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ABSTRACT

Our goal was to evaluate the utility of diffusion tensor imaging (DTI) for predicting future 

cognitive decline in mild cognitive impairment (MCI) in conjunction with AD biomarkers 

(amyloid PET and AD signature neurodegeneration) in 132 MCI individuals ≥60 years old with 

structural MRI, DTI, amyloid PET, and at least one clinical follow-up. We used mixed effect 

models to evaluate the prognostic ability of fractional anisotropy of genu of the corpus callosum 

(FA-Genu), as a cerebrovascular disease (CVD) marker, for predicting cognitive decline along 

with AD biomarkers. We contrasted the value of white matter hyperintensities, a traditional CVD 

marker as well as FA in the hippocampal cingulum bundle (FA-HCB) with the FA-Genu models. 

FA-Genu significantly predicted cognitive decline even after accounting for AD biomarkers. 

WMH was not associated with cognitive decline in the model with WMH and FA-Genu. DTI 

specifically FA-Genu provides unique complementary information to AD biomarkers and has 

significant utility for prediction of cognitive decline in MCI.
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1. INTRODUCTION

Mild Cognitive Impairment (MCI) is often a prodrome of dementia(Petersen, 2009) with a 

progression rate of 10–15% per year (Bruscoli and Lovestone, 2004; Petersen et al., 2001) 

and many of those with MCI who progress to AD dementia have elevated levels of Aβ 
(Quigley, Colloby and O’Brien, 2011). Because a significant proportion of variability in 

progression to dementia from MCI is not explained by brain Aβ levels, there is a need for 

additional biomarkers to aid in the prediction of future cognitive decline in MCI.

Diffusion tensor imaging (DTI) is a promising marker for cerebrovascular disease (CVD)(Tu 

et al., 2017; Williams et al., 2017). Studies have shown that reduction of fractional 

anisotropy (FA) or directionality and increase in overall mean diffusivity (MD) are 

associated with cognitive decline (Croall et al., 2017; Tuladhar et al., 2015). We recently 

reported that the FA of the genu of the corpus callosum (FA-Genu) is a useful biomarker of 

CVD because the loss of microstructural integrity in the genu was associated with worsening 

of systemic vascular health and cerebrovascular injury even after accounting for AD 

pathologies (Vemuri et al., 2018). This was supported by several studies that have found 

disconnection of the white matter (WM) tracts in MCI in the context of CVD (Catani and 

ffytche, 2005; O’Sullivan et al., 2001). Our primary aim was to test if poor WM 

microstructural health, as captured by FA-Genu, was predictive of faster cognitive decline 

and to evaluate its clinical utility in the presence of AD biomarkers (amyloid and 

neurodegeneration).

Using DTI, we investigated the interrelationships between FA-Genu, amyloid pathology, 

neurodegeneration (cortical thickness in AD signature regions) and cognitive decline among 

MCI participants, aged 60 years and older, and enrolled in the population-based Mayo Clinic 

Study of Aging (MCSA). In addition, we also compared the effectiveness of DTI measures 

from a different region, FA in the hippocampal cingulum bundle (FA-HCB), a tract that has 

been known to be vulnerable to AD pathology.

2. MATERIALS AND METHODS

2.1. Selection of Participants

The MCSA was designed to investigate the epidemiology of MCI and risk factors for MCI 

and dementia among the residents of Olmsted County Minnesota. The MCSA sample 

population was enumerated from the Olmsted county population using the Rochester 

Epidemiology Project (REP) medical records -linkage system (Rocca et al., 2012; St Sauver 

et al., 2012). The MCI participants were diagnosed based on the published consensus criteria 

(Petersen et al., 2010) that were described previously. In the current analyses, we included 

participants ≥60 years of age who had a diagnosis of MCI at the time of their structural 

MRI, DTI, FLAIR-MRI, and amyloid PET scans that had sufficient quality and had detailed 

neuropsychology evaluation at the imaging visit, and at least one clinical follow-up.

Standard protocol approvals, registrations, and patient consents: The study was 

approved by the Mayo Clinic and Olmsted Medical Center institutional review board and 

written informed consent was obtained from all participants.
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2.2. Imaging Biomarkers

All MRI scans were obtained on a 3T GE scanner with an eight channel phase array coil 

(GE, Milwaukee, WI).

2.2.1. DTI acquisition and processing: DTI acquisition was performed using a 

single-shot echo-planar imaging sequence with an isotropic resolution of 2.7 mm. The DTI 

data consisted of 46 images for each set with 41 diffusion-encoding gradient directions 

(b=1000 s/mm2) and 5 non diffusion-weighted images (b=0 s/mm2). The diffusion data were 

preprocessed using the in-house developed pipeline. Briefly, the images were skull stripped 

(Reid et al., 2018), denoised (Veraart et al., 2016), corrected for head motion and eddy 

current distortion (Andersson et al., 2016), Gibbs ringing (Kellner et al., 2016), and then 

Rician noise bias correction was performed (Koay et al., 2009). Diffusion tensors were then 

fitted by nonlinearly minimizing the squared residuals (Garyfallidis et al., 2014), and FA and 

MD maps were calculated from the tensors. Advanced normalization tools –Symmetric 

Normalization (ANTS-SyN) (Avants et al., 2011) was used to non-linearly register FA image 

of the JHU “Eve” atlas to each participant’s FA image (Oishi et al., 2009) and the median 

values of FA in each region were obtained. The atlas was slightly modified by fusing the left 

and right portions of structures spanning the left-right mid-plane, such as the genu and pons.

2.2.2. Neurodegeneration Assessment from structural scans: The cortical 

thickness measurements were performed from MPRAGE scans using the FreeSurfer version 

v5.3, and estimated the average cortical thickness of AD signature regions including the 

entorhinal cortex, inferior temporal, middle temporal and fusiform gyrus. A derived single 

measure was used as the surrogate marker of neurodegeneration (Schwarz et al., 2016).

2.2.3. Amyloid Assessment from PET scans: The detailed descriptions of 

acquisition, processing and summary measure calculation for amyloid PET scans were 

published previously (Jack et al., 2017). A cortical global Pittsburgh compound B positron 

emission tomography (PiBPET) standardized uptake value ratio (SUVR) was computed by 

calculating the median uptake over voxels in the prefrontal, orbitofrontal, parietal, temporal, 

anterior cingulate, and posterior cingulate/precuneus ROI values for each participant 

normalized by the cerebellar crus grey matter of the in house atlas modified from (Lopresti 

et al., 2005) and used as a global amyloid load measure.

2.2.4. Cerebrovascular Pathology Assessment from FLAIR scans: The 

acquisition and analysis of FLAIR-MRI images on the study participants were described in 

detail by Graff-Radford et al (Graff-Radford et al., 2019). Briefly, all subjects MPRAGE and 

FLAIR images were co-registered to template space using Statistical parametric Mapping. 

Then FLAIR images were masked using the segmented WM mask from MPRAGE image to 

remove the non-brain tissue and voxels other than WMH. WMH voxels on FLAIR images 

were segmented using semi-automated clustering technique as described in (Graff-Radford 

et al., 2019). These custom made masks were further visually inspected and manually edited 

by the trained analysts to exclude the artifacts from the WMH volume. We used the WMH 

fraction as ratio of WMH to the total intracranial volume as our outcome measure.
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2.3. Cognitive Performance Measures

A detailed neuropsychological evaluation was performed on all MCSA participants as 

described previously (Petersen et al., 2010; Roberts et al., 2008). We assessed four cognitive 

domains using nine tests: executive (Trail Making Test Part B and Wechsler Adult 

Intelligence Scale–Revised (WAIS-R) Digit Symbol), language (Boston Naming Test and 

category fluency), Memory (Wechsler Memory Scale–Revised (WMS-R) Logical Memory-

II (delayed recall), WMS-R Visual Reproduction-II (delayed recall), Auditory Learning 

Verbal Test delayed recall) and Visuospatial performance (WAIS-R Picture Completion and 

WAIS-R Block Design). In this study, we used a global cognitive function standard score 

that was derived from the z-transformation of the average of the four standardized cognitive 

domain scores: memory, language, attention/executive, and visuo-spatial function (Vemuri et 

al., 2014).

2.4. Statistical Analysis

All statistical analyses were performed using R statistical software, version 3.4.2 

(RFoundation).

2.4.1. Evaluation of the DTI biomarker and education/occupation variables 
for predicting global cognition—We examined the effect of each of the DTI markers 

(FA-Genu) in the primary models and FA-HCB in the sensitivity analyses) and AD markers 

on longitudinal global cognitive performance using linear mixed effect models. We fit three 

separate linear mixed effect models for the DTI marker with global cognition as the 

dependent variable, and follow-up time, age, sex, education/occupation and various imaging 

biomarkers as fixed predictors. In the first model, we only used the DTI marker, in the 

second model the DTI marker in conjunction with amyloid and in the third model the DTI 

marker in conjunction with amyloid and neurodegeneration. In these models we considered 

all the main effects as well as the interactions of interest with time. We also tested for 

interactions of age, sex and education/occupation with the DTI marker. The models were fit 

with random intercepts and slopes. We did not test for three way interaction because of 

limited power. Among the three separate models for our predictors of interest, we compared 

the goodness-of-fit using Akaike information criteria (AIC). Lower AIC suggests greater 

prediction of variance in the data. The non-significant terms were removed from the model 

one at time, accounting for nested effects, until the final parsimonious models were reached. 

All models were tested and controlled for within-subject autocorrelation of the repeated 

measures.

The final parsimonious model included all main effects as well as all significant two-way 

interactions of potential predictors with time. We tested specifically for: interactions of the 

DTI imaging biomarker, other imaging biomarkers (PIB and cortical thickness), education/

occupation, age and time. The global amyloid values used in the model were log 

transformed. A significant interaction of predictor with time would estimate the rate of 

change of global cognition over time based on the values of predictor variables.

2.4.2. Assessing the utility of DTI biomarker in conjunction with WMH—We 

estimated the added value of DTI marker for prediction of longitudinal cognition in MCI 
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after accounting for WMH. The WMH was analyzed as percentage of total intracranial 

volume (TIV) in the model and values were log transformed. We fitted linear mixed effect 

models with global cognition as the outcome variable and with age and time as fixed effects. 

The final parsimonious model included all significant interactions of imaging biomarkers 

with time, main effects nested within those interactions, and other significant main effects.

3. RESULTS

The demographics, APOE4 status, intellectual enrichment variables, cognitive measures, 

vascular and AD biomarker values are provided in Table 1. As depicted in Table 1, out of 

132 MCI participants, 51 (39%) were APOE4 positive and 73 (55%) amyloid-positive. 

Participants had a mean education level of 13.8 years and an education/occupation mean 

score of 11.7. The baseline global cognition z-scores were normally distributed among the 

participants. The mean follow-up time was 4.05 years (SD).

3.1. FA-Genu for prediction of longitudinal cognitive decline

The results of the three linear mixed effect models: 1) FA-Genu alone; 2) FA-Genu and PIB 

combined; and 3) FA-Genu, PIB and cortical thickness are presented in Table 2. In all three 

models with FA-Genu, higher education/occupation scores were associated with better 

baseline cognitive performance (p<0.01). In the model of FA-Genu alone, age was a 

predictor of baseline cognitive performance and had a faster rate of cognitive decline. Sex 

was not a significant predictor of cognition in any of the models and dropped out from 

further analysis. In model 3, all three biomarkers (FA-Genu, PIB, and cortical thickness) 

significantly predicted the rate of cognitive decline (p<0.05). The significant interaction 

between FA-Genu and time indicated that MCI participants with higher FA declined more 

slowly over time. In the third model with all three imaging predictors, the AIC was lower 

providing evidence that including all imaging predictors improved prediction of longitudinal 

cognition. A plot of predicted global cognition categorized by the imaging biomarkers and a 

spaghetti plot of global cognition as a function of age are shown in Figures 1. In the left 

panel, we illustrated the predicted cognition z-score trajectories by FA-Genu and PIB values 

maintaining education/occupation as constant. We found that the participants with low FA-

Genu and high PIB declined fastest among the groups.

3.2. FA-HCB for prediction of longitudinal cognitive decline

The results of the linear mixed effect models of FA-HCB, which were conducted as part of 

our sensitivity analyses, are presented in Table 3. In all three models of FA-HCB, education/

occupation was an important component as in the FA-Genu models. Older age significantly 

predicted faster rate of annual cognitive decline in models with FA-HCB alone and model 2 

(FA-HCB+ with PIB). FA-HCB had significant interactions with sex and PIB in model 2. 

FA-HCB predicted cognitive decline (interaction with time) only in models 1 and 2. In the 

third model (FA-HCB, PIB and cortical thickness), only PIB and cortical thickness but not 

FA-HCB significantly predicted the longitudinal rate of cognitive decline. However there 

were significant interactions of FA-HCB with PIB and FA-HCB with baseline age in model 

3. The predicted cognition z-score trajectories by the FA-HCB and PiB levels maintaining 

education/occupation as constant are illustrated in Figure 2. We found that although the 
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participants with low FA-HCB and high PIB declined fastest among the groups, the FA-

HCB interacts with PIB. The Comparison of these results with FA-Genu suggests that FA-

Genu is a better DTI marker than FA-HCB which may be in the pathway of the AD 

biomarker cascade.

3.2. DTI association with WMH

The linear mixed model results with both DTI marker and WMH after adjusting for age, 

time from baseline, and education/occupation score results in a simplified model as shown in 

Table 4 because WMH drops out due to non-significant effect. Therefore only the DTI 

marker, FA-Genu (p=0.01) but not WMH, significantly predicted longitudinal cognition.

4. DISCUSSION

The present study aimed to examine the utility of DTI imaging for predicting cognitive 

decline in MCI individuals over 60 years of age in conjunction with brain amyloidosis and 

neurodegeneration. The major findings of this population based study are as follows:(1) FA-

Genu was significantly associated with cognitive rate of decline in MCI individuals even 

after adjusting for information provided by amyloid deposition and neurodegeneration; (2) 

FA-HCB was not significantly associated with cognitive rate of decline after adjusting for 

amyloid deposition and neurodegeneration; and (3) only FA-Genu and not WMH was 

associated with cognitive decline when the model contained both WMH and FA-Genu.

DTI is a promising biomarker for studying the integrity of WM in MCI. Here, we found a 

significant association between WM structural integrity, measured by FA-Genu, and 

cognitive decline among MCI participants. Importantly, this association was independent of 

PIB and cortical thickness, supporting its utility as a biomarker in MCI.

The well-defined mechanism of cognitive impairment is that of cortical disconnection 

(Catani and ffytche, 2005; Lamar et al., 2008) which has been suggested to be influenced by 

CVD (Croall et al., 2017; Tu et al., 2017; Tuladhar et al., 2015). The CC is the largest WM 

tract in the brain and plays a crucial role in interhemispheric communication. The loss of 

these connections can disrupt connectivity of several cortical regions and recognized in age 

related cognitive declines (O’Sullivan et al., 2001). These WM changes can therefore be the 

underlying cause of widespread cognitive impairment in CVD characterized by predominant 

dysfunction in attention, psychomotor speed, and executive function.

Several lines of evidence indicate the relationship between frontal lobe damage and vascular 

disease (Knopman et al., 2015; Tullberg et al., 2004) suggesting that the genu of the CC is 

the most susceptible region to vascular disease effects. Further, FA-Genu was found to 

capture early changes due to systemic vascular health which lends itself as a useful CVD 

biomarker in MCI (Vemuri et al., 2018). As reported in prior studies (Croall et al., 2017; 

Vemuri et al., 2018), FA is a sensitive marker of CVD. We did not investigate MD here 

because it measures overall water diffusion and may be less specific to subtle microstructure 

WM abnormalities due to CSF contamination (CSFC). The contribution of partial volume 

effect due to CSFC has been found more problematic in brain structures with close 

proximity of ventricles such as the fornix and the genu of CC (Concha et al., 2005; Jones 
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and Cercignani, 2010). Additionally, a greater CSFC for the diffusivity measurements than 

FA was demonstrated previously in the fornix of the older adults (Metzler-Baddeley et al., 

2012) and genu of CC in the MCI subjects (Berlot et al., 2014).

Multiple studies have documented CC atrophy in clinically diagnosed MCI and AD 

dementia (Elahi et al., 2015; L. Wang et al., 2009), and some have reported predominant 

atrophy in the anterior part (Thomann et al., 2006; Zhu et al., 2012). However, the CC 

changes in MCI across studies have not been consistent (Thomann et al., 2006; H. Wang and 

Su, 2006). A previous Rotterdam Study in MCI patients with CVD found microstructural 

damage in the genu, internal and external capsule, and periventricular WM, but in those 

without CVD, deterioration was found along the hippocampal tract (Papma et al., 2014) 

suggesting that the anterior changes may be more specific to CVD. A consistent DTI change 

in the genu was also demonstrated in patients with subcortical vascular dementia (Chen et 

al., 2009) further supporting our use of FA-Genu.

One would argue against using a specific tract instead of global DTI measures. For example, 

data from the participants of Atherosclerosis Risk in Communities Study (ARIC) showed an 

association between overall DTI measures with cognitive decline, incident MCI, dementia 

and mortality longitudinally (Power et al., 2019). The same was true in a recent Harvard 

Aging Brain Study where a global FA measure significantly predicted longitudinal cognitive 

decline even after adjusting for amyloid level (Rabin et al., 2019). However we specifically 

chose FA-Genu because other limbic tracts such as hippocampal cingulum and fornix have 

been observed in preclinical AD (Chao et al., 2013; Gold et al., 2014; Jacobs et al., 2018; 

Rieckmann et al., 2016), suggesting its relationship with amyloid pathology. The sensitivity 

analyses we conducted in Table 3 support associations between HCB and AD 

pathophysiology. With amyloidosis and neurodegeneration in the model (model 3), we did 

not find any significant interaction between FA-HCB and time. The observed interaction 

between FA-HCB and PiB suggests that CGH may be a part of the AD pathway (Jacobs et 

al., 2018). More importantly, measuring FA-Genu we are able to capture the independent 

effect of vascular disease. We also performed sensitivity analyses using cognitive 

subdomains which indicated variability in associations across the domains as expected due 

to the heterogeneity seen in etiology of MCI (supplementary table).

Evaluating conventional CVD measures like WMH is important to determine the utility of 

DTI over traditional measures. Although the modifiable cardiovascular risk factors such as 

hypertension, diabetes and BMI are identified in association with WM integrity declines 

(Wassenaar et al., 2019), measurement of WMH provides the extent of CVD damage. While 

WMH alone was predictive of cognitive decline, we found that WMH was not predictive of 

cognitive decline in the combined linear mixed model with FA-Genu in the model. These 

findings support the independent utility of FA-Genu for predicting cognitive performance in 

MCI patients aged 60 years and older as it may be able to capture more subtle 

microstructural damage.

The present study has some strengths and limitations. A major strength is the availability of 

amyloid PET, MRI, and longitudinal cognitive outcomes in a population based sample. 

There are several limitations. We relied on simple and robust measures (genu FA and global 
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cognitive- z score) to study the relationship between DTI metrics and longitudinal cognitive 

decline after accounting for AD biomarkers. The small sample size to detect subtle effects 

such as those with WMH may limit the findings of the study. Highly educated individuals in 

the cohort may have an influence on the generalizability of this study. There is some 

regional variability in the etiology of WMH as shown recently (Al-Janabi et al., 2018; Graff-

Radford et al., 2019; Weaver et al., 2019) but we only considered global WMH in this work 

and not regional WMH because global WMH is the typically used CVD measure in most 

aging and dementia studies. Additionally, newer biophysical modelling methods that may 

allow for robust metrics such as NODDI (Neurite Orientation Dispersion and Density 

Imaging) and Free Water Elimination (FWE) may be helpful in providing better metrics of 

WM integrity and will be part of future investigations. In contrast to DTI, these techniques 

could reliably account for the partial volume effects by CSFC and therefore provide better 

sensitivity even in the asymptomatic/preclinical stages.

5. CONCLUSIONS:

Our findings illustrate the complex interplay between brain structure, brain function, and 

cognitive decline in MCI. Greater DTI measures (indicator of brain reserve or structure) 

predicted slower decline over time. Accounting for brain structure (neurodegeneration and 

WM integrity) and amyloid strengthen our findings. DTI has significant utility for prediction 

of cognitive decline in MCI from population-based sample and will provide complementary 

information to AD biomarkers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• DTI changes in the genu of the corpus callosum predicts cognitive decline in 

MCI.

• Poor white matter health provided prognostic information beyond 

Alzheimer’s disease biomarkers.

• DTI measure in the genu provided greater prognostic information than the 

WMH.
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Figure 1: 
(Left) The predicted global cognitive trajectories for a 78 year old participant by time from 

baseline for a given FA-Genu and amyloid level. In the graph, low and high were defined by 

25th and 75th percentiles. (Right) Spaghetti plot of global cognition as a function of age.
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Figure 2: 
The predicted global cognitive trajectories for a 78 year old participant by time from 

baseline for a given FA-HCB and amyloid level. In the graph, low and high were defined by 

25th and 75th percentiles.
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Table 1.

Characteristics table of MCI subjects with the mean (SD) listed for the continuous variables and count (%) for 

the categorical variables.

Characteristic All Subjects n = 132

Demographics

 Age, yrs 77.3 (7.4)

 Males, no. (%) 78 (59%)

 APOE, no. (%) 51 (39%)

Intellectual Enrichment

 Education/Occupation 11.7 (2.7)

 Education, yrs 13.8 (2.9)

Cognitive Measures

 MMSE 25.8 (1.8)

 Global z-score −1.58 (0.97)

 Memory z-score −1.56 (1.06)

 Language z-score − 1.29 (1.20)

 Attention z-score −1.40 (1.44)

 Visualspatial z-score −0.79 (1.06)

PiB, Neurodegeneration, and Follow-up

 PIB SUVr 1.83 (0.55)

 PIB+, no. (%) 73 (55%)

 Neurodegeneration, mm 2.73 (0.21)

 Neurodegeneration+, no. (%) 93 (72%)

 Follow-up, yrs 4.05 (2.16)

 Dementia Progression, no. (%) 19 (14%)

Vascular Markers

 Cardio Metabolic Condition 2.71 (1.47)

 FA-Genu 0.57 (0.06)

 FA-HCB 0.45 (0.04)

 WMH/Total Intracranial Volume 0.014 (0.011)
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Table 2:

Mixed models evaluating the utility of the Genu FA (FA-Genu) in predicting cognitive performance

Models Variable Coefficient (s.e.) p-value

FA-Genu
AIC
973.9088

Intercept −2.118 (1.625) 0.19

Time −0.068 (0.267) 0.80

Baseline age −0.028 (0.013) 0.04

Education/occupation 0.097 (0.032) 0.003

FA-Genu 2.730 (1.726) 0.12

FA-Genu × time 0.748 (0.289) 0.01

Baseline age × time −0.006 (0.002) 0.002

FA-Genu+ PIB
AIC
940.3542

Intercept −4.050 (1.003) <0.001

Time −0.517 (0.152) <0.001

Education/occupation 0.077 (0.030) 0.011

FA-Genu 3.607 (1.557) 0.022

PiB −0.803 (0.306) 0.01

FA-Genu × time 0.904 (0.255) <0.001

PiB × time −0.246 (0.049) <0.001

FA-Genu+ PIB + Cortical thickness
AIC
900.9365

Intercept −5.543 (1.401) <0.001

Time −1.193 (0.222) <0.001

Education/occupation 0.090 (0.029) 0.003

FA-Genu 2.833 (1.605) 0.08

PiB −0.738 (0.315) 0.021

Cortical thickness 0.650 (0.452) 0.15

FA-Genu × time 0.528 (0.268) 0.049

PiB × time −0.164 (0.052) 0.002

Cortical thickness × time 0.307 (0.076) <0.001
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Table 3:

Mixed models evaluating the utility of the hippocampal cingulum bundle FA (FA-HCB) in predicting cognitive 

performance

Models Variable Coefficient (s.e.) p-value

FA-HCB
AIC
968.5585

Intercept 8.694 (5.222) 0.10

Time 0.008 (0.260 0.98

Baseline age −0.029 (0.013) 0.028

Education/occupation −0.844 (0.429) 0.051

FA-HCB −20.270 (11.221) 0.073

FA-HCB × time 1.002 (0.413) 0.016

FA-HCB × education/occupation 2.083 (0.946) 0.03

Baseline age × time −0.008 (0.002) <0.001

FA-HCB + PIB
AIC
949.1162

Intercept −2.306 (2.795) 0.41

Time −0.046 (0.243) 0.85

Baseline age −0.021 (0.014) 0.12

Male −5.078 (2.156) 0.02

Education/occupation 0.078 (0.031) 0.014

FA-HCB 4.021 (5.477) 0.46

PiB 6.545 (3.458) 0.061

FA-HCB × time 0.823 (0.388) 0.034

FA-HCB × male 11.395 (4.773) 0.019

FA-HCB × PiB −15.960 (7.759) 0.042

PiB × time −0.199 (0.056) <0.001

Baseline age × time −0.005 (0.002) 0.026

FA-HCB+ PIB + Cortical thickness
AIC
899.9934

Intercept 21.230 (11.670 0.07

Time −1.074 (0.215) <0.001

Baseline age −0.412 (0.163) 0.013

Education/occupation 0.089 (0.030) 0.003

FA-HCB −49.805 (25.514) 0.053

PiB 9.937 (3.896) 0.012

Cortical thickness 0.252 (0.476) 0.60

FA-HCB × baseline age 0.868 (0.360) 0.017

FA-HCB × PiB −23.645 (8.760) 0.008

PiB × time −0.155 (0.054) 0.004

Cortical thickness × time 0.371 (0.072) <0.001

FA-HCB × time 0.568 (0.383) 0.14
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Table 4:

Mixed models evaluating the utility of the Genu FA (FA-Genu) in conjunction with WMH predicting cognitive 

performance

Model Variable Coefficient S.E P-value

FA-Genu + WMH
AIC 995.102

Intercept −2.462 1.694 0.147

Time −0.110 0.285 0.699

Baseline age −0.026 0.014 0.066

Education/occupation 0.103 0.034 0.003

FA-Genu 2.231 1.866 0.234

WMH −0.091 0.136 0.506

FA-Genu × time 0.727 0.296 0.014

Baseline age × time −0.006 0.002 0.011

WMH × time −0.011 0.018 0.543

Educ/occ × time −0.005 0.005 0.372
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