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Letter to the Editor 

Total infectomes of 162 SARS-CoV-2 cases using 

meta-transcriptomic sequencing 
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Table 1 

Summary of co-infections of SARS-CoV-2 and other microbes. 

SARS-CoV-2 Co-infecting microbes No. of cases Percent 

+ Virus 9 1.85% 

+ Multiple viruses 1 0.62% 

+ Virus + Bacteria 4 2.47% 

+ Virus + Bacteria + Fungi 1 0.62% 

+ One bacterium 33 20.37% 

+ Multiple bacteria 34 20.99% 

Total 82 50.62% 
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Dear editor, 

The World Health Organization (WHO) declared the Coronavirus 

isease 2019 (COVID-19) a pandemic on March 11 th , 2020. At the 

ime of writing (Nov 30, 2020), the causative virus SARS-CoV-2 

as resulted in > 62 million confirmed cases worldwide, with over 

453,0 0 0 fatalities (https://covid19.who.int/). Although detection of 

ARS-CoV-2 has become the top priority for patients with pneu- 

onia, co-infection with other common pathogens should not be 

eglected as co-infection is often associated with a greater risk 

f complications, particularly secondary bacterial pneumonia. Sev- 

ral case reports and a large-scale surveillance study on various 

espiratory pathogens via PCR-based methods targeting a limited 

umber of known pathogens have revealed high rates of micro- 

ial co-infection, such as co-infection of SARS-CoV-2 and Influenza 

irus, Dengue virus or Mycobacterium tuberculosis 1–3 . The more 

nformative metagenomic next-generation sequencing (mNGS) ap- 

roach, particularly meta-transcriptome sequencing, is unbiased 

or characterizing the total infectome within patients. In this jour- 

al, researchers previously reported SARS-CoV-2 and co-infections 

etected in 8 COVID-19 patients by metagenomics 4 . Besides that, 

nly few studies with limited sample size have been reported 

bout using metagenomics to analyze co-infections in COVID-19 

ases 5 , 6 . 

Herein, we performed the total transcriptome sequencing of up- 

er respiratory tract samples (nasopharynx swabs and sputum) 

rom 162 PCR-confirmed COVID-19 cases from 12 cities in Shan- 

ong province, China. RNA sequencing libraries were constructed 

sing MGIEasy mRNA Library Preparation protocol (MGI) after ri- 

osomal RNA (rRNA) was depleted. 162 libraries were obtained 

n total and subsequently 100 bp and 150 bp paired-end sequenc- 

ng of the RNA libraries were performed on the MGISEQ-20 0 0RS 

latform (MGI). The remaining sequencing reads after mapping to 

he human genome were compared against the non-redundant nu- 

leotide (nt) database using blastn to identify potential viruses. For 

 broader microbe discovery, we utilized MetaPhlan2 7 , which cov- 

rs ∼1 million unique clade-specific marker genes from bacterial, 

rchaeal and eukaryotic reference genomes. 

Reads mapping to SARS-CoV-2 were found in all samples, with 

he absolute read numbers from 14 to 115,299,054, and the num- 

er of Reads Per Million (RPM) ranging from 0.07 to 717,538.52. 

verall, 82 out of the 162 SARS-CoV-2 cases (50.62%) were co- 

nfected by at least one additional potentially pathogenic microbe 

 Table 1 ). Among these, 42 cases (25.93%) were co-infected with 

ne pathogen, including viruses ( n = 9), bacteria ( n = 33). The re-

aining 40 cases (24.69%) were co-infected with two or more 

athogens, including multiple virus co-infection ( n = 1), virus and 

acteria co-infections ( n = 4), virus, bacteria and fungi co-infections 

S

ttps://doi.org/10.1016/j.jinf.2020.12.004 

163-4453/© 2020 The British Infection Association. Published by Elsevier Ltd. All rights r
 n = 1), and multiple bacterial co-infections ( n = 34). Meanwhile, 

he abundance of SARS-CoV-2 was lower in samples co-infected 

ith at least one microbe ( p < 0.05) compared to that of the sam-

les without co-infections (Fig S1c). Further analysis also showed 

 significantly lower abundance of SARS-CoV-2 in samples with 

treptococcus pneumoniae , Haemophilus parainfluenzae and Neisseria 

eningitidis ( p < 0.05) (Fig S2a, 2d, 2f). However, we did not find 

 positive correlation between associated factors (age or sex of the 

atients, variety or abundance of the co-infected microbes) and the 

bundance of SARS-CoV-2 (Fig S1a-b and Fig S2g-l). 

We identified 7 viruses with potential pathogenicity in 15 of the 

62 (9.26%) COVID-19 cases. Human alphaherpesvirus 2 was the 

ost frequently detected virus ( n = 6), followed by Human H3N2 

nfluenza virus ( n = 3), Human coronavirus 229E ( n = 2), Human 

etapneumovirus ( n = 2), and Human coronavirus NL63 ( n = 1) 

 Fig 1 a, Table S1). In addition, two rare respiratory viruses, Human 

hinovirus C11 ( n = 1, RPM: 6.84) first reported in 2020 and Human 

nterovirus C105 ( n = 1, RPM: 6969.31) first reported in 2019 in 

hina, were also identified ( Fig 1 a, Table S1), sharing 91% and 96%

ucleotide identity to known reference viruses, respectively. Hu- 

an enterovirus C105 has been associated with acute flaccid paral- 

sis in children and respiratory tract infection in teenagers 8 . Our 

esults revealed a relative low co-infection rate of other respiratory 

iruses with SARS-CoV-2: 9.26% (15/162) versus 20.7% (24/116) in 

 previous report 9 . 

High rates of co-infection of common, but important pathogenic 

r opportunistic bacteria were also detected ( Fig 1 a), including S. 

neumoniae ( n = 37), Stenotrophomonas maltophilia ( n = 31), Pseu- 

omonas putida ( n = 21), H. parainfluenzae ( n = 19), Haemophilus 

nfluenzae ( n = 14), N. meningitidis ( n = 11), Moraxella catarrhalis 

 n = 3), Streptococcus pyogenes ( n = 1), Streptococcus epidermidis 

 n = 1), as well as two species of mycoplasma: Mycoplasma hy- 

rhinis ( n = 3) and Mycoplasma pneumoniae ( n = 1) ( Fig 1 a). Im-

ortantly, all bacterial infections were confirmed by PCR using 

pecies-specific primers. As a commensal microbe in the respira- 

ory tract of pigs and rarely seen in humans, M. hyorhinis was 

nexpected identified in three cases, although it was present at 

 relatively low abundance (39–79 RPM). Overall, 72 of the 162 

ARS-CoV-2 patients (4 4.4 4%) possessed at least one additional 
eserved. 

https://doi.org/10.1016/j.jinf.2020.12.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jinf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jinf.2020.12.004&domain=pdf
https://doi.org/10.1016/j.jinf.2020.12.004
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Fig. 1. Co-infecting microbes with SARS-CoV-2 and the diversity of ARGs in each sample. (a) Heatmap showing the abundance of different microbes within each sample, 

normalized to the number of unique reads mapped per million input reads (RPM) and log2 transformed. (b) Diversity of resistance genes observed in each sample, colored 

by the drug class to which these genes confer resistance. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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acterium. One species of fungi, Candida albicans ( n = 1, RPM: 600) 

as identified ( Fig 1 a). Our results highlighted more potential co- 

nfections with bacteria (4 4.4 4%, 72/162) than with viruses (9.26%, 

5/162) or fungi (0.62, 1/162), in contrast to a recent study 10 . 
45 
We further analyzed the expression of 52 unique antibiotic 

esistance genes (ARGs) associated with phenotypic resistance 

o seven classes of antibiotics: aminoglycoside, nitroimidazole, 

ulphonamide, phenicol, tetracycline, beta-lactam and macrolide 
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 Fig. 1 b). The number of ARGs varied sharply from 0 to 28 among

he 162 SARS-CoV-2 cases. Regarding those with concurrent in- 

ections ( n = 82), most presented resistance to aminoglycosides 

66/82), beta-lactam (78/82), macrolide (74/82) and tetracycline 

63/82), whereas a small number of samples possessed genes resis- 

ant to nitroimidazole (1/82), phenical (26/82) and sulphonamide 

24/82) ( Fig 1 b). Unsurprisingly, a greater diversity of resistance 

enes was identified in samples with more bacteria ( p < 0.05) (Fig 

1d). 

In sum, our mNGS analysis did not reveal high co-infection 

ates of other respiratory viruses (such as influenza viruses), my- 

oplasma and fungi with SARS-CoV-2. However, we did document 

igh rates of co-infection between SARS-CoV-2 and multiple bac- 

eria with numerous ARGs. Although the potential influence of co- 

nfections of SARS-CoV-2 and other microbes in disease progress 

nd severity remains poorly understood, the treatment of bacte- 

ial infection might provide clinical benefit for COVID-19 in cases 

here therapeutics are available. 
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ig. S1. Statistical analysis of the correlation between different factors and the abundan

etween age/sex of the patients and the abundance of SARS-CoV-2. (b) Correlation betw

etween groups were assessed with Spearman’s rank correlation test. (c) Comparisons of 

ions. (d) Comparisons of the diversity of ARGs between samples with less than or equal 

ssessed with a Wilcoxon test. 
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