 2016; Hedden et al., 2016; Li et al., 

2020; Madden et al., 2017), have demonstrated that both structural and functional 

connectivity contribute as statistical mediators of the relation between age and cognitive 

performance. Investigations using graph theory have yielded some evidence that specific 

network properties, such as system segregation, contribute to age-related differences in 

cognition. Chan et al. (2014) and Chong et al. (2019), for example, both reported a positive 
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relation between cognitive ability and graph theoretical measures of module distinctiveness, 

with age controlled statistically. Bagarinao et al. (2019) found that a graph theoretical 

measure of network integrity was a statistical mediator of the relation between age and 

global cognitive functioning. We extend these previous findings by showing that a specific, 

graph theoretical feature of resting-state functional modules, system segregation, has a 

mediating role in age-related cognitive decline. When the six graph theoretical measures that 

were age-sensitive (structural global efficiency, structural local efficiency, structural average 

strength, structural within-module strength, structural between-module strength, and 

functional system segregation) were included as potential mediators of the relation of age to 

the overall cognitive and residual executive function measures, only functional system 

segregation was a mediator in a model with residual executive function as the outcome 

measure (Figure 4; Table 3, Model 2). That is, the relation of age to residual executive 

function was indirect, operating through functional system segregation.

The path coefficient for the relation of functional system segregation to residual executive 

function, covaried for age (i.e., the b path in Table 3, Model 2), was positive, consistent with 

the previous findings indicating an underlying positive relation between the distinctiveness 

of functional modules and cognition (Bagarinao et al., 2019; Chan et al., 2014; Chong et al., 

2019). The mediating effect of functional system segregation, however, was specific to 

residual executive function, even though the age-related effect size (r) for overall fluid 

cognition was much greater than the effect size for residual executive function (Figure 3). 

Thus, the mediating effect of system segregation is not driven by the age-related effect size 

of the cognitive outcome variable.

The pattern of age-related differences in the graph theoretical measures of structural 

connectivity were generally consistent with previous findings. We observed, consistent with 

earlier studies (Gong et al., 2009; Wu et al., 2012; Zhao et al., 2015), that the efficiency and 

strength of structural connectivity declined with age (Table 2). We also obtained specific 

regional effects of structural connectivity (Table 5), with prominent contributions from the 

right frontal module to age-related differences in average strength, within-module strength, 

and system segregation (Zhao et al., 2015). The left occipitoparietal module exhibited both a 

decline in between-module strength and an increase in system segregation. Interestingly, the 

overall model for age-related differences in structural system segregation was significant 

with the connectivity measures averaged per module (Table 5), whereas the initial analysis 

of the whole-brain measures of structural connectivity, averaging across all nodes, did not 

exhibit an age-related decline in system segregation (Table 2). These results appear to reflect 

an age-related decline in structural system segregation for the right frontal module, 

combined with an age-related increase for the left occipitoparietal module (Table 5), which 

may have cancelled each other in the whole-brain analysis.

The results provided limited support for our third hypothesis, that structural brain 

connectivity would constrain the pattern of functional connectivity. We based our prediction 

on previous findings (Andrews-Hanna et al., 2007; Betzel et al., 2014; Chen et al., 2009; 

Fjell et al., 2016; Zimmermann et al., 2016) suggesting that age-related differences in 

functional connectivity were dependent on structural connectivity, in line with data from 

younger adults (Damoiseaux and Greicius, 2009; Hermundstad et al., 2013; Honey et al., 
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2007; Honey et al., 2009). Having demonstrated a significant influence of functional system 

segregation in the relation between age and residual executive function (Figure 4; Table 3, 

Model 2), we asked whether aspects of structural connectivity influenced the relation of age 

to functional system segregation. The results, however, indicated that none of the graph 

theoretical measures of structural connectivity was a significant mediator of the age-related 

decline in functional system segregation (Table 4). But we also explored the raw structural 

and functional connectivity matrices, from which the graph theoretical measures were 

derived. In this exploratory analysis we restricted the matrices to those cells with a structural 

connection between nodes. At this raw matrix level, the relation between structural and 

functional connectivity declined with age (Figure 5, Panel C). This suggests that age-related 

decline in structural connectivity may contribute to decreased functional connectivity among 

regions, although a causal effect cannot be inferred from this correlation. Overall, our 

findings are in line with those of Fjell et al. (2017), who proposed that structural 

connectivity provided a measurable though relatively weak constraint on age-related 

differences in functional connectivity.

4.2. Limitations

Graph theory provides a theoretical and measurement context that can encompass structural 

and functional brain connectivity data, but alternative methods exist for defining nodes and 

comparing structural and functional modules. Different methods of defining nodes, 

partitioning modules, and many other stages within the analysis pipeline, will influence the 

results (Botvinik-Nezer et al., 2020; Gargouri et al., 2018; Sporns and Betzel, 2016; Zalesky 

et al., 2010). In our primary analyses, we defined a single modular structure, based on the 

participant-averaged structural and functional correlation matrices (Figure 2), but we 

allowed the module topology to differ between the structural and functional domains. We 

performed additional analyses with two alternative versions of this method of defining 

modules (Supplementary Material). In the first approach, the set of structural modules that 

we used in the primary analyses, defined from the participant-averaged correlation matrix, 

were applied to both the structural and functional data. In the second approach, the structural 

modules for each individual were applied to that individual’s structural and functional data.

As noted in Section 3.2.4. (Alternative network partitions), the results from the first 

approach were largely consistent with the results reported in the main text, in that the 

functional data yielded an age-related difference only for system segregation, and functional 

system segregation was the only significant mediator of the age-related decline in residual 

executive function. The second approach, however, with individually varying structural 

modules, did not yield the age-related decline in within- and between-module structural 

connectivity that we observed in the main analyses. With the individually varying structural 

modules, functional system segregation continued to exhibit age-related decline but did not 

mediate the relation between age and residual executive function. Thus, our findings for 

functional connectivity were consistent regardless of whether the functional data were based 

on structural or functional modules, when the modules were defined from the participant-

averaged matrices. Participant-varying modules yielded different results.
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Mediation analysis is a form of ordinary linear regression that is designed to identify the 

causal relations among variables (Hayes, 2013) in cross-sectional data. By defining the 

patterns of shared and unique variance across individuals we can interpret age-related 

differences, but these individual differences in cross-sectional data are not the same as 

change over time, which requires longitudinal analysis (Hofer and Sliwinski, 2001; 

Lindenberger et al., 2011). A limitation of longitudinal analysis is that scores are correlated 

across measurement occasions, and as a result the systematic variance in change over time 

may be small relative to the variance at each measurement occasion (Salthouse, 2011; 

Salthouse and Nesselroade, 2002). Converging information from cross-sectional and 

longitudinal studies would provide a more complete account of age-related effects.

4.3. Conclusion

From the application of graph theoretical analyses, these results demonstrate that structural 

and functional brain networks exhibit different patterns of age-related decline, that 

functional connectivity influences age-related differences in one form of fluid cognition 

(executive function), and that structural connectivity exerts a limited constraint on age-

related decline in functional connectivity.

Age-related differences in structural connectivity were evident in the majority of the graph 

theoretical measures. Age-related decline was significant for whole-brain efficiency and 

strength of connectivity among all nodes, as well as in within- and between-module strength, 

though not in system segregation. Functional connectivity, in contrast, exhibited age-related 

decline only in system segregation, reflecting a decrease in the distinctiveness among 

modules with increasing age. Individual modules contributed prominently to the structural 

and functional age-related effects: right frontal and left occipitoparietal modules for age-

related decline in structural connectivity, and a bilateral occipitoparietal module for age-

related decline in functional system segregation. Mediation analyses demonstrated that 

functional system segregation had a specific influence on age-related decline in executive 

function, distinct from the fluid cognitive abilities shared by perceptual speed, executive 

function, and memory. The age-related differences in the graph theoretical measures of 

structural and functional connectivity were largely independent. In the underlying raw data 

matrices, however, the results suggested some degree of anatomical constraint on functional 

connectivity. For pairs of nodes with a structural connection, age-related decline in structural 

and functional connectivity were correlated. Overall, these findings suggest that specific 

aspects of structural and functional brain networks interact to define the pattern of age-

related decline in fluid cognition.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Graph theoretical measures characterize the topology of brain connectivity

• Age-related decline in strength and efficiency of structural brain connectivity

• Age-related decline in functional system segregation (module distinctiveness)

• Functional system segregation mediates age-related decline in executive 

function

• Structural connectivity exerts a limited constraint on functional connectivity
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Figure 1. 
Graph theoretical measures. Strength: the number of white matter streamlines, estimated 

from DWI, between nodes (anatomical regions of interest), for structural data, or the 

correlation of resting-state time series, between nodes, for functional data. Efficiency: the 

number of edges that must be traversed to connect two nodes, where fewer = better. System 

Segregation: the degree to which modules (sets of highly connected nodes) are distinct from 

each other, expressed as the ratio of within-module connections to between-module 

connections.
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Figure 2. 
Image processing pipeline.
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Figure 3. 
Cognitive measures as a function of age; n = 143. Fluid cognition is the factor score for all 

nine cognitive tests, partialed for gender and WAIS vocabulary (A). Factor scores for 

executive function (B), memory (C), and speed (D), are each based on three tests and then 

partialed for the six remaining tests, plus gender and WAIS vocabulary, Bonferroni corrected 

for four comparisons.
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Figure 4. 
Mediation model for residual executive function, with mediators in parallel. Significant 

mediators and effects are presented in bold.
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Figure 5. 
Connectivity in the raw data matrices, for those pairs of nodes with a positive number of 

white matter streamlines connecting them. Structural connectivity (A); functional 

connectivity (B), and the correlation between structural and functional connectivity as a 

function of age (C).
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Figure 6. 
Modules estimated from the averaged structural connectivity matrix.
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Figure 7. 
Modules estimated from the averaged functional connectivity matrix.
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Table 1

Participant Characteristics

Variable M SD Min Max r with age

Education (years) 16.80 2.05 12.0 20.0 0.42***

Color Vision 13.87 0.41 12.0 15.0 −0.23*

Visual acuity −0.06 0.12 −0.23 0.34 0.33***

BDI 2.35 2.54 0.0 9.0 0.15

MMSE 29.09 0.97 27.0 30.0 −0.23*

Vocabulary 55.99 6.33 38.0 66.0 0.16

Note. n = 143. Color Vision = score on the Dvorine plates (Dvorine, 1963). Visual acuity is Log minimum angle of resolution (MAR). Log MAR of 
0 corresponds to Snellen 20/20, with negative values corresponding to better resolution. Thus, the positive correlation for acuity represents age-
related decline in this measure. BDI = Beck Depression Inventory (Beck, 1978); MMSE = Mini Mental State Exam (Folstein et al., 1975). 
Vocabulary is the raw score on the vocabulary subtest of the Wechsler Adult Intelligence Scale (Wechsler, 1997). Significance levels are 
Bonferroni-corrected for six comparisons.

*
p < 0.05 (corrected)

**
p < 0.01 (corrected)

***
p < 0.001 (corrected)

Neurobiol Aging. Author manuscript; available in PMC 2021 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Madden et al. Page 38

Table 2

Whole-Brain Graph Theoretical Measures

M SD r with age

Structural Data

Global Efficiency 51.25262 5.84513 −0.30976**

Local Efficiency 9.35920 0.87052 −0.32981***

Strength 2341.00000 264.91236 −0.24684*

Between-Module Strength 8.47879 1.01790 −0.32609***

Within-Module Strength 59.67510 5.23890 −0.32179***

System Segregation 0.85780 0.01285 0.11109

Functional Data

Global Efficiency 0.31803 0.04720 0.17434

Local Efficiency 0.24162 0.09175 0.17274

Strength 63.54536 19.73774 0.16449

Between-Module Strength 0.27391 0.09351 0.20087

Within-Module Strength 0.44287 0.09511 0.09610

System Segregation 0.39044 0.06728 −0.37299***

Note. n = 143. Significance levels were Bonferroni-corrected for the six comparisons within each type of data.

*
p < 0.05 (corrected)

**
p < 0.01 (corrected)

***
p < 0.001 (corrected)
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Table 5

Age-Related Effects for Individual Structural Modules in Graph Theoretical Measures

β SE t

Local Efficiency F(8, 134) = 3.98*

 Intercept 104.29229 18.92983 5.51***

 Left Occipitoparietal 2.88457 2.39740 1.20

 Right Sensorimotor −1.83675 3.09747 −0.59

 Left Temporal −2.17130 1.41775 −1.53

 Left Frontal 3.88666 3.42036 1.14

 Right Temporal −2.15465 1.44363 −1.49

 Right Occipitoparietal 0.54483 1.92192 0.28

 Right Frontal −6.18217 3.19185 −1.94

 Left Sensorimotor −1.35082 3.32433 −0.41

Average Strength F(8, 134) = 6.57 ***

 Intercept 81.18864 13.48654 6.02***

 Left Occipitoparietal 0.00190 0.00734 0.26

 Right Sensorimotor −0.00586 0.01185 −0.49

 Left Temporal −0.00004 0.00907 −0.00

 Left Frontal 0.00534 0.01260 0.42

 Right Temporal 0.02161 0.00811 2.67*

 Right Occipitoparietal −0.01011 0.00691 −1.46

 Right Frontal −0.03991 0.01255 −3.18**

 Left Sensorimotor 0.00977 0.01066 0.92

Between-Module Strength F(8, 134) = 5.01***

 Intercept 84.18710 14.13182 5.96

 Left Occipitoparietal −10.41637 3.24369 −3.21**

 Right Sensorimotor 1.40800 2.89122 0.49

 Left Temporal −1.12334 1.68364 −0.67

 Left Frontal −5.82625 4.08627 −1.43

 Right Temporal −2.34705 1.67931 −1.40

 Right Occipitoparietal 7.41496 3.14906 2.35

 Right Frontal 7.64155 3.95221 1.93

 Left Sensorimotor −0.22232 2.09323 −0.11

Within-Module Strength F(8, 134) = 6.41***

 Intercept 147.94979 18.03139 8.21***

 Left Occipitoparietal −0.35574 0.34412 −1.03

 Right Sensorimotor −0.37518 0.38439 −0.98
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β SE t

 Left Temporal 0.16945 0.19609 0.86

 Left Frontal −0.30459 0.57252 −0.53

 Right Temporal 0.11456 0.19559 0.59

 Right Occipitoparietal −0.27214 0.31227 −0.87

 Right Frontal −2.00110 0.61113 −3.27**

 Left Sensorimotor 0.21976 0.25177 0.87

System Segregation F(8, 134) = 7.52***

 Intercept 35.72535 96.04730 0.37

 Left Occipitoparietal 306.21984 100.15202 3.06*

 Right Sensorimotor −111.12542 69.84089 −1.59

 Left Temporal 144.24193 106.03042 1.36

 Left Frontal 142.51680 110.71806 1.29

 Right Temporal 158.26074 92.95610 1.70

 Right Occipitoparietal −360.44381 143.11664 −2.52

 Right Frontal −397.03790 92.57621 −4.29***

 Left Sensorimotor 114.35982 83.57336 1.37

Note. n = 143. In each model, the eight structural modules were simultaneous predictors of years of age. Significance levels were Bonferroni-
corrected for the five models tested across the five graph theoretical measures.

*
p < 0.05 (corrected)

**
p < 0.01 (corrected)

***
p < 0.001 (corrected)
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Table 6

Age-Related Effects for Individual Functional Modules in Graph Theoretical Measures

β SE t

Local Efficiency F(6, 136) = 1.80

 Intercept 41.31116 5.146996 8.03***

 Sensorimotor 56.07201 55.46622 1.01

 Posterior Default Mode 44.73170 64.13577 0.70

 Limbic 30.23440 60.34445 0.50

 Auditory −56.09747 59.58090 −0.94

 Occipitoparietal −117.48682 63.71440 −1.84

 Anterior Default Mode 66.17992 51.26892 1.29

Average Strength F(6, 136) = 1.67

 Intercept 43.68244 6.90759 6.32***

 Sensorimotor 0.10599 0.18766 0.56

 Posterior Default Mode 0.06769 0.21881 0.31

 Limbic 0.02701 0.20713 0.13

 Auditory −0.32386 0.19929 −1.63

 Occipitoparietal −0.08675 0.21428 −0.40

 Anterior Default Mode 0.25262 0.14716 1.72

Between-Module Strength F(6, 136) = 1.90

 Intercept 43.22746 6.32220 6.84***

 Sensorimotor 123.32941 71.23761 1.73

 Posterior Default Mode −34.07876 58.51800 −0.58

 Limbic 33.01096 79.79670 0.41

 Auditory −68.39300 56.56471 −1.21

 Occipitoparietal −7.62831 71.276211 −0.11

 Anterior Default Mode −24.12699 66.81465 −0.36

Within-Module Strength F(6, 136) = 2.39

 Intercept 50.117151 9.61299 5.21***

 Sensorimotor 12.563806 19.23348 0.65

 Posterior Default Mode 9.630588 21.64333 0.44

 Limbic 7.976398 21.98047 0.36

 Auditory −32.700663 21.31006 −1.53

 Occipitoparietal −42.584382 19.93200 −2.14

 Anterior Default Mode 37.563381 15.59978 2.41

System Segregation F(6, 136) = 7.15***
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β SE t

 Intercept 82.352863 8.99377 9.16***

Sensorimotor −18.320810 18.17476 −1.01

 Posterior Default Mode 37.084187 17.61200 2.11

 Limbic −33.713374 18.21081 −1.85

 Auditory −30.072195 19.90084 −1.51

 Occipitoparietal −63.922704 15.18916 −4.21***

 Anterior Default Mode 12.781443 21.30350 0.60

Note. n = 143. In each model, the six functional modules were simultaneous predictors of years of age. Significance levels were Bonferroni-
corrected for the five models tested across the five graph theoretical measures.

*
p < 0.05 (corrected)

**
p < 0.01 (corrected)

***
p < 0.001 (corrected)
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