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Background. Integrins are involved in the biological process of a variety of cancers, but their importance in the diagnosis and
prognosis of gastric cancer (GC) is still unclear.-erefore, this study aimed at exploring the significance of ITG gene expression in
GC to evaluate its diagnosis and prognosis.Methods. GEPIA data were used to evaluate the mRNA expression of ITG genes in GC
patients.-e prognostic value of these genes was assessed by analyzing their mRNA expression using the Kaplan–Meier curve.-e
biological function of ITG genes was evaluated by GC tissue sequencing combined with GSEA bioinformatics. Based on the
sequencing data, ITGA5 with the largest expression difference was selected for verification, and RT-PCR was used to verify its
mRNA expression level in 40 pairs of GC and normal tissues. Results. ITG (A2, A3, A4, A5, A6, A11, AE, AL, AM, AV, AX, B1, B2,
B4, B5, B6, and B8) was highly expressed in GC tissues, while ITGA8 was low, compared with their expression in normal tissues.
RNA-seq data shows that ITG (A2, A5, A11, AV, and B1) expression was associated with poor prognosis and overall survival. In
addition, combined with the results of GC tissue mRNA sequencing, it was further found that the differentially expressed genes in
the ITGs genes. ITGA5 was highly expressed in GC tissues compared with its expression in normal tissues, as evaluated by
qRT–PCR (P< 0.001) and ROC (P< 0.001, AUC (95% CI)� 0.747 (0.641–0.851)), and confirmed that ITGA5 expression was a
potential diagnostic marker for GC. Bioinformatics analysis revealed that the signaling pathway involved in ITGA5 was mainly
enriched in focal adhesion, ECM-receptor interaction, and PI3K-AKTand was mainly involved in biological processes such as cell
adhesion, extracellular matrix, and cell migration. Conclusion. -is study suggested that ITGs were associated with the diagnosis
and prognosis of GC and discovered the prognostic value and biological role of ITGA5 in GC. -us, ITGA5 might be used as a
potential diagnostic marker for GC.

1. Introduction

Gastric cancer (GC) is one of the most common malignant
tumors worldwide. Although the diagnosis of GC has made
progress, most patients in China are in the middle and
advanced stages at the time of diagnosis. -e outcomes after
surgery, radiotherapy, and chemotherapy are poor, and the
five-year survival rate is less than 30% [1]. -e current
parameters to predict GC diagnosis and prognosis are not
precise enough. -erefore, there is an urgent need to find
potential new biomarkers and prognostic indicators to
create individualized treatment in clinical practice.

Integrins (ITGs) regulate a variety of biological activities
but also human diseases, including tumor progression [2].

ITGs are heterodimeric glycoproteins formed by two sub-
units, α and β consisting of 18 α subunits and 8 β subunits
forming transmembrane surface receptors [3]. -e ITG
family proteins allow the attachment of the cells to the
extracellular matrix, mediate the cell-to-cell adhesion,
maintain the morphology of cells, and affect several pro-
cesses including movement and phagocytosis [4]. Another
function is to activate a bidirectional signal mediated by the
release of stimulating factors from the cell. Indeed, ITGs
transmit the signal from the intracellular area to the ex-
tracellular area by combining themselves with various cy-
toplasmic proteins to form a complex that mediate signal
transduction, mainly including FAK-PI3K-AKT, FAK-
STAT1, FAK-Ras-MAPK, and other pathways. -is signal
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transduction may affect the expression of genes involved in
cell proliferation, migration, invasion, differentiation, and
apoptosis. -us, they might be considered a new strategy in
the diagnosis and treatment of tumors [5–7].

At present, some studies on the ITG genes in GC are
available, and many scientists discovered that the polymor-
phism of the ITG (A1, A2, A3, A6, B3, B4, B4, and B5) gene is
closely related to the risk of GC [8]. Chuang et al. demonstrate
that the block of ITGA2 inhibits themigration and apoptosis of
GC cells, thus concluding that it may be considered as a target
inGC therapy [9].-e coordination of themir-30a-ITGA2 axis
is another important mechanism in the occurrence and de-
velopment of GC precancerous lesions [10]. Cao et al. revealed
that ITGA5 may be a potential biomarker and therapeutic
target of GC through bioinformatics analysis [11]. Yang et al.
found that ITGA6 may become a new biomarker for the
prediction and treatment of GC, as evaluated by immune
indicators and prognostic prediction model of GC [12]. -e
analysis of the GC genome methylation pattern revealed that
genome methylation promotes the expression of ITGAM,
suggesting that it might be a candidate gene in GC diagnosis
[13]. ITGAV can promote the proliferation, invasion, and
migration of GC cells [14].

Despite all these discoveries, the role of ITGs in GC is
still unclear. -erefore, this study aimed to explore the
expression of ITG genes in GC and the biological processes
and signaling pathways involved by bioinformatics and
high-throughput sequencing, to clarify the potential value of
ITG genes in the diagnosis and prognosis of GC.

2. Materials and Methods

2.1. Patients and Sample Collection. All tissue samples were
collected from 50 patients with gastric cancer treated in the
Department of Gastrointestinal Gland Surgery of the First
Affiliated Hospital of Guangxi Medical University from
September 2018 to December 2019. All patients were di-
agnosed by pathology under electronic gastroscope before
operation. Patients with preoperative radiotherapy and
chemotherapy and other systematic tumors or tumor me-
tastasis to the stomach were excluded. Postoperative pa-
thology was confirmed by tumor pathologists. Tissue
samples were quickly frozen at −80°C in vitro for follow-up
experiments. All the specimens were matched with adjacent
normal tissues, of which 10 pairs of samples were used for
tissue mRNA-seq and 40 pairs for RT-qPCR verification.
-is study was approved by the Ethics Review Committee of
the First Affiliated Hospital of Guangxi Medical University.
-e patients all signed the written informed consent form.

2.2. ITG Gene Expression Using GEPIA Database. -e ex-
pression of the ITG genes was analyzed using the Gene
Expression Profiling Interactive Analysis (GEPIA) database
(http://gepia.cancer–pku.cn/). Normal samples and tumor
samples were selected from the TCGA database, and log2
FC>0.5 and a P-value <0.05 were used as screening con-
ditions. -e expression of ITG genes in GC tissues at dif-
ferent development stages was explored. -e expression

values were converted to log2 (TPM+1) to draw the box
plot. According to the GC tissue RNA-seq data in the UCSC
XENA database, the heat map of ITG gene expression was
analyzed and drawn (http://ualcan.path.uab.edu/). -e
changes of ITGs were analyzed by the TCGA comprehensive
analysis platform cBioPortal.

2.3. Prognostic Analysis of the ITG Genes Using the
Kaplan–Meier Plotter. Data of the K-M Plotter database
(http://kmplot.com/analysis) were derived from GEO, EGA,
and TCGA. According to the mRNA-seq data of TCGA, the
overall survival (OS) and relapse-free survival (RFS)
according to the ITG gene expression were mapped out, and
the clinical data of different tumor stages and grades were
recorded for further analysis.

2.4. mRNA-seq of GC Tissue. GC tissue and adjacent normal
tissues were collected from 10 GC patients undergoing
routine surgery, and high-throughput sequencing was car-
ried out at the Shanghai Biotechnology Co., Ltd., and an
mRNA sequencing library was constructed using
VAHTSTM mRNA-seq V2 Library Prep Kit for Illumina®(San Diego, California, USA). Finally, the sequencing was
performed on the HiSeq XTen sequencer, and DESeq was
used for the analysis of samples with biological duplicates. In
order to obtain genes with significant difference, the
screening conditions were set at a q value <0.05, the dif-
ference as |fold change|> 2, and the matched genes were
considered as genes with significant differentiation. Bio-
informatics methods were used to analyze the biological
processes, and signaling pathways that differentially
expressed genes may participate. -e clusterProfiler was
used for functional enrichment analysis.

2.5. ITGA5 mRNA Expression by qRT-PCR. TRIzol reagent
was used to extract total RNA from tissues, and cDNA was
obtained using a reverse transcription kit from Takara
Biotechnology Co., Ltd. SYBR-Green I fluorescence detec-
tion kit and a 7500 Real-Time PCR System were used for
qRT-PCR to detect ITGA5 mRNA expression. -e reaction
conditions were as follows: 95°C, 30 s; 95°C, 5 s; 63°C, 30 s; 40
cycles. -e primers were synthesized by Sangon. -e
GAPDH primer sequence was as follows: F 5′-TGACTT-
CAACAGCGACACCCA-3′, R 5′-CACCCTGTTGCTG-
TAGCCAAA-3′, while the ITGA5 primer sequence was as
follows: F 5′-GGCTTCAACTTAGACGCGGAG-3′, R 5′-
TGGCTGGTATTAGCCTTGGGT-3′.

2.6.GeneEnrichmentAnalysis. In order to further explore the
potential value of the ITGA5 gene in biological processes and
pathways, the data were downloaded from TCGA, the GSEA
desktop software application (http://www.broadinstitute.org/
gsea/index.jsp) was used to perform the analysis, and the
potential mechanisms were investigated by GSEA (http://
software.Broadstitute.org/gSEA/index.jsp) through Molecular
Signatures Database (MSigDB) c2 (c2.cp.kegg.v6.2.sym-
bols.gmt) and c5(c5.all.v6.2.symbols.gmt). -e enrichment

2 Journal of Oncology

http://gepia.cancer-pku.cn/
http://ualcan.path.uab.edu/
http://kmplot.com/analysis
http://www.broadinstitute.org/gsea/index.jsp
http://www.broadinstitute.org/gsea/index.jsp
http://software.Broadstitute.org/gSEA/index.jsp
http://software.Broadstitute.org/gSEA/index.jsp


analysis of GSEA was considered statistically significant when
P< 0.05 and FDR< 0.25.

2.7. Statistical Analysis. Statistical analysis was performed
using GraphPad 7.0 software, and the relative expression of

ITGA5mRNA in tissues was analyzed by paired t-test and one-
way analysis of variance. P< 0.05 was considered statistically
significant. ROC curve analysis is a common method to
evaluate the performance of tumor diagnostic markers.
-erefore, the ROC curvewas used to detect the accuracy of the
ITGA5 gene as a biomarker for GC prediction.
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Figure 1: mRNA expression of ITGs in GC and normal tissues according to GEPIA; ∗P< 0.05.
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3. Results

3.1. mRNA Expression of Several ITGs in GC. -e mRNA
expression of ITG (A2, A3, A4, A5, A6, A11, AE, AL, AM,
AV, AX, B1, B2, B4, B5, B6, and B8) and other genes in 408
GC tissue samples and 36 normal gastric tissues were higher
than those in the adjacent normal tissues (P< 0.05) (Fig-
ure 1). ITGA8 expression in GC tissues was significantly
lower than that in normal tissues (P< 0.05). -e expression
of ITGs in cancer tissues and adjacent normal tissues is
shown in Figure 2. -e relationship between ITG genes and
GC progression is shown in Figure 3, in which genes such as
ITG (A4, A8, A9, A11, AL, B2, and B7) increased with the
increase of tumor progression (P< 0.05).-e analysis of ITG
genes revealed that the mutation rate of ITGAV was as high
as 9%, mainly due to a deep deletion and missense muta-
tions. ITGB3 and ITGB6 genes had the lowest gene mutation
rate, which was only 2.2% (Figure 4).

3.2. Prognostic Value of ITGs in GC Patients. -e RNA-seq
data in the TCGA database revealed the prognostic value of
the mRNA expression of the ITG genes in GC. ITGA2
(HR� 0.68, P< 0.025), ITGA5 (HR� 1.43, P< 0.031),
ITGA11 (HR � 1.52, P< 0.013), ITGAV (HR � 1.86,
P< 0.001), ITGB1 (HR � 1.49, P< 0.016) were higher in

patients with short OS compared to their expression in
patients with longer OS, and the OS of GC patients with
high expression of these genes was significantly short-
ened (Figure 5). -e expression of ITGA6 (HR � 0.49,
P< 0.033) was related to GC recurrence. -e RFS of
patients with high expression of this gene was signifi-
cantly longer than that of patients with low expression of
this gene (Figure 6).

-e subgroup analysis showed that ITGA6 was associ-
ated with poor OS in stage II. ITGA5 and ITGAV were
associated with poor OS in stage III. ITGA5 and ITGAV
were associated with poor OS in stage IV (Table 1). -e
prognosis associated with the expression of ITG genes was
statistically analyzed in different cancer stages (Table 2). ITG
(A2, A6, AE, and AV) genes were related to poor OS in stage
II, and ITG (AE, AL, AV, B1, and B5) genes were related to
poor OS in stage III.

3.3. ITGs with Differential Expression Detected by Sequencing
of Tissue Samples. Using a q value <0.05 and the difference |
fold change|> 2 as the standard to identify differentially
expressed genes, our results showed that ITG (A1, A5, A7,
A10, AX, B1, B3, B5, and B8) was significantly differentially
expressed among ITGs, and the heat map showed that
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differential ITGs were significantly highly expressed in
cancer tissues (Figure 7(a)). According to the GO annotation
analysis of the different ITGs screened from the two groups
(gastric cancer group and adjacent normal tissue group), the
ITGs were significantly upregulated in functions such as cell
adhesion, extracellular matrix, and cell migration
(Figure 7(b)). KEGG annotation analysis showed that ITG
signaling pathways were mainly enriched in focal adhesion,
ECM-receptor interaction, PI3K-AKT, and cancer related
pathways (Figures 7(c) and 7(d)).

3.4. ITGA5mRNAExpressionVerification inClinical Samples.
Sequencing results showed that ITGA5 had the highest fold
change difference (Figure 8(a)); thus, it was selected for
clinical verification. In order to further study the expression
of ITGA5 in GC and its diagnostic value, q RT-PCRwas used
to verify the expression of ITGA5 in tissues (40 GC tissues
and 40 adjacent normal tissues). Our results showed that

ITGA5 expression in GC tissues was significantly higher
than that in the adjacent normal tissues (P< 0.001)
(Figures 8(b) and 8(c)).-e ROC curve was used to study the
potential diagnostic role of ITGA5 in clinical samples, and
the results showed that ITGA5 has a significant meaning
(P< 0.001, AUC (95% CI)� 0.747 (0.641–0.851))
(Figure 8(d)).

3.5. ITGA5 Functional Enrichment Analysis. -e signaling
pathways involved in ITGA5 were mainly enriched in
focal adhesion, ECM-receptor interaction, PI3K-AKT,
and cancer-related pathways, mainly involved in protein
connection, cell adhesion, focal adhesion, cell matrix
receptor interaction, and other biological processes.
Among them, focal adhesion, ECM-receptor interaction,
and PI3K-AKT were the most significant; thus, our fol-
lowing research focused on these signaling pathways
(Figure 9).
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3.6. GSEA. Further verification based on GSEA showed that
the C2 gene set indicated that the high expression of ITGA5
might be closely related to focal adhesion, ECM receptors,
MAPK, JNK, MTOR, WNT, FGF-β, VEGF, and cancer
pathways (Figure 10), and the C5 gene set might be mainly
involved in extracellular matrix, cell migration, cell secre-
tion, and other biological processes (Figure 11).

4. Discussion

In this study, GEPIA database and Kaplan–Meier plotter
were used to explore the expression of ITG genes and their
significance in the prognosis of GC, and most of them were
highly expressed in GC. According to the RNA-seq data, the
high expression of ITG (A2, A5, A11, AV, and B1) in the
ITGs family was negatively correlated with the patient OS.
-e genetic mutations in ITGs revealed a common cause of
genetic changes. -e combination of the results of GC tissue
sequencing and GSEA data analysis demonstrated that ITGs
might participate in the biological processes and signaling
pathways related to cancer. ITGA5 expression in GC was
confirmed by qRT-PCR, and the confirmed results were
consistent with the bioinformatics and tissue sequencing
data. -e AUC ROC curve of ITGA5 relative mRNA ex-
pression (95% CI) was 0.747 (0.641–0.851); P< 0.001. -us,
the diagnostic value of ITGA5 in GC was determined.

Our results on ITGs suggested that most ITGs were
related to tumor diseases. Indeed, some previous studies

reported the clinical outcome associated to ITGs in cancer
patients, but these studies usually assess the prognostic value
of individual ITGs on small sample sizes. Our research was
based on the analysis of relatively large data samples of
TCGA; therefore, more reliable results were achieved. In this
study, previous studies and the role of ITGs genes in cancer
were mainly discussed.

ITGA1 is highly expressed in pancreatic cancer [15],
colorectal cancer [16, 17], and GC [18]. Another study found
that it was significantly related to colon tumor metastasis
and clinical staging and can promote the invasion, migra-
tion, and tumorigenicity of colon cancer cells. In vivo and in
vitro experiments proved that ITGA1 is an oncogene and
may be considered a new target for colon cancer diagnosis
and treatment [16, 17]. ITGA1 gene is also involved in
peritoneal metastasis of GC cells [19]. -e assessment of GC
risk in South Korea′s population revealed that the poly-
morphism and haplotype of ITGA1 gene were significantly
associated with increased GC risk [8]. However, the results
of this study showed that ITGA1 expression was not sig-
nificant to evaluate the prognosis of GC patients.

ITGA2 is highly expressed in GC [9], liver cancer [20],
and pancreatic cancer [21]. ITGA2 gene polymorphism in
GC is associated with an increased risk of GC [8]. Chuang
et al. found that blocking ITGA2 inhibits the migration and
apoptosis of GC cells, suggesting that this gene may be the
target of GC therapy [9]. -e coordination of the mir-30a-
ITGA2 axis may be an important mechanism in the
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occurrence and development of GC precancerous lesions
and intestinal GC [10]. Our results in this study were
consistent with these findings. According to this study,
ITGA2 is highly expressed in GC and is negatively correlated
with the OS of GC patients.

ITGA3 is highly expressed in bladder cancer [22],
intrahepatic cholangiocarcinoma [23], pancreatic cancer
[24], and nasopharyngeal carcinoma [25]. Its high expres-
sion in intrahepatic cholangiocarcinoma and nasopharyn-
geal carcinoma is negatively correlated with patient OS and
can promote the proliferation of intrahepatic chol-
angiocarcinoma cells and cell cycle, thus, potentially rep-
resenting a new target in the treatment of intrahepatic
cholangiocarcinoma [23, 25]. Bioinformatics analysis

revealed that the expression of ITGA3 can be used as a
diagnostic and prognostic marker for pancreatic cancer [24],
but its expression in GC is still unclear. According to our
research, ITGA3 was highly expressed in GC, but no sig-
nificant correlation was found between the expression of this
gene in GC and patient prognosis.

ITGA4 is highly expressed in high-risk neuroblastoma,
and it can mediate cell invasion and migration in high-risk
neuroblastoma and melanoma. It is considered as a key
factor in tumor cell invasion and migration and plays an
important role in cell-cell and cell-extracellular matrix in-
teraction [26]. In this study, ITGA4 was highly expressed in
GC, and its expression was increased with the progression of
GC staging, but it was not correlated with patient OS.
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Figure 5: OS according to the expression of ITG genes based on RNA-seq data in Kaplan–Meier plotter.
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Table 1: Correlation between the expression of ITG genes and OS in GC patients at different clinical stages.

ITGs (RNA-seq) Clinical stage: I (n� 50); II (n� 111); III (n� 149); V (n� 38) HR (95% CI) P-value

ITGA1

I 0.85 (0.27–2.68) 0.78
II 1.14 (0.58–2.25) 0.71
III 1.51 (0.93–2.45) 0.09
IV 0.98 (0.42–2.27) 0.96

ITGA2

I 0.45 (0.12–1.7) 0.22
II 0.86 (0.43–1.7) 0.66
III 1.12 (0.69–1.8) 0.65
IV 0.91 (0.39–2.11) 0.83

ITGA3

I 2.65 (0.8–8.81) 0.10
II 0.59 (0.3–1.18) 0.13
III 0.82 (0.51–1.32) 0.42
IV 1.29 (0.57–2.92) 0.55

ITGA4

I 1.15 (0.37–3.57) 0.81
II 1.04 (0.53–2.05) 0.91
III 1.04 (0.64–1.68) 0.87
IV 1.13 (0.49–2.59) 0.77

ITGA5

I 0.71 (0.21–2.42) 0.59
II 1.37 (0.69–2.7) 0.36
III 1.66 (1.02–2.71) 0.04
IV 2.73 (1.15–6.49) 0.02

ITGA6

I 0.69 (0.22–2.19) 0.53
II 0.46 (0.23–0.94) 0.03
III 0.79 (0.59–1.27) 0.33
IV 0.88 (0.38–2.04) 0.76

ITGA7

I 0.83 (0.25–2.73) 0.75
II 1.15 (0.57–2.29) 0.7
III 1.01 (0.62–1.62) 0.98
IV 1.4 (0.6–3.26) 0.43

ITGA8

I 0.75 (0.24–2.39) 0.63
II 0.85 (0.43–1.68) 0.65
III 1.53 (0.95–2.48) 0.08
IV 0.79 (0.34–1.8) 0.57

ITGA9

I 0.96 (0.31–2.98) 0.94
II 1.4 (0.7–2.77) 0.34
III 1.42 (0.87–2.29) 0.16
IV 0.91 (0.39–2.12) 0.83

ITGA10

I 2.1 (0.62–7.2) 0.23
II 1.48 (0.74–2.97) 0.26
III 1.43 (0.88–2.23) 0.14
IV 1.14 (0.49–2.66) 0.76

ITGA11

I 2.04 (0.61–6.78) 0.24
II 1.45 (0.73–2.87) 0.29
III 1.42 (0.88–2.31) 0.15
IV 2.09 (0.88–4.94) 0.09

ITGAD

I 0.52 (0.16–1.7) 0.27
II 0.83 (0.42–1.65) 0.6
III 0.76 (0.47–1.24) 0.27
IV 0.7 (0.29–1.65) 0.41

ITGAE

I 0.72 (0.27–1.93) 0.51
II 1.07 (0.53–2.14) 0.85
III 0.95 (0.59–1.54) 0.85
IV 0.75 (0.33–1.71) 0.49

ITGAL

I 1.34 (0.42–4.25) 0.62
II 0.84 (0.42–1.67) 0.61
III 0.94 (0.58–1.51) 0.78
IV 0.47 (0.19–1.15) 0.09

ITGAM

I 1.6 (0.51–5.04) 0.42
II 0.67 (0.34–1.33) 0.25
III 1.17 (0.72–1.9) 0.53
IV 1.07 (0.46–2.49) 0.87
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Table 1: Continued.

ITGs (RNA-seq) Clinical stage: I (n� 50); II (n� 111); III (n� 149); V (n� 38) HR (95% CI) P-value

ITGAV

I 0.69 (0.2–2.32) 0.55
II 1.74 (0.88–3.46) 0.11
III 1.95 (1.2–3.17) <0.01
IV 3.05 (1.22–7.66) 0.01

ITGAX

I 1.25 (0.4–3.9) 0.69
II 1.2 (0.6–2.37) 0.61
III 1.18 (0.73–1.91) 0.51
IV 1.01 (0.44–2.31) 0.98

ITGB1

I 0.5 (0.14–1.72) 0.26
II 1.74 (0.87–3.48) 0.12
III 1.1 (0.68–1.78) 0.69
IV 2.09 (0.89–4.93) 0.09

ITGB2

I 2.2 (0.66–7.33) 0.19
II 1.01 (0.51–2.01) 0.97
III 1.13 (0.7–1.82) 0.62
IV 0.61 (0.26–1.47) 0.27

ITGB3

I 1.15 (0.37–3.56) 0.81
II 1.22 (0.62–2.41) 0.57
III 1.26 (0.78–2.04) 0.35
IV 1.11 (0.48–2.58) 0.81

ITGB4

I 1.57 (0.5–4.98) 0.44
II 0.73 (0.37–1.43) 0.36
III 1.49 (0.91–2.44) 0.11
IV 0.89 (0.38–2.06) 0.79

ITGB5

I 0.98 (0.31–3.06) 0.97
II 1.77 (0.88–3.56) 0.11
III 1.12 (0.69–1.83) 0.63
IV 2.14 (0.89–5.12) 0.08

ITGB6

I 0.34 (0.09–1.26) 0.09
II 1.01 (0.52–2) 0.97
III 1.51 (0.94–2.44) 0.09
IV 1.15 (0.5–2.66) 0.75

ITGB7

I 0.79 (0.24–2.61) 0.7
II 1.62 (0.8–3.29) 0.18
III 1.13 (0.7–1.82) 0.62
IV 0.71 (0.31–1.63) 0.42

ITGB8

I 0.78 (0.25–2.46) 0.67
II 0.71 (0.36–1.42) 0.33
III 0.83 (0.52–1.34) 0.45
IV 1.65 (0.7–3.86) 0.25

Table 2: Correlation between the expression of ITG genes and OS in GC patients at different clinical stages.

ITGs (RNA-seq) Differentiation: I (n� 12); II (n� 134); III (n� 218); HR (95% CI) P-value

ITGA1 (none)
Grade I — —
Grade II 1.11 (0.63–1.94) 0.73
Grade III 1.34 (0.89–2.03) 0.16

ITGA2
Grade I — —
Grade II 0.53 (0.3–0.94) 0.03
Grade III 1.26 (0.83–1.89) 0.28

ITGA3
Grade I — —
Grade II 0.69 (0.39–1.21) 0.19
Grade III 1.16 (0.77–1.75) 0.48

ITGA4
Grade I — —
Grade II 1.1 (0.63–1.94) 0.73
Grade III 1 (0.66–1.5) 0.99

ITGA5
Grade I — —
Grade II 0.97 (0.55–1.69) 0.9
Grade III 1.43 (0.95–2.16) 0.09
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Table 2: Continued.

ITGs (RNA-seq) Differentiation: I (n� 12); II (n� 134); III (n� 218); HR (95% CI) P-value

ITGA6
Grade I — —
Grade II 0.52 (0.29–0.93) 0.02
Grade III 0.8 (0.53–1.21) 0.3

ITGA7
Grade I — —
Grade II 0.93 (0.93–1.63) 0.8
Grade III 1.08 (0.72–1.63) 0.7

ITGA8
Grade I — —
Grade II 1.13 (0.64–1.98) 0.67
Grade III 1.07 (0.71–1.61) 0.76

ITGA9
Grade I — —
Grade II 1.1 (0.63–1.93) 0.74
Grade III 1.19 (079–1.79) 0.4

ITGA10
Grade I — —
Grade II 0.78 (0.44–1.38) 0.39
Grade III 1.38 (0.91–2.09) 0.13

ITGA11
Grade I — —
Grade II 1.72 (0.96–3.1) 0.07
Grade III 1.34 (0.88–2.03) 0.17

ITGAD
Grade I — —
Grade II 0.87 (0.49–1.54) 0.63
Grade III 0.7 (046–1.07) 0.096

ITGAE
Grade I — —
Grade II 2.2 (1.23–3.93) 0.03
Grade III 0.45 (0.28–0.72) 0.02

ITGAL
Grade I — —
Grade II 1.79 (0.93–3.44) 0.07
Grade III 0.66 (0.44–1) 0.05

ITGAM
Grade I — —
Grade II 1.54 (0.88–2.7) 0.13
Grade III 1.39 (0.92–2.12) 0.12

ITGAV
Grade I — —
Grade II 0.51 (0.29–0.92) 0.02
Grade III 2.34 (1.55–3.54) <0.01

ITGAX
Grade I — —
Grade II 1.7 (0.97–3.01) 0.06
Grade III 0.99 (0.65–1.49) 0.95

ITGB1
Grade I — —
Grade II 0.65 (0.37–1.15) 0.13
Grade III 1.59 (1.05–2.42) 0.02

ITGB2
Grade I — —
Grade II 1.2 (0.68–2.1) 0.53
Grade III 0.85 (0.56–1.28) 0.43

ITGB3
Grade I — —
Grade II 1.01 (0.58–1.77) 0.97
Grade III 1.49 (0.98–2.26) 0.06

ITGB4
Grade I — —
Grade II 0.83 (0.47–1.46) 0.5
Grade III 1.09 (0.72–1.64) 0.7

ITGB5
Grade I — —
Grade II 1.12 (0.64–1.97) 0.69
Grade III 1.54 (1.01–2.35) 0.05

ITGB6
Grade I — —
Grade II 0.9 (0.51–1.6) 0.73
Grade III 1.22 (0.81–1.83) 0.35

ITGB7
Grade I — —
Grade II 1.28 (0.73–2.26) 0.39
Grade III 0.94 (0.64–1.45) 0.85

ITGB8
Grade I — —
Grade II 0.92 (0.52–1.62) 0.77
Grade III 1.01 (0.67–1.53) 0.95
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ITGA5 is highly expressed in oral squamous cell car-
cinoma [27], pancreatic cancer [28], GC [11], and colorectal
cancer [29], and its high expression is negatively correlated
with patient OS. Some studies revealed the prognostic role of
ITGA5 in non-small cell lung cancer through bio-
informatics, which resulted as an independent prognostic
predictor, and the five-year survival rate of patients with
high ITGA5 expression was significantly reduced [30]. -e
high expression of ITGA5 was significantly related to poor
prognosis in patients with peritoneal metastasis of ovarian
cancer, and the OS time of patients with advanced ovarian
cancer and with high ITGA5 expression was relatively
shorter [31]. -e GC bioinformatics research revealed that
the high ITGA5 expression reduced the OS rate in GC
patients. -erefore, it may be considered a potential

biomarker and therapeutic target to combat GC, and it may
mainly play an important role in the FAK and ECM receptor
signaling pathways [11]. -is study found that ITGA5 was
highly expressed in GC and was related to a poor prognosis
of GC patients.-us, the results in this study were consistent
with the aforementioned previous findings but lack the
experimental verification in GC.

ITGA6 gene polymorphism is associated with increased
GC risk [8]. Yang et al. found that ITGA6may become a new
biomarker and treatment target for GC according to their
established GC prognostic immune indicators and prog-
nostic prediction model [12]. -is study was consistent with
their study, since also in our study ITGA6 was highly
expressed in GC, but the survival curve obtained by the
RNA-seq data analysis showed opposite results to the ones of
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Figure 6: RFS according to the expression of ITG genes based on RNA-seq data in Kaplan–Meier plotter.
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previous studies. -us, a further clinical verification is
needed.

ITGA7 is highly expressed in liver cancer and non-small
cell lung cancer. -e OS and disease-free survival of patients
with liver cancer and lung cancer with high ITGA7 ex-
pression are shorter. -is gene promotes the proliferation,
invasion, and migration of liver cancer cells and lung cancer

cells, and inhibits cell apoptosis [32, 33]. However, no report
related to the role of this gene in GC is available.

A study found that ITGA8 is highly expressed in early
recurring myeloma and can be used as a potential marker of
multiple myeloma recurrence [34]. It is also highly expressed
in colon cancer tissues [35]. ITGA8 can also be used to
predict the prognosis of clear cell renal cell carcinoma [36].
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-e result of this study showed that ITGA8 was highly
expressed in GC, and its expression was increased with the
progression of tumor stages, but it was not associated with
the OS of the patients.

-e expression of ITGA9 in triple-negative breast cancer
is higher than that in other tumors, and the prognosis of
patients is significantly worse [37]. ITGA9 is also highly
expressed in melanoma tissues and promotes the prolifer-
ation and invasion of melanoma cells [38].

Some studies found that tissues with gene variants of
ITGA10 and ITGA6 were less susceptible to melanoma [39]. A
study analyzed the gene expression profile of 64 cases of primary
myxofibrosarcoma and found that patients with high ITGA10
expression had a significantly worse prognosis, revealing that
ITGA10 promotes tumor cell survival by activating TRIO/
RICTOR signaling. An inhibitor of RAC and mTOR exerts an
antitumor effect, revealing a potential treatment strategy for
high-risk myxofibrosarcoma patients [40]. Our research results
found that ITGA10 had no significant difference in GC.

-e bioinformatics analysis revealed that ITGA11 is
highly expressed in patients with non-small cell lung cancer
and may become a diagnostic and prognostic biomarker
[41]. In addition, its high expression in this cancer type is
significantly associated to poor prognosis [42]. ITGA11 is
also highly expressed in fibroblasts of head and neck cancer
[43] and pancreatic cancer [44]. -is study found that
ITGA11 was highly expressed in GC. -e expression of this
gene increased with the increase of tumor progression and
was related to the poor prognosis of GC patients.

-e ITGAD gene is mutated in GC, as revealed by
advanced genomic sequencing analysis [45]. -e increased
variation of ITGAE is associated with the risk of melanoma
[39]. -e whole exon sequencing of 18 cases of mucoepi-
dermoid carcinoma showed the occurrence of ITGAD gene
mutation [46]. -e results in this study revealed that the
mutation rates of ITGAD, ITGAE, and ITGAL were 5%, 4%,
and 5%, respectively. -e analysis of ITGAM methylation
patterns in GC genome revealed that genome methylation
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promotes the expression of ITGAM; thus, ITGAM may be a
candidate gene for GC diagnosis [13]. ITGAV promotes the
proliferation, invasion, and migration of GC cells [14].
ITGAX stimulates angiogenesis in tumors through the
overexpression of VEGF2/VEGF-A mediated by PI3K/AKT
signaling pathway [47]. Our results showed that ITGAE,
ITGAL, ITGAM, and ITGAV were highly expressed in GC,
and the expression of ITGAL gene was increased with the
increase of GC stages. ITGAV was associated with poor
prognosis in patients with GC, and it was the gene with the
highest mutation rate of 9% among ITGs.

ITGB1 is upregulated in ovarian cancer. High ITGB1
expression enhances the invasiveness of ovarian cancer cells.
In vivo experiments showed that ITGB1 downregulation can
inhibit tumor growth and peritoneal metastasis [48, 49].
High ITGB1 expression is also negatively correlated with the
prognosis of patients with non-small cell lung cancer [50]. In
patients with GC, ITGB1 in the peripheral blood is high, and
the later the intermediate stage, the higher the ITGB1
content, which can improve the accuracy of GC diagnosis
[51]. ITGB2 is significantly upregulated in serum exosomes
in patients with papillary thyroid cancer with lymph node
metastasis [52]. ITGB3, ITGB4, and ITGB5 gene poly-
morphisms are associated with increased GC risk [8]. ITGB4
overexpression was related to the aggressiveness and poor
prognosis of many malignant tumors. It is highly expressed
in patients with non-small cell lung cancer and may rep-
resent a diagnostic and prognostic biomarker [42]. Xu et al.
established a biodigital model and found that the mea-
surement of ITGB5 and ITGB1 expression can predict the
survival of patients after GC surgery [53]. ITGB6 is sig-
nificantly increased in the serum of colon cancer, and the
level of ITGB6 in the serum of patients after surgery is
significantly lower than that before surgery. -e higher the

level of ITGB6, the lower the survival rate after surgery. -e
combination of ITGB6 and CEA can be used as a marker for
postoperative prognosis monitoring of colon cancer [54].
ITGB6 is highly expressed in oral squamous cell carcinoma
and can be used as a diagnostic biomarker [55]. ITGB7 is
highly expressed in myeloma cells and tissues, it can regulate
the biological processes of multiple myeloma cells such as
adhesion, invasion, and migration, and patients with high
expression of ITGB7 have a shorter survival time [56]. -e
bioinformatics analysis revealed that ITGB8 is significantly
upregulated in patients with lung adenocarcinoma, which
may become a diagnostic biomarker [41]. Further experi-
mental studies showed that ITGB8 silencing inhibits the
invasion and migration of lung cancer cells and arrest the
cell cycle at G0/G1 [57]. ITGB8 is significantly upregulated
in ovarian cancer tissues, and the OS and disease-free
survival of patients with ovarian cancer with high ITGB8
expression are significantly shortened [58]. Our study found
that ITG (B1, B2, B4, B5, B6, and B8) was highly expressed in
GC. ITGB2 expression was increased with the progression of
GC staging. -e OS of GC patients with high ITGB1 ex-
pression was significantly shortened compared to the OS in
patients with low expression, which was consistent with the
basic results of previous studies.

-is study has some limitations. First, this study is a
single-center study, and the number of samples is small. In
the later stage, we need further multicenter, large sample,
random, and single-blind study. Second, the poor homo-
geneity of T3 in gastric cancer samples may be due to the
small size of tumor tissues, which were not collected during
the sampling process which makes us screen out a relatively
small difference in mRNA, but it is sufficient to show that
there is indeed a difference in mRNA spectrum between
gastric cancer group and adjacent normal tissues group.
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Figure 10: Gene enrichment analysis results of ITGA5 in GC patients according to the TCGA database. A–M, GSEA results of the C2 gene
set of the ITGA5 high expression group.
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In conclusion, this study revealed that the mRNA ex-
pression of some ITG genes was closely related to the di-
agnosis and prognosis of GC. In addition, ITGA5 might be
considered as a potential molecular marker in the diagnosis
and prognosis of GC. -us, this work discovered the
prognostic value and biological role of ITGA5 in GC. Al-
though these results need further experimental verification,
they might help in the understanding of the diagnostic and

prognostic function of ITG genes in GC, ultimately con-
tributing to the design of different and potentially effective
treatment strategies to combat GC.

Data Availability

-e data used to support the findings of this study are in-
cluded within the article.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

Enrichment plot: GO_CELL_MATRIX_ADHESION

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

ES = 0.63
P < 0.001

FDR < 0.002

Enrichment plot: GO_CELL_SUBSTRATE_ADHESION

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

ES = 0.68
P < 0.001

FDR < 0.001

Enrichment plot:
GO_REGULATION_OF_CELL_SUBSTRATE_ADHESION

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

ES = 0.65
P < 0.001

FDR < 0.001

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

Enrichment plot:
GO_EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

ES = 0.74
P < 0.001

FDR < 0.001

Enrichment plot: GO_ENDOTHELIAL_CELL_MIGRATION

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

ES = 0.66
P < 0.001

FDR < 0.001

0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

Enrichment plot: GO_COLLAGEN_BINDING

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

0.6
0.7

0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

ES = 0.77
P < 0.001

FDR < 0.001

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

0.8

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

Enrichment plot:
GO_MESENCHYMAL_CELL_DIFFERENTIATION

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

ES = 0.71
P < 0.001

FDR < 0.001

Enrichment plot:
GO_POSITIVE_REGULATION_OF_EPITHELIAL_CELL

_MIGRATION

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

ES = 0.62
P < 0.001

FDR < 0.001

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

Enrichment plot: GO_ENDOCRINE_PROCESS

0 10,000 20,000 30,000 40,000 50,000
Rank in ordered dataset

Enrichment profile
Hits
Ranking metric scores

ES = 0.63
P < 0.001

FDR < 0.001

0.6
0.5
0.4
0.3
0.2
0.1
0.0

1.0

0.5

0.0

En
ric

hm
en

t s
co

re
 (E

S)
Ra

nk
ed

 li
st 

m
et

ric
(s

ig
na

l2
no

ise
)

Zero cross at 34384

τ (negatively correlated)

″h″ (positively correlated)

Figure 11: Gene enrichment analysis results of ITGA5 in GC patients according to the TCGA database. A–M, GSEA results of the C5 gene
set of the ITGA5 high expression group.
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