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One of the serious mental disorders where people interpret reality in an abnormal state is schizophrenia. A combination of
extremely disordered thinking, delusion, and hallucination is caused due to schizophrenia, and the daily functions of a person are
severely disturbed because of this disorder. A wide range of problems are caused due to schizophrenia such as disturbed thinking
and behaviour. In the field of human neuroscience, the analysis of brain activity is quite an important research area. For general
cognitive activity analysis, electroencephalography (EEG) signals are widely used as a low-resolution diagnosis tool. The EEG
signals are a great boon to understand the abnormality of the brain disorders, especially schizophrenia. In this work, schizophrenia
EEG signal classification is performed wherein, initially, features such as Detrend Fluctuation Analysis (DFA), Hurst Exponent,
Recurrence Quantification Analysis (RQA), Sample Entropy, Fractal Dimension (FD), Kolmogorov Complexity, Hjorth ex-
ponent, Lempel Ziv Complexity (LZC), and Largest Lyapunov Exponent (LLE) are extracted initially. The extracted features are,
then, optimized for selecting the best features through four types of optimization algorithms here such as Artificial Flora (AF)
optimization, Glowworm Search (GS) optimization, Black Hole (BH) optimization, and Monkey Search (MS) optimization, and
finally, it is classified through certain classifiers. The best results show that, for normal cases, a classification accuracy of 87.54% is
obtained when BH optimization is utilized with Support Vector Machine-Radial Basis Function (SVM-RBF) kernel, and for
schizophrenia cases, a classification accuracy of 92.17% is obtained when BH optimization is utilized with SVM-RBF kernel.

1. Introduction

The reason for schizophrenia occurrence is generally not
known, but researchers believe that it is a combination of the
environment and brain genetics which contributes a lot to
the development of this disorder [1]. The signs and symp-
toms usually involve disorganized speech, delusions, im-
paired functions of organs, and hallucinations [2].
Symptoms generally vary with type and severity depending
on time, sometimes remission of symptoms can occur and
sometimes the existing symptom can worsen to a great
extent. The symptom of schizophrenia in teenagers is more
or less the same as those in adults as they experience a drop
in performance at school, lack of motivation, irritability,
depressed mindset, withdrawal from friends and family, and

also suffer from trouble sleeping [3]. People affected with
schizophrenia generally lack awareness that their difficulty
originates from a mental disorder which requires careful
medical screening [4]. Suicidal thoughts and behaviour too
are very common symptoms of schizophrenia. Certain
naturally occurring brain channels such as neurotransmit-
ters when altered or disturbed may contribute to schizo-
phrenia [5].Though the precise cause of schizophrenia is not
known, the common risk factors are having a family history
of schizophrenia, birth complications, exposure to toxic
elements, malnutrition, and psychotropic drugs which alter
the state of mind [6]. If schizophrenia is left untreated, then
it can result in a plethora of problems such as anxiety
disorder, depression, alcohol abuse, social isolation, ag-
gressive behaviour leading to victimization, social isolation,
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and financial issues followed due to various health and
medical problems [7]. There is definitely no sure method to
prevent schizophrenia, but considering and taking the
treatment plan effectively can help in preventing relapses [8].
Characterized by relapsing episodes of psychosis, it is a
serious disorder/mental illness. To determine the neural
dynamics of human cognition, EEG recording acts as a
sensitive tool as it can provide a millisecond-level resolution
[9]. EEG data are complex, and at the same time, they are
dimensional too as they are dependent on an event of time
series [10]. As EEG signals provide electrical activity of the
brain, it is easy to analyze the schizophrenia patient data.

Some of the most common works related to schizo-
phrenia EEG signal analysis and classification reported in
the literature are as follows. An EEG-dependent nonlinearity
analysis technique for schizophrenia diagnosis was con-
ducted by Zhao et al. [11]. The abnormal EEG complexity in
patients with schizophrenia and depression was performed
by Li et al. [12]. Fractal dimension was used by Raghavendra
et al. [13] to analyze the complexity of EEG in schizophrenia
patients. The complexity measures and entropy for EEG
signal classification of both schizophrenia and control
participants were performed by Sabeti et al. [14]. A pre-
liminary report on the reduced nonlinear complexity and
chaos during sleep in the first episode schizophrenia was
given by Keshavan et al. [15]. A machine learning-based
diagnosis of schizophrenia using combined sensor-level and
source level EEG features was proposed by Shim et al. [16]. A
preliminary data analysis of comparing the EEG nonline-
arity in deficit and nondeficit schizophrenia patients was
conducted by Cerquera et al. [17]. The nonlinear analysis of
EEG in schizophrenia patients with persistent auditory
hallucination was performed by Lee et al. [18]. For a
schizophrenia patient, the estimate of the first positive
Lyapunov exponent of the EEG signal was performed by
Kim et al. [19]. A magnetoencephalography (MEG) study on
the LZC in schizophrenia patients was conducted by Fer-
nandez et al. [20]. A multiscale entropy analysis for the
abnormal EEG complexity signals was performed by
Takahashi et al. [21]. As a diagnostic test for schizophrenia,
the spectral EEG abnormality was analyzed by Boutros et al.
[22]. An in-depth analysis of the utility of quantitative EEG
in unmedicated schizophrenia was conducted by Kim et al.
[23]. For schizophrenic and healthy adults, the machine
learning identification of EEG features which helps in
predicting working memory performance was done by
Johannesen et al. [24]. A data-driven methodology for
resting state EEG signal classification of schizophrenia with
control participants using random matrix theory was de-
veloped by Liu et al. [25]. Deep-learning methods along with
random forest and voting classifiers was performed by Chu
et al. for the individual recognition in schizophrenia using
resting-state EEG streams [26]. Convolution Neural Net-
works (CNNs) along with the Pearson Correlation Coeffi-
cient (PCC) to represent the EEG channel relationships were
used to classify the schizophrenic and healthy patients using
EEG signals by Naira and Alamo [27]. Random Forest
Machine learning algorithm was used to identify and di-
agnose the schizophrenia EEG signals by Zhang [28]. A

higher order pattern discovery was used to classify the
schizophrenia EEG by Sheng et al. [29]. The complexity of
the EEG signals in schizophrenia syndromes was analyzed by
Kutepov et al. [30]. A fractal-based classification of EEG
signals for both schizophrenic and healthy patients was
performed by Namazi et al. [31]. A new approach for EEG
signal classification using Linear Discriminant Analysis
(LDA) and Adaboost was found for schizophrenic and
control participants by Sabeti et al. [32]. In this work, with
the advent of some features, optimization techniques and
classifiers, the schizophrenia EEG signal classification is
performed, and this attempt is the first of its kind in
schizophrenia EEG signal classification. The organization of
the work is as follows. Section 2 explains the materials and
methods, Section 3 explains about the feature extraction
techniques, Section 4 explains about the swarm intelligence
computing techniques, Section 5 explains about the classi-
fication techniques, Section 6 explains the results and dis-
cussion followed by the conclusion in Section 7.

2. Materials and Methods

The EEG dataset for 14 healthy subjects and 14 Schizo-
phrenic subjects was collected from the Institute of Psy-
chiatry and Neurology, Warsaw, Poland, and the details are
explained clearly in [33]. For the subjects, 7 males with an
average age of 27.9 + 3.3 years and 7 females with an average
age of 28.3 + 4.1 years were selected. The standard 10–20
International system was used for the acquisition of the EEG
data. The patients’ data were obtained in a relaxed state and
with their eyes closed.The segmentation of the acquired EEG
signals was performed where it is considered to be sta-
tionary. A very simplified pictorial representation of the
work is given in Figure 1.

Over the duration of 15 minutes, 19 channel EEG signals
are obtained. Every channel of EEG signals comprises of
2,25,000 samples which are, then, divided into groups of
5000 sample segments. Therefore, the data matrix of
[5000× 45] is framed per channel. For the preprocessing of
EEG signals, Independent Component Analysis (ICA) was
utilized in this work.

3. Feature Extraction Techniques

To describe a very large amount of data, feature extraction is
necessary as it involves in mitigating the number of re-
sources to a certain limit. Once the preprocessing of the EEG
signals is conducted, the following features are extracted
from the EEG signals as follows:

(i) DFA: to trace the self-similarity characteristics of
the EEG signal, DFA [34] is used.

(ii) Hurst exponent: the self-similarity and the pre-
dictability estimation of the EEG signal are
expressed by the Hurst exponent [35]. If the
magnitude value of the Hurst exponent is greater,
then it denotes that the EEG signal is pretty smooth
and less complicated.
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(iii) RQA: to measure the complexity of the EEG signals,
the total number of times of recurrences is evaluated
by RQA [36].

(iv) Entropy: to evaluate the irregularity and uncertainty
present in the EEG signal, entropy features are used.
When the complexity and the variability of the EEG
signal increases, then the entropy of the EEG signals
is higher. Sample entropy [37], Shannon entropy
[38], approximate entropy [39], Renyi entropy [40],
permutation entropy [41], Kolmogorov–Sinai en-
tropy [42], and fuzzy entropy [43] are the types of
entropy usually used for the analysis, and in this
work, only sample entropy has been extracted.

(v) FD: to compare and analyze the complexity of
details in the EEG, FD is used, thereby enabling the
detection of EEG signal patterns [44]. The Fractal
Dimension of a signal is expressed through the Katz
method as follows:

D �
log10(H)

log10(d)
, (1)

where between the successive points, H represents
the sum of distances and d represents the diameter
estimated.

(vi) Kolmogorov complexity: the characteristics of the
EEG signal are easily explained by this parameter
[45]. If the signals are more random, then the
description length is also longer.

(vii) Hjorth: to quantify the morphology of the EEG
signal, the important Hjorth parameters utilized
here are complexity, mobility, and activity [46].

(viii) LZC: to assess the repetitiveness of the EEG signals,
LZC is used [47]. If the LZC values are higher, then
it shows that the signal is more repetitive.

(ix) LLE: to assess the degree of chaos present in the
EEG signals, an estimate of it is located by the LLE
[48]. If the complexity of the signals is high, then
the value of LLE is also high.

The feature extraction is initiated using DFA at first
among the nine features. The attained feature matrix per
method per channel is in the form of [5000×10]. Then, four
types of optimization producer such as AF optimization, GS
Optimization, BH optimization, and MS optimization are
utilized to further extract a better represented feature col-
umn matrix as [5000×1]. This procedure is repeated for all
the channels among the subjects. This feature extraction
method is repeated for all the other eight features such as the
Hurst exponent, RQA, entropy, fractal dimension, Kol-
mogorov complexity, Hjorth, and LLE, and thus, the feature
extraction is performed for each data segment as such.

4. Swarm Intelligence Computing Techniques

To determine and understand a certain subset of initial
features, feature selection is required. The features which are
selected will usually have the useful and most relevant in-
formation from the original data so that, using the reduced
form of representation, the desired task can be performed
easily. The following four optimization techniques are uti-
lized in this work.

4.1. Artificial Flora Algorithm. Developed by Cheng et al.
[49], four basic elements are comprised in this algorithm
such as original plant, offspring plant, location of the plant,
and the distance of propagation initially. The plants that are
used to spread seeds are called original plants. The seeds of
original plants are called offspring plants, and at that mo-
ment, they cannot spread seeds. Plant location is the specific
location of the plant, and the distance of propagation refers
to how long a seed can spread. The three major patterns are
present here such as evolution behaviour, spread behaviour,
and select behaviour. The probability that the evolvement of
the plant adapts to the environment behaviour is called
evolution behaviour. The movement of seeds is referred by
the spreading behaviour, and select behaviour refers to the
survival or death of the flora due to the environment. The
main rules here are as follows:

Rule 1. Due to the environmental or any external factors, a
random distribution of a species in a region is performed; in
that region, no such species were found earlier, and so, it
becomes the primitive original plant.

Rule 2. As the environment changes, the plants will adopt to
live in the main environment. Therefore, a complete in-
heritance to the parent plant does not depend on the proper
distance of offspring plants.

Rule 3. When the seeds are spread around the original plant
autonomously, the range is a circle where radius is the
maximum propagation distance. Anywhere in the circle, the
offspring plants can be distributed.

EEG signals 

Preprocessing of EEG signals

GS
optimization

Various feature extraction methods 

AF
optimization

BS
optimization

Classification techniques 

MH
optimization 

Figure 1: Pictorial representation of the work.
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Rule 4. Plants have varied survival probability because of
environmental factors such as climate and temperature. The
survival probability is related to the fitness of the plants.
Here, the adaptability of the plants to the environment can
be referred by fitness. Or in other words, the survival
probability of a plant in a specific position is termed as
fitness. If the fitness is higher, then the probability of survival
is greater.

Rule 5. The survival probability will be lower if the distance
is further from the original plants because the basic dif-
ference between the current environment and the previous
environment will be much greater.

Rule 6. If the seeds are spread in an external margin, then
the spread distance cannot cross the maximum area of limit
because of other constraints.

4.1.1. Evolution Behaviour. The seeds are spread by the
original plant around in a circle which is nothing but the
propagation distance and is evolved for the respective
propagation distances of the parent plant and the grand-
parent plant and is represented as

dh � d1h × rand(0, 1) × c1 + d2h × rand(0, 1) × c2, (2)

where d1h is the propagation distance of the grandparent
plant, d2h is the propagation distance of the parent plant, c1
and c2 are the learning coefficients, and rand(0, 1) denotes
the independent uniformly distributed number in (0, 1).

The normal grandparent distance of propagation is
expressed as

d1h
′ � d2h. (3)

The standard deviation between the respective position
of the original and offspring plant is the new parent
propagation distance and is given as

d2h
′ �

��������������

􏽐
N
i�1 Li,h − Li,h

′􏼐 􏼑
2

N

􏽳

. (4)

4.1.2. Spreading Behaviour. The original flora with N so-
lutions is randomly generated by the AF algorithm if there
are N plants in the flora.Thematrix Li,h is used to express the
original plant position where i is the dimension and h is the
total number of plants in the flora.

Li,h � rand(0, 1) × d × 2 − d, (5)

where the maximum limit area is represented by d, and
rand(0, 1) is an array of random numbers that have a
uniform distribution between (0, 1). With the help of the
following propagation function, the position of the offspring
plant is generated as follows:

Li,h×m
′ � Di,h×m + Li,h, (6)

where the number of seeds that one plant can propagate is
expressed as m, L i,h×m

′ denotes the offspring position, Li,h is

the original plant position, and Di,h×m is random number
with the Gaussian distribution with zero mean and variance
dh. If the survival of the offspring plant is not guaranteed,
then a new plant is generated as shown in the above-
mentioned equation.

4.1.3. Select Behaviour. The survival probability is used to
assess whether the offsprings are alive or not and is rep-
resented as

l �

��������

F Li,h×m
′􏼐 􏼑

Fmax

􏽶
􏽴􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

× P
(h×m−1)
y , (7)

where P(h×m−1)
y is Py to the power of (h × m − 1) and Py is

the selective problem. This value has to be between 0 and 1,
and in our experiment, it is 0.5. When the offspring plant is
farther from the original plant, then fitness is lower. Py can
assess the exploration ability of this algorithm. To get a local
optima solution, Py should be larger. The maximum fitness
in the flora is determined by the Fmax, and the fitness of the
hth solution is determined by F(Li,h×m

′ ). To decide whether
the offspring plant is alive or not, the roulette wheel selection
method is used in our work. The procedure is explained in
Pseudocode 1.

Pseudocode 1

Input: times: maximum run time
B: maximum branching number
N: number of original plants
l: survival probability of offspring plants
t � 0: population Initialization.

Define related parameters
Evaluate the fitness value of N individuals and compute
the best solution
While (t< times)

For i � 1: N∗B

Propagation distance is evolved by new plants
Original plants spread their offspring
If rand(0, 1)> l

Offspring is alive
Else
Offspring is dead
End if

End for
Evaluate novel solutions and randomly select N

plants as new original plants
If new solution is better, then old plant is replaced by
new plant
Find the current best solution
t � t + 1

End while
Output: optimized solution
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4.2. Glowworm Swarm Optimization Algorithm. In this al-
gorithm, initially, the position location and information on
data exchange can be carried out by most glowworms by
means of sending out rhythmed short beams [50]. Around a
particular searching scope, the main intention of GS opti-
mization is to find out the flaring neighbor. The glowworms
always move from the first position to a best position and
finally into a more extreme value point. The attraction of the
glowworm individuals is highly related to its brightness. The
attractiveness of a particular individual glow worm is in-
versely proportional to the distance between the two indi-
viduals, so it implies that it has a direct proportion to
brightness. Each position of the individual glow worm ac-
counts for the objective function value.The individual search
scope is defined by the dynamic decision domain. The in-
dividual movement is later updated step by step in the
procedure given below.

4.2.1. Procedure

(i) Parameter initialization: ′i′ individuals are initially
placed in a random fashion around a feasible region.
f0 denotes the fluorescein value, q0 indicates the
dynamic decision domain, st indicates step, in ex-
presses domain threshold, the update coefficient of
domain is expressed as β, qst denotes the maximum
search radius, and the iteration number is expressed
as n.

(ii) The objective function value H(yj(n)) is trans-
formed to fj(n) as

fj(n) � (1 − ρ)fj(n − 1) + cH yj(n)􏼐 􏼑, (8)

where yj(n) expresses for the individual position j

at ′n′ instant of time.
(iii) In each q

j

d(n), the higher fluorescein value is se-
lected, thereby forming a set of neighborhood Ij(n).
Therefore,

Ij(n) � h: yh(n) − yj(n)
�����

�����< q
j

d(n); fj(n)≤fh(n)􏼚 􏼛. (9)

(iv) The probability of a particular individual j may
progress forward as h and is expressed as

pjh(n) �
fh(n) − fj(n)

􏽐m∈Ij(n)fm(n) − fj(n)
, (10)

where h is chosen by pjh(n).
(v) The updation of the position of individual j is

expressed as

yj(n + 1) � yj(n) + st
yh(n) − yj(n)

yh(n) − yj(n)
�����

�����

⎛⎝ ⎞⎠. (11)

(vi) The updation of the dynamic decision domain is
expressed as

q
j

d(n + 1) � min qst, max 0, q
j

d(n), β in − Ij(n)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼒 􏼓􏼚 􏼛􏼚 􏼛. (12)

4.3. Black Hole Algorithm. The algorithm is inspired from
the black hole phenomenon [51]. In this method, at each
iteration, the best candidate is chosen as the black hole and
the other normal candidates are chosen as normal stars. The
black hole creation is one of the original candidates of the
entire population, and it is not random. Depending on one’s
current location and a randomly generated number, the
movement of the candidate towards the black hole is
ascertained. The step-by-step details of the algorithm is as
follows:

(i) It is a very famous population-based algorithm.
Therefore, in the search space of some function,
some randomly generated population of candidate
solutions (stars) is placed.

(ii) The fitness value evaluation of the population is
conducted after the initialization process.

(iii) The best candidate in the population is the one
which has the highest fitness value, and it is as-
sumed to be the initial black hole.

(iv) While this process is going on, the rest of the
candidates do the normal stars.

(v) The specialty of the black hole is that it has the
capacity to absorb the surrounding stars around it.

(vi) Once the stars and the black hole are initialized,
the absorption of the stars by the black hole
takes place, and therefore, the movement of all
other stars is now towards or around the black
hole.

(vii) The formulation of the capability of the ab-
sorption of stars by the black hole is ascertained
as follows:

Yj(t + 1) � Yj(t) + rand. Ycl − Yj(t)􏼐 􏼑. (13)

Here, Yj(t) and Yj(t + 1) are the locations of the
star j in iteration t and t + 1. Ycl is the location of
the black hole in the entire search space. Random
number in the interval of [0, 1] is determined by
rand.

(viii) The black hole absorbs the candidate solution
(each star representing it) that crosses the horizon
of the black hole. Using the following equation, the
radius of the horizon in the BH algorithm is
computed as follows:
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R �
Gcl

􏽐
S
j�1 Gj

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (14)

where Gcl represents the black hole fitness value, Gj is the
fitness value of the star j, S denotes the number of stars
which indicates the size of population/candidate solutions,
and R denotes the black hole radius.

The candidate is usually collapsed when the distance
between the best candidate (black hole) and the candidate
solution is less than R. In such a case, the value of a new
candidate would be carried out, and it is randomly dis-
tributed in the search space giving the optimized and the best
values.

4.4. Monkey Search Algorithm. Based on the mountain
climbing procedure of monkeys, one of the recently de-
veloped metaheuristic algorithms is MS algorithm [52].
Initially, for the monkeys, the population size is defined.
Each monkey’s specific position is denoted by a vector ai,
and it is performed randomly. With the help of a step-by-
step climbing process, the monkey positions are changed.
One of the famous recursive optimization algorithm called
Simultaneous Perturbation Stochastic Approximation
(SPSA) was used to design the climb process in MS algo-
rithm. The objective function value is improved by the
climbing process. Once a monkey arrives on top of a
mountain after the climbing process, then it will search for
higher points than its current position. A monkey with its
sharp and keen eyesight would easily shift its base to a higher
point by jumping. The maximum distance watched by a
monkey is determined by the eyesight of a monkey. The
updation of the position is carried out. Then, the monkeys
start to search the novel search domains by utilizing the
current position as a pivot. This process is termed as a
somersault procedure, and it helps the monkeys to get a new
position. The evaluation of the objective function values is
conducted, and if the number of iterations is satisfactory,
then the process will be stopped. The main process of this
algorithm is as follows:

(1) Representation of a solution: the population size of
monkey M is defined initially. For any monkey,
j ∈ 1, 2, . . . , M{ } defines its position
aj � (aj1, aj2, . . . , ajn) which gives the optimization
problem solutions with the n dimensions.

(2) Initialization: in a random manner, the initial so-
lution of the monkeys is generated.

(3) Climbing process:

(i) A vector is generated randomly Δaj � (Δaj1,

Δaj2, . . . ,Δajn), where Δajk is set as s, where s

denotes the step length of climb process.

g jk
′ aj􏼐 􏼑 �

g aj + Δaj􏼐 􏼑 − g aj − Δaj􏼐 􏼑

2Δajk

, (15)

k � 1, 2, . . . , n, and at point aj, the vector is termed
as the pseudogradient of the objective function

(ii) Assign zk � ajk + α sign(gjk
′(aj)), k � 1, 2, . . . , n

and z � (z1, z2, . . . , zn)

(iii) Assume aj←z has given z is feasible or else keep
as such aj

(iv) Unless the maximum number of allowed itera-
tions Nq has reached or there is a little change in
the objective function of the iteration, the steps (i)
to (iii) of the climbing process are repeated

(4) Watch jump process:
(i) The real number zj is generated randomly from

(ajk − e, ajk + e), k � 1, 2, . . . , n, where e repre-
sents the eyesight of the monkey which denotes the
maximum distance that can be witnessed by a
monkey.

(ii) Assume aj⟵ z given that g(z)>g(aj) and z is
feasible. Unless a certain number of watch times
has been obtained or until an appropriate point z

is found out, the steps are repeated.
(iii) The climb process is repeated by employing z as

an initial position.
(5) Somersault process:
(i) From the somersault interval [q, d], a real number

θ is generated randomly.
(ii) Set zk � ajk + θ(vk − ajk), where

vk � (1/M) 􏽐
M
j�1 ajk, k � 1, 2, . . . , n.

v � (v1, v2, . . . , vn) is termed somersault pivot and
(vk − ajk) is the somersault direction of monkey j.

(iii) Set aj←z if z � (z1, z2, . . . , zn) is quite feasible.
Unless a feasible solution z is found out, steps (i)
and (iii) of this somersault process are repeated.

(6) Termination.

Unless the stopping criterion is met, the above-
mentioned steps are repeated. As the stopping criteria, the
number of iterations are used.

Thus, using these metaheuristic algorithms, the optimal
and best solutions are explored and exploited from the initial
random solutions.

5. Classification Techniques

The optimized values or the best selected feature values
through swarm intelligence computing techniques are finally
fed to the classifiers for classification.

5.1. ANN. Here, a three-layer perceptron comprising of an
input layer, hidden layer, and an output layer was utilized
[53].The total number of hidden neurons is expressed by the
following equation:

H � [(A + B)d], (16)

where the number of input neurons is expressed as A, the
number of output neurons is expressed as B, and d is a
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constant and its range is from d ∈ [0, 1]. For the ANN
classifier, the total number of hidden neurons used here is
50.

5.2. QDA. The ratio of the between class variance is max-
imized, and the ratio of the within class variance is mini-
mized by QDA [54]. Between classes, it also allows quadratic
decision boundaries so that the classifier can perform the
classification more accurately providing good classification
accuracy. In this QDA, no shrinkage or regularization is
used.

5.3. SVM. Due to its good scalability and its high classifi-
cation performance, SVM is used [55]. Creating a hyper-
plane to maximize the margins between the classes that can
be obtained by mitigating the cost function, so that the
maximum classification accuracy is attained is the main idea
of SVM. The hyperplanes which are represented by the
vectors are known as support vectors. By minimizing the
cost function, the optimal solution that maximizes the
distance between the hyperplane and the nearest training
point is obtained by the SVM as follows:

Minimize,
1
2
‖w‖

2
+ C 􏽘

n

j�1
ξj,

subject to, zj w
T
xj + f􏼐 􏼑

3
≥ 1 − ξj, ξj ≥ 0,

(17)

where wT, xj ∈ R2 and f ∈ R′, ‖w‖2 � wT w,

The tradeoff between the margin and the error is denoted
as C. The measure of the training data is expressed as ξj The
class label for the jth sample is denoted as zj. SVM can be
utilized as a both linear and nonlinear classifier. Various
types of kernel functions are utilized to make SVM as a
nonlinear classifier. The types of kernels generally used are
Polynomial, Radial Basis Function (RBF), and Sigmoid
kernels. Here, in our work, only SVM-RBF kernel is used,
and this nonlinear SVM is used to get higher classification
accuracy.

5.4. Logistic Regression. Between an independent variable
and a response variable, the relationship is assessed by
Logistic Regression (LR) [56]. An observation is classified
into one of the two classes using Logistic Regression in a very
simple manner. When the variables are nominal or binary, it
can be used. Similar to the Bayesian group, the data are
comprehensively analyzed after the discretization process
for the continuous variables is performed.

5.5. FLDA. The main intention of the Fischers Linear
Discriminant Analysis (FLDA) is to trace a direction in the
feature space along which the specific distance of the means
relative to the within-class scatter explained by the within-
class scatter matrix SW reaches a maximum [57]. When the
within-class scatter matrix reaches a maximum, the class
separability is maximized. By maximizing the following

criterion with the between-class scatter matrix, this goal can
be achieved.

J(W) �
W

T
SBW

W
T
SWW

. (18)

Tomaximize the criterion, the directionw is expressed as
W � S−1

W(m1 − m2), where m1 and m2 are the means for the
two classes. For the two classes, the FLDA acts as a sub-
optimal classifier when their respective distributions are
Gaussian in nature.

5.6. KNN. One of the famous nonparametric algorithms
utilized for both classification and regression is KNN [58].
On the underlying data distribution, KNN does not make
any assumption. There is also no explicit training phase
available here. During the testing phase, the utilization of the
training data is carried out where the measurement between
the training instance and test instance is performed. The
prediction of the class of the test instance is performed by
utilizing the majority voting of the any of the K-nearest
training instances. The value of K is assumed to be 4 in our
work.

6. Results and Discussion

It is classified with 70% of training and 30% of testing
methodology and the performance of it is computed. The
experiment was repeated five times to check whether we get
the similar results every time when the analysis is done. The
mathematical formulae for computing the Performance
Index (PI), Sensitivity, Specificity, Accuracy, Good Detec-
tion Rate (GDR), and Mean Square Error (MSE) rate is
mentioned in literature, and using the same, the values are
computed and exhibited. PC indicates Perfect Classification,
FA indicates False Alarm, and MC indicates Missed Clas-
sification, respectively.

The sensitivity is expressed as

Sensitivity �
PC

PC + FA
× 100. (19)

Specificity is expressed as

Specificity �
PC

PC + MC
× 100. (20)

Accuracy is expressed as

Accuracy �
Sensitivity + Specificity

2
. (21)

Performance Index is expressed as

PI �
PC − MC − FA

PC
􏼒 􏼓 × 100. (22)

Good Detection Rate (GDR) is expressed as

GDR �
[PC − MC]

[PC + FA]
􏼠 􏼡 × 100. (23)

The Mean Square Error (MSE) is expressed as follows:

Computational Intelligence and Neuroscience 7



MSE �
1
N

􏽘

N

i�1
Oi − Tj􏼐 􏼑

2
, (24)

where Oi indicates the observed value at a specific time, Tj

denotes the target value at model j; j � 1 to 19, and N is the
total number of observations per channel for a single op-
timization method, and in our case, it is 45000. The training
of the classifiers was implemented with a zero-training error
of MSE.

Table 1 shows the average statistical parameters such
as mean, variance, skewness, and kurtosis of the nine
extracted features through four-optimization process for
the normal cases. The higher value of mean indicates the
peaked position of the feature selected. Lower value of
mean indicates that there exists the peak and valley
points in the features. As in the case of AF optimization
in Kolmogorov complexity features, peaked value of
mean is attained. The variance parameter shows the
energy component of the feature. Here also in Kolmo-
gorov complexity in AF optimization method arrived
higher value. Skewness depicts the skewed features of the
data points, and all the features in Table 1 indicates the
same. The flatness is indicated by the higher kurtosis
values. In the case of Hurst exponent, Fractal dimension
and Hjorth features at AF optimization show higher
value of kurtosis.

Table 2 demonstrates the average statistical parame-
ters such as mean, variance, skewness, and kurtosis of the
nine extracted features through four-optimization process
for the schizophrenia cases. The higher value of mean
indicates the peaked position of the feature selected.
Lower value of mean indicates that there exist the peak
and valley points in the features, as all the optimization
methods made the mean parameter as a smaller one
among the nine features. Skewness depicts the skewed
features of the data points and all the features in Table 2
indicate the same. The flatness is indicated by the higher
kurtosis values. In the case of Kolmogorov complexity at
AF optimization and BH optimization, it shows higher
value of Kurtosis.

The correlation among the normal and schizophrenia
cases can be established by calculating the Canonical
Correlation Analysis (CCA) as shown in Table 3. If the
CCA value is greater than 0.5 that indicates the two
classes are highly correlated and for lower value it is vice
versa. As shown in Table 3 the CCA is calculated for the
nine features among the normal and schizophrenia cases.
As observed from Table 3, the lower value of CCA in-
dicates the Nil correlation among the features across the
classes.

Table 4 exhibits the average PCC with different features
for normal and schizophrenia cases. The values in Table 2
indicates the nonlinear relation among the features in the
same class of the data. Therefore, the uncorrelated and
nonlinear features have to be optimized by the optimization
process.

Table 5 shows the CCA of various optimization tech-
niques with different features for normal and schizophrenia

cases. It is observed from Table 5 that the low value of CCA is
definitely indicating the Nil correlation among the features
of the two classes.

Table 6 depicts the Average PCC at various opti-
mization techniques with nine different features for
normal and schizophrenia cases. As shown in Table 6,
low value of CCA in the normal cases indicates the
presence of nonlinearity in the features. The negative
value of PCC in the schizophrenia cases mention about
the inverse relation among the features as well as the
optimization methods.

Table 7 shows the consolidated results of accuracy
among the classifiers at various optimization techniques
with different features of normal cases. As indicated in
Table 7, ANN classifier is ebbed at low value of accuracy
in the three types of optimization methods such as AF,
GS, and BH. The poor performance of ANN is due to
over learning and the exhibition of false alarm in the
classifier outputs. FLDA classifier arrived at low accu-
racy in the case of MS optimization method. SVM
classifier is outperforming all the classifiers in terms of
higher accuracy value of 87.54% in BH optimization
method.

Table 8 denotes the consolidated results of accuracy
among the classifiers at various optimization techniques
with different features of schizophrenia cases. As ob-
served in Table 8, LR classifier is ebbed at low value of
accuracy of 78.64% in the black hole optimization
method. The poor performance of LR is due to the rigid
parametric values and the exhibition of missed classi-
fication in the classifier outputs. SVM classifier is out-
performing all the classifiers in terms of higher accuracy
value of 92.17% in BH optimization method. Evenly
nature of the performance shows higher accuracy values
among the classifiers for MS method.

Table 9 represents the average perfect classification
among the classifiers at various optimization techniques
with different features of normal cases. As observed in Table
9, LR classifier is ebbed at low value of perfect classification
of 54.3% in the AF optimization method. The poor per-
formance of LR is due to the nonadaptive parametric values
and the exhibition of false alarm in the classifier outputs.
SVM classifier is outperforming all the classifiers in terms of
higher perfect classification value of 75.093% in BH opti-
mization method. Evenly nature of the performance shows
higher perfect classification values among the classifiers for
MS method.

Table 10 denotes the average perfect classification
among the classifiers at various optimization techniques
with different features of schizophrenia cases. As shown in
Table 10, LR classifier is reached at low value of perfect
classification of 57.29% in the BH optimization method.
The poor performance of LR is due to the nonadaptive
parametric values and the exhibition of missed classifica-
tion in the classifier outputs. SVM classifier is out-
performing all the classifiers in terms of higher perfect
classification value of 84.34% in BH optimization method.
Evenly nature of the performance shows higher perfect
classification values among the classifiers for MS method.
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Table 11 depicts the average Performance Index among
the classifiers at various optimization techniques with dif-
ferent features of normal cases. As shown in Table 11, LR
classifier is reached at low value of PI of 15.63% in AF

optimization method. The poor performance of LR is due to
the exhibition of missed classification in the classifier out-
puts. SVM classifier is outperforming all the classifiers in
terms of higher PI value of 64.6% in BH optimization

Table 1: Average statistical parameters at various optimization techniques with different features for normal cases.

Optimization
methods Parameters DFA Hurst RQA Sample

entropy
Fractal

dimension
Kolmogorov
complexity Hjorth LZC LLE

Artificial flora

Mean 5.26965 0.413804 3.689182 0.869676 0.41564 28.75062 0.4173837 0.416007 0.4172
Variance 22.07468 0.000125 0.961903 1.100939 8.993E−06 311.8672 2.16155E−10 1.17142E−07 3.939E−08
Skewness 1.724139 −7.92829 −0.98766 2.580366 −4.544 1.179709 −6.72855 1.5590 −3.7801
Kurtosis 5.223521 77.60378 0.927814 9.156234 30.0779 2.794157 49.372894 2.6237 20.561

Glowworm
swarm

Mean 2.320835 0.733608 0.396612 1.731146 0.74723 0.609228 0.196184 0.269188 0.1472
Variance 1.03798 0.021621 0.001249 0.049742 0.019817 0.033745 2.14E−06 5.15E−06 0.00035
Skewness 1.903065 0.269845 1.104594 −0.20551 0.240516 2.29958 0.698693 0.408151 1.02453
Kurtosis 4.714625 0.122304 2.464601 0.171725 0.032322 8.864067 0.245379 8.982281 2.43118

Black hole

Mean 2.710718 0.351737 1.363744 2.227318 0.524266 3.234247 1.75846 1.61927 1.59492
Variance 0.123383 0.044921 0.011921 0.524723 0.055867 0.173108 0.000821 0.005577 0.110766
Skewness 0.55226 −0.2302 −0.41571 1.004853 −0.45211 0.861662 1.221792 −11.2091 0.540982
Kurtosis 0.090556 0.133614 −1.56857 4.072836 0.456164 0.082189 −0.46675 226.0795 1.804519

Monkey search

Mean 0.444369 0.000265 0.044637 0.066802 0.000593 0.786268 0.556733 0.740261 0.708153
Variance 0.008841 6.47E−08 7.64E−05 0.000456 3.51E−07 0.005208 0.001272 0.003981 67.04619
Skewness 0.0065 2.394641 0.614119 0.430518 2.170684 −0.33499 0.572398 19.90603 16.253
Kurtosis −0.13621 8.868095 0.241653 0.532993 6.750117 0.005905 0.058357 687.3791 282.403

Table 2: Average parameters at various optimization techniques with different features for schizophrenia cases.

Optimization
methods Parameters DFA Hurst RQA Sample

entropy
Fractal

dimension
Kolmogorov
complexity Hjorth LZC LLE

Artificial flora

Mean 1.947 0.797 0.895 1.0434 0.9192 0.9182 0.922 0.922 0.72722
Variance 6.1955 0.00198 8.215E−05 0.9472 7.331E−05 0.00011 4.82E−09 3.393E−08 0.00382
Skewness 2.7591 −0.0952 0.1699 3.4882 −7.9156063 −31.6135 4.8058 1.162 0.66921
Kurtosis 10.378 −0.3245 −0.00067 16.5549 139.9124 998.7822 25.231 2.795 0.34590

Glowworm
swarm

Mean 3.60521 0.45140 0.528535 3.20544 1.109916 2.762614 0.775 0.874 0.43363
Variance 1.40291 0.00050 0.000336 0.18103 0.019184 0.846133 0.00022 3.85E−06 0.000213
Skewness 1.83474 0.18256 −0.0874 −0.02972 0.21627 1.943948 0.53419 −0.373 0.538756
Kurtosis 4.37384 −0.12708 −0.09477 −0.32559 −0.17723 4.561639 0.0462 11.51 0.5087

Black hole

Mean 0.04486 1.64093 0.38062 0.08666 0.471683 0.193926 0.246 0.209 1.409073
Variance 0.01454 0.827833 0.000476 0.020484 0.054866 0.00054 1.09E−05 6.7E−06 0.102673
Skewness −0.911996 2.338573 0.602759 −0.25059 2.264549 31.66492 −2.561 9.701 1.243274
Kurtosis 1.689095 8.655974 0.923601 −1.38165 8.043591 1003.234 5.236 156.25 3.155236

Monkey
search

Mean 0.360178 0.64032 0.142771 0.139355 0.000866 0.540915 0.933 0.000151 2.272099
Variance 0.01044 0.449776 0.000665 0.001762 2.15E−07 0.006902 0.00703 1.9E−12 85.4282
Skewness 0.232422 2.867251 0.441075 0.154336 0.980327 −0.20562 0.5348 0.799874 11.61515
Kurtosis −0.06264 13.54124 0.384905 −0.46198 1.1591 −0.30885 0.0581 10.16941 167.628

Table 3: Average CCA with different features for normal and schizophrenia cases.

Parameters DFA Hurst RQA Sample entropy Fractal dimension Kolmogorov complexity Hjorth LZC LLE
CCA 0.14231 0.05738 0.0876 0.14356 0.06889 0.15469 0.14003 0.06534 0.12817

Table 4: Average PCC with different features for normal and schizophrenia cases.

Parameters PCC DFA Hurst RQA Sample
entropy

Fractal
dimension

Kolmogorov
complexity Hjorth LZC LLE

Normal 0.021077 0.014018 0.006344 0.047908 0.016744 0.023395 0.00045 0.00376 0.062845
Schizophrenia
cases 0.053808 0.012278 0.068795 0.030514 0.032101 0.107226 0.003109 0.00216 0.043985
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Table 5: CCA at various optimization techniques with different features for normal and schizophrenia cases.

Optimization methods CCA
Artificial flora 0.047944
Glowworm swarm 0.088456
Black hole 0.060256
Monkey search 0.089556

Table 6: Average PCC at various optimization techniques with different features for normal and schizophrenia cases.

Optimization methods
PCC

Normal Schizophrenia cases
Artificial flora 0.005745 −0.01573
Glowworm swarm 0.04604 −0.07745
Black hole 0.040539 −0.01178
Monkey search 0.08175 −0.1422

Table 7: Consolidated results of accuracy (%) among the classifiers at various optimization techniques with different features for normal
cases.

Optimization methods ANN QDA SVM LR FLDA KNN
Artificial flora 77.42581 79.08989 85.40703 77.15035 80.07678 82.61267
Glowworm swarm 77.35069 79.03598 87.14997 83.3216 80.18607 81.87646
Black hole 77.25071 78.82409 87.54716 77.3041 80.27763 79.3533
Monkey search 81.47733 79.93699 85.08729 84.48008 79.67025 81.07509

Table 8: Consolidated results of accuracy (%) among the classifiers at various optimization techniques with different features for
schizophrenia cases.

Optimization methods ANN QDA SVM LR FLDA KNN
Artificial flora 83.33014 79.66433 90.60692 79.11691 81.08746 79.24898
Glowworm swarm 83.95856 79.89032 89.62917 81.28533 80.95178 82.65979
Black hole 85.2518 79.5597 92.17549 78.64844 83.37886 79.64616
Monkey search 86.06456 82.1462 91.37198 82.34527 81.96181 83.82426

Table 9: Average perfect classification (%) among the classifiers at various optimization techniques with different features for normal cases.

Optimization methods ANN QDA SVM LR FLDA KNN
Artificial flora 54.85161 58.17979 70.81364 54.3007 60.15023 65.22285
Glowworm swarm 54.70138 58.07196 74.2991 66.63904 60.36965 63.75292
Black hole 54.50142 57.64817 75.09224 54.6082 60.55359 58.7066
Monkey search 62.95465 59.87399 70.17104 68.95516 59.34051 62.15018

Table 10: Average perfect classification (%) among the classifiers at various optimization techniques with different features for schizo-
phrenia cases.

Optimization methods ANN QDA SVM LR FLDA KNN
Artificial flora 66.66027 59.32866 81.20947 58.23381 62.17283 58.49795
Glowworm swarm 67.91504 59.7798 79.25667 62.57066 61.90357 65.31875
Black hole 70.49922 59.11939 84.34931 57.29688 66.75354 59.29232
Monkey search 72.1262 64.2897 82.74271 64.68721 63.9228 67.64852
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method. The performance of PI parameter for the ANN and
QDA classifier among the four-optimizationmethod is poor,
and this is due to the more missed classification and false
alarms of the classifier outputs.

Table 12 signifies the average Performance Index among
the classifiers at various optimization techniques with dif-
ferent features of schizophrenia cases. As shown in Table 12,
LR classifier is reached at low value of PI of 24.1% in the BH
optimization method. The poor performance of LR is due to
the exhibition of missed classification in the classifier out-
puts. SVM classifier is outperforming all the classifiers in
terms of higher PI value of 81.59% in BH optimization
method. Once again, MS optimization evenly handled the PI
parameter among the classifiers.

Table 13 exhibits the average performance of parameters
among the classifiers at various optimization techniques
with different features of normal cases. As shown in Table 13,

ANN classifier is reached at low value of PI of 22.01 and PC
of 56.7%. FLDA denotes low GDR value of 37.67%. SVM
classifier is outperforming all the classifiers in terms of
higher PC, PI, and GDR values and lower error rate value of
27.4%. For a significant accuracy and error rate, KNN
classifier closely follows the performance of the SVM
classifier.

Table 14 depicts the average performance of parameters
among the classifiers at various optimization techniques
with different features of schizophrenia cases. As shown in
Table 14, LR classifier is reached at low value of PI of 31.5%
and PC of 60.67%. LR denotes low GDR value of 41.9%. SVM
classifier is outperforming all the classifiers in terms of
higher PC, PI, and GDR values and lower error rate value of
18.11%. For a significant accuracy and error rate, ANN
classifier closely follows the performance of the SVM
classifier.

Table 11: Average performance index (%) among the classifiers at various optimization techniques with different features for normal cases.

Optimization methods ANN QDA SVM LR FLDA KNN
Artificial flora 17.53914 26.58122 57.531 15.63139 31.68778 43.07008
Glowworm swarm 17.00598 26.44067 63.01535 46.80996 31.16374 38.30346
Black hole 16.29544 25.40426 64.60384 16.62192 29.83996 27.25943
Monkey search 37.21904 30.80569 53.90694 51.9737 30.50127 34.76854

Table 12: Average performance index (%) among the classifiers at various optimization techniques with different features for schizophrenia
cases.

Optimization methods ANN QDA SVM LR FLDA KNN
Artificial flora 47.33871 30.02955 76.75093 26.06912 34.70983 26.38648
Glowworm swarm 50.81356 29.57847 72.88667 34.9601 33.86657 41.54275
Black hole 54.83947 27.8239 81.59472 24.10137 45.32586 28.93259
Monkey search 59.19286 41.31742 78.69396 40.9822 42.56467 49.06799

Table 13: Average performance of parameters among the classifiers at various optimization techniques with different features for normal
cases.

Performance parameters ANN QDA SVM LR FLDA KNN
Perfect classification 56.75227 58.44348 72.59401 61.12578 60.1035 62.45814
Performance index 22.0149 27.30796 59.76428 32.75924 30.79819 35.85038
Accuracy 78.37614 79.22174 86.29786 80.56403 80.05268 81.22938
GDR 54.51164 58.44344 72.43905 59.11251 37.6745 55.96857
Error rate 43.24759 41.55656 27.4062 38.87433 39.89642 37.54199

Table 14: Average performance of parameters among the classifiers at various optimization techniques with different features for
schizophrenia cases.

Performance parameters ANN QDA SVM LR FLDA KNN
Perfect classification 69.30018 60.62939 81.88954 60.69714 63.68819 62.68939
Performance index 53.04615 32.18734 77.48157 31.5282 39.11673 36.48245
Accuracy 84.65127 80.31514 90.94589 80.34899 81.84498 81.3448
GDR 59.85653 60.18572 80.80855 41.90007 45.78074 52.10981
Error rate 30.7002 39.37056 18.11075 39.30309 36.31199 37.31102
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7. Conclusions and Future Work

The disorders in the areas of the lobes of the brain can lead to
schizophrenia. As the lobes of the brain are important for
information processing and memory management activities,
a huge damage occurs to it due to schizophrenia. The di-
agnosis, classification, and analysis of schizophrenia spec-
trum disorders are quite challenging. To incorporate the
latest scientific techniques to clinical diagnosis, the scientific
community is working very hard. For the brain state in-
terpretation and diagnosis, EEG is emerged as a highly useful
and beneficial tool. The proposed method in this work
explores and utilizes a plethora of features with four different
types of optimization techniques before proceeding to
classification. The best results show that, for normal cases, a
classification accuracy of 87.54% is obtained when BH
optimization is utilized with SVM-RBF Kernel, and for
schizophrenia cases, a classification accuracy of 92.17% is
obtained when BH optimization is utilized with SVM-RBF
kernel. We plan to incorporate other optimization mecha-
nisms with deep learning techniques for schizophrenia EEG
signal classification in future work.
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