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Abstract

Background/Aim: Few studies have evaluated the role of miRNAs in pediatric acute 

lymphoblastic leukemia (ALL) relapse and a consensus of a clinically significant miRNA 

signature is yet to be identified. In this study, we evaluated miRNAs associated with pediatric B-

ALL early relapse in two independent sample sets.

Materials and Methods: We performed global miRNA profiling on diagnostic bone marrow 

specimens from six early relapse (≤3 years after diagnosis) and six age- and cytogenetics-matched 

prolonged remission (≥4 years) patients (first set) and an independent set of 14 early relapse and 

14 matched prolonged remission specimens (second set).

Results: Twelve and 39 top differentially expressed miRNAs were observed in the first and 

second sets, respectively; however, there was no overlap between the top candidates. In post-hoc 

analyses six miRNAs (miR-101–3p, miR-4774–5p, miR-1324, miR-631, miR-4699–5p and 

miR-922) among the top candidates in the second, but not the first set, were consistently 

upregulated in early relapse compared to remission specimens in both first (fold change=1.13–

2.19, q<0.38) and second (fold change=1.48–4.78, all q<0.05) sets. Four (miR-631, mir-101–3p, 

miR-922 and miR-1324) of these miRNAs have been previously implicated in key functional 

oncogenic pathways in adult cancers.
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Conclusion: This study suggests that six candidate miRNAs, not previously implicated in 

pediatric ALL, are associated with early relapse in pediatric B-ALL. Validation and investigation 

of mechanistic roles of these miRNAs in a larger cohort are warranted, so that they may be used as 

prognostic markers for early relapse of pediatric B-ALL.
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Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed among 

children, accounting for a quarter of all cancer diagnoses and three-quarters of childhood 

leukemia diagnoses (1, 2). The 5-year and overall survival rates of ALL have increased over 

the years to approximately 80% and 85%, respectively (1–3), largely due to risk-

stratification and combination chemotherapy (4, 5). However, 10–15% of patients develop 

recurrence and, depending on the recurrence site, 5–50% will survive with only a third 

surviving long-term (6–9).

Knowledge on the mechanism of leukemia relapse is still limited (10–13). Few studies have 

evaluated the association between miRNA expression and pediatric ALL relapse (14). 

Although these studies have identified potential prognostic miRNAs, a consensus of a 

clinically significant miRNA signature is yet to be identified. In addition, several previous 

studies have investigated a limited number (n=1–723) of miRNAs (15–20) or have not 

included an independent replication dataset (17, 18). In this study, we provide additional 

evidence for the association between miRNAs and pediatric B-ALL early relapse by 

investigating a large number of miRNAs (~2,600 human miRNAs) in two independent 

sample sets.

Materials and Methods

Patient accrual and sample collection.

The study included two independent preselected sets of patients. The first set consisted of 

six patients with early relapse (≤3 years) and six cytogenetics (Lysine (K)- specific 

methyltransferase 2A gene, KMT2A, rearrangement and chromosomal translocation) 

matched prolonged remission (>3 years) patients with B-cell ALL diagnosed between July 

2008 and October 2013 at the Johns Hopkins School of Medicine. The second set consisted 

14 patients with early relapse and 14 age-, sex- and cytogenetics-matched remission patients 

with B-cell ALL obtained from the Children’s Oncology Group (21). Initial diagnostic bone 

marrow specimens were obtained for all patients in both sets. Clinical and pathological 

information was obtained from medical records (first set) or from the COG data center 

(second set). All samples and data were de-identified. The study, including sample 

acquisition, retrieval, processing and analysis, was approved by the Institutional review 

board of the Johns Hopkins All Children’s Hospital (IRB00056030).

miRNA microarray processing.

High quality total RNA (including miRNA) for the first and second set of samples were 

obtained from PAB’s lab at Johns Hopkins and COG’s biorepository, respectively. All 
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samples were transferred to Moffitt Cancer Center for profiling using a standard Affymetrix 

protocol.

The quality of the RNA in both sets was determined using NanoDrop (Thermo Scientific, 

Waltham, MA, USA) (all A260/A280 ≥1.8, except two samples that were 1.7) and run on a 

BioAnalyzer (Seattle, WA, USA). Global miRNA expression profiling was then performed 

using Affymetrix miRNA v 4.0 (Affymetrix, Santa Clara, CA, USA) on the two independent 

samples at different times. Labeling and hybridization were performed according to standard 

Affymetrix protocols using total RNA for each of the 40 samples.

Statistical analysis.

Demographic characteristics of study participants were summarized by relapse status for 

each sample set using descriptive statistics. Expression data were analyzed in the R 

environment (v3.4.2). We used the Affymetrix package and the pd.mirna.4.0 package for our 

specific array to load and process the data. Expression data were log transformed and 

normalized using the Robust Multi-array Average method. The Significance Analysis of 

Microarray (SAM) two-class unpaired method implemented in the samr Bioconductor 

package was used to identify differentially expressed miRNAs (23) in each set. The samr 
parameter delta=0.6 was selected to classify miRNAs as differentially expressed at a fold-

change>1.0 and a q-value<0.05. In post-hoc analyses, we used a fold-change>1.0 with no q-

value threshold to determine differentially expressed miRNAs in both datasets and then 

selected miRNAs differentially expressed in the same direction for both datasets. The 

analysis was limited to human miRNAs. We used the online tool, DNA Intelligent Analysis 

(DIANA) microT v5 (24), to predict targeted genes involved in leukemia for the identified 

miRNAs.

Results

Demographic and clinical characteristics of the study participants are shown in Table I. 

There were 8 females and 4 males in the first set compared to 14 females and 14 males in 

the second set. Participants in the second set had KMT2A wild type and were older with a 

longer median follow up compared to participants in the first set that had rearranged 

KMT2A and were infants with a shorter follow up.

A two-class unpaired comparison of the global profiles in the first set revealed 12 

upregulated miRNAs (fold change=1.48–4.45, all q<0.05) in early relapse samples 

compared to remission samples (Table II). A similar comparison of miRNA profiles in the 

second set revealed 39 up-regulated miRNAs (fold change=1.12–2.19, q<0.05) for relapse 

compared to remission samples. The top differentially expressed miRNAs in the second set 

were different from those of the first set (Table II). However, a post-hoc analysis that 

compared all the miRNA profiles in the two sets with no q-value threshold, revealed six 

miRNAs (miR-101–3p, miR-4774–5p, miR-1324, miR-631, miR-4699–5p and miR-922) 

consistently upregulated in early relapse compared to remission specimens in both the first 

(fold change=1.13–2.19, all q<0.38) and second (fold change=1.48–4.78, all q<0.05) sets 

(Figure 1); albeit all the miRNAs in the first set had q-values>0.05 (Table III). The six 
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miRNAs were among the top most differentially expressed miRNAs in the second set, but 

not in the first set (Table II).

In silico prediction of targeted genes of the six candidate miRNAs using DIANA microT 

revealed that all of them (miR-101–3p, miR-4774–5p, miR-1324, miR-631, miR-4699–5p 

and miR-922) targeted genes implicated in leukemia (24) (Table IV). In addition, four 

(miR-631, mir-101–3p, miR-922 and miR-1324) out of the six overlapping miRNAs have 

been previously implicated in key functional oncogenic pathways in adult cancers, including 

multiple myeloma, prostate, lung, liver, breast and head and neck cancers (25–31) (Table V).

Discussion

In this study, we evaluated the association between miRNA expressions and pediatric ALL 

early relapse in two independent samples. The top differentially expressed miRNAs in the 

two sample sets did not overlap. However, in a post-hoc analysis we observed six miRNAs 

(miR-101–3p, miR-4774–5p, miR-1324, miR-631, miR-4699–5p and miR-922) among the 

top candidates of the second set that were consistently upregulated in the first set, but were 

not among the top candidates in this set. Exploration of the potential function of these 

miRNAs using in silico analyses revealed that all six miRNAs target genes previously 

implicated in leukemia (24).

Previous studies have suggested the association between pediatric ALL relapse and 

miRNAs, such as miR-24, miR-128b, miR-223, miR-210, miR-335, miR-130b, miR-126, 

miR-222, miR-345, miR-708 and miR-23a (14). However, none of the six candidate 

miRNAs in this study have been previously implicated in pediatric B-ALL relapse. Four out 

of six, though, have been previously implicated in other cancers. miR-631, located on 

chromosome 15q24.2, is implicated in multiple myeloma, where a decreased expression is 

associated with bortezomib resistance (29). Expression of miR-631 is also downregulated in 

prostate cancer tissue and prostate cancer cell lines (25). Genetic variants of this miRNA are 

associated with risk of esophageal cancer (32) and survival and recurrence in renal cell 

carcinoma (33).

Mir-101–3p is located on chromosome 1p31.3 and is involved in negative regulation of 

protein ubiquitination and positive regulation of blood vessel endothelial cell proliferation. It 

is implicated in triple negative breast cancer (TNBC) and ectopic over-expression of 

mir-101–3p in TNBC cells in vitro inhibits cell proliferation (27). In addition, miR-101–3p 

expression is decreased in non-small cell lung cancer cells and overexpression inhibits 

proliferation, migration and invasion of these cells in vitro (30). Similarly, adenoid cystic 

carcinoma (ACC) samples and corresponding cell lines that have a high potential for 

metastasis have decreased miR-101–3p expression; and ectopic expression of miR-101–3p 

in ACC cell lines enhances the induction of apoptosis and inhibits invasion, proliferation, 

colony formation, and establishment of xenografts in nude mice (28).

MiR-922 is located on 3q29. Its expression is upregulated in hepatocellular carcinoma 

(HCC) samples and cell lines and plays a key role in the promotion of HCC cell proliferation 

(26). miR-1324 is located on chromosome 3p13. A recent study showed that inhibition of 
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miR-1324 enhances proliferation, migration and invasion of HCC cells (31). The other two 

candidate miRNAs (miR-4774–5p and miR-1324) observed in this study are located on 

2q24.3 and 3p12.3, respectively, but have not been previously implicated in other cancers.

A major limitation of the study is that the candidate miRNAs were identified in a post-hoc 
analysis in two datasets each with a small sample size. Therefore, a larger study with a 

prespecified hypothesis and approach to evaluate the identified candidates is warranted. 

Although we observed an overlap of miRNAs between the two datasets in a post-hoc 
analysis, the overlapping miRNAs in the first dataset were not among the top differentially 

expressed in that set in terms of fold change and q-value. It is plausible that the lack of 

common statistically significant overexpressed miRNAs could be attributed to the different 

genetic characteristics and age in the two independent sets. The lack of overlap could also 

suggest that miRNAs that play an important role in relapse might be different for the two 

populations, therefore, miRNAs for each set might reflect the biology of early ALL relapse 

in each group (infant ALL vs. ALL at an older age). However, the six overlapping miRNAs 

were consistently over-expressed in both datasets and in silico analyses predicted target 

genes in leukemia. These miRNAs may reflect a shared biology for early relapse in the two 

groups. Again, these promising preliminary findings are based on a post-hoc analysis and 

further evaluation of the suggested candidate miRNAs is warranted. Another limitation is the 

use of global miRNA expression in both datasets. Ideally, candidate miRNAs identified in 

the first set would be validated using a different assay, for example real-time quantitative 

polymerase chain reaction, on a second independent sample set. Additionally, target genes of 

the candidate miRNAs were determined in silico and need to be validated in the laboratory 

to determine their functional role in pediatric ALL relapse.

Despite these limitations, this study identified candidate miRNAs that may be evaluated 

further in pediatric B-ALL relapse as prognostic markers for pediatric B-ALL relapse. 

However, these candidates need to be evaluated and validated in a larger study and their 

biological role in pediatric B-ALL relapse should also be determined.
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Figure 1. 
Relative fold change for miRNAs differentially expressed in two independent sample sets 

(first set, 12 samples from JHU; second set, 28 samples from COG) of pediatric B-ALL 

initial diagnostic samples.
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Table III.

Differential expression of overlapping miRNAs in two independent sample sets.

First set Second set

miRNA Fold change q-value Fold change q-value

hsa-miR-101–3p 1.18 0.29 1.15 <0.05

hsa-miR-1324 2.04 0.20 1.18 <0.05

hsa-miR-4699–5p 1.20 0.29 1.18 <0.05

hsa-miR-4774–5p 1.18 0.38 1.71 <0.05

hsa-miR-631 1.44 0.26 1.19 <0.05

hsa-miR-922 1.65 0.11 1.15 <0.05
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Table IV.

Predicted target genes of miRNAs associated with relapse in pediatric B-ALL samples.

MicroRNA DIANA microT predicted target genes in leukemia (24)

hsa-miR-101–3p RUNX1T1, TGFB3

hsa-miR-1324 ZBTB16, NRAS, CBL, STAT5

hsa-miR-4699–5p E2F3, SOS1

hsa-miR-4774–5p CBL, NRAS, CCND1, PTPN11, SMAD4

hsa-miR-631 RUNX1T1, TGFB3

hsa-miR-922 PIMI, CDK6, BRAF, BCL2L1, IKBKB, PIK3R3, MECOM, NRAS, RUNX1, SMAD3, CRKL, SOS1, RAF1, PIK3R1, 
MAPK1, TGFBR1, PIK3R2
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