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Network analysis reveals 
essential proteins that regulate 
sodium‑iodide symporter 
expression in anaplastic thyroid 
carcinoma
Hassan Rakhsh‑Khorshid1,2, Hilda Samimi3, Shukoofeh Torabi4, 
Sayed Mahmoud Sajjadi‑Jazi5,3, Hamed Samadi3, Fatemeh Ghafouri6,3, Yazdan Asgari7* & 
Vahid Haghpanah3,8*

Anaplastic thyroid carcinoma (ATC) is the most rare and lethal form of thyroid cancer and requires 
effective treatment. Efforts have been made to restore sodium-iodide symporter (NIS) expression 
in ATC cells where it has been downregulated, yet without complete success. Systems biology 
approaches have been used to simplify complex biological networks. Here, we attempt to find more 
suitable targets in order to restore NIS expression in ATC cells. We have built a simplified protein 
interaction network including transcription factors and proteins involved in MAPK, TGFβ/SMAD, PI3K/
AKT, and TSHR signaling pathways which regulate NIS expression, alongside proteins interacting 
with them. The network was analyzed, and proteins were ranked based on several centrality indices. 
Our results suggest that the protein interaction network of NIS expression regulation is modular, and 
distance-based and information-flow-based centrality indices may be better predictors of important 
proteins in such networks. We propose that the high-ranked proteins found in our analysis are 
expected to be more promising targets in attempts to restore NIS expression in ATC cells.
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MAPK1	� Mitogen-Activated Protein Kinase 1
MCC	� Maximal Clique Centrality
MEK	� Mitogen-Activated Protein Kinase Kinase
MYC	� MYC Proto-Oncogene
NIS	� Sodium-Iodide Symporter
NIS-ERPIN	� NIS regulatory protein interaction network
PARP1	� Poly [ADP-Ribose] Polymerase 1
PI3K	� Phosphoinositide 3-Kinase
PIK3CA	� Phosphoinositide 3-Kinase Catalytic subunit A
PIK3CB	� Phosphoinositide 3-Kinase Catalytic subunit B
PIK3CD	� Phosphoinositide 3-Kinase Catalytic subunit D
PIK3CG	� Phosphoinositide 3-Kinase Catalytic subunit G
PPI	� Protein–Protein Interaction
SMAD	� Sma- And Mad-Related Protein
SRC	� SRC Proto-Oncogene
TERT	� Telomerase Reverse Transcriptase
TGFβ	� Transforming Growth Factor β
TP53	� Tumor Protein 53
TSHR	� Thyroid-Stimulating Hormone Receptor
XIAP	� X-linked Inhibitor of Apoptosis Protein

Anaplastic thyroid carcinoma (ATC) is a very rare tumor of the thyroid gland, featuring undifferentiated tissue. 
ATC is diagnosed in about one percent of thyroid cancers with nearly 100 percent disease-specific mortality1. In 
most cases, surgery is intended to prevent imminent airway compromise and despite multimodality approach 
including post-surgery radio/chemotherapies, many ATC patients have very poor outcome2. Radioactive iodine 
administration which has been routinely applied and considered to be effective in differentiated thyroid cancers, 
is not successful in ATC patients as ATC tissue does not concentrate iodide due to defects in sodium-iodide 
symporter (NIS) expression, structure or translocation3. Attempts have been made to induce radioactive iodine 
uptake in ATC cells4, e.g., by stable expression of NIS5 or suppression of inhibitory signaling pathways6,7, however 
none have yet been clinically used for ATC. The inability of ATC cells to respond to radioactive iodine seems to 
be the result of several genetic and epigenetic abnormalities. ATC is a genetically complex disease, and various 
mutations, notably in BRAF, TP53, TERT, RAS, and PIK3CA, have been noted in samples8–11. Moreover, many 
breaks and copy number variations have been observed in ATC samples12. For instance, with regard to NIS 
expression it was found that BRAFV600E, one of the most frequent mutations in ATC, leads to NIS downregulation 
through induction of TGFβ secretion13 or regulation of DNA methyltransferase 114. In addition, membranous 
NIS-expressing thyroid tumor samples were shown to have wild-type BRAF and N-RAS15. Moreover, suppression 
of MAPK and PI3K/AKT signaling pathways, two pathways with the most frequent mutations in ATC, led to 
NIS restoration6,7. This complicated and multi-pathway regulation of NIS expression has persuaded us to exploit 
other approaches in order to better understand it.

At several levels, biological entities show such complicated structures and behaviors that systemic approaches 
are required to complement studies on single molecules. Further encouragement to try these approaches came 
from the similarities between biological and non-biological (e.g., social) networks that facilitate use of similar 
methods16. Centrality analysis is one of these methods employed by biological researchers to determine the 
importance of each node (e.g., protein) in a network (e.g., protein–protein interaction (PPI) networks)17. In such 
networks, protein interactions are undirected and unweighted edges18. Centrality analysis has been applied in 
order to find essential proteins of PPI networks in a wide range of organisms19–23. This method has also been 
brought to cancer research24. In almost all studies, the goal was finding the most suitable centrality indices or 
a combination of them, usually by comparing the ranking results within experimental data17–23,25–28. Finding 
essential proteins of a network using centrality analysis can help researchers to design therapeutics and genetic 
manipulations with a minimalistic approach, and therefore lower cost.

Considering the complexity of NIS expression regulatory pathways in ATC, we attempted to simplify it by 
building a model network comprising the transcription factors and signaling pathways (MAPK, TGFβ/SMAD, 
PI3K/AKT, and TSHR) related to NIS expression13,29,30. Based on 167 input proteins, the NIS regulatory protein 
interaction network (NIS-ERPIN) was established. These proteins include transcription factors and signaling 
pathway proteins that regulate NIS expression, along with some other proteins that interact with them. NIS-
ERPIN has then been analyzed for both modularity and centrality and sorted based on different centrality 
indices. Ranks of proteins in each centrality index have been considered as indicators of proteins essentiality 
within the network. Protein essentiality in this network may be utilized in order to choose molecular targets 
for NIS expression and consequently response to radioactive iodine therapy in ATC patients if one is going to 
disrupt the network.

Methods
Creating the NIS‑ERPIN.  We have built a network of proteins, mainly including the four signaling path-
ways and transcription factors that regulate NIS expression (Supplementary Table S1). These proteins were ini-
tially mined manually through literature review and were enriched by several interacting proteins that were rec-
ommended by BioGRID31, together making the list of 167 input proteins (Supplementary Figure S1). BioGRID 
is the Biological General Repository for Interaction Datasets, a curated database of different types of interac-
tions, notably protein–protein interactions. Using Cytoscape (version 3.7.1)32, a software capable of modeling 
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the networks of molecular interactions, a network was reconstructed with the data from BioGRID. It is possible 
to create a network for which all nodes are not necessarily connected to each other. Therefore, we have a whole 
network including different connected sub-networks. In most cases, there is a very large connected sub-network 
and other small connected sub-networks. If the other small sub-networks contain a very small number of nodes 
(compared to the largest one), it is possible to remove them from the analyses. At the present study, the largest 
connected sub-network was considered for further topological analyses which contains 1,278 nodes and 76,924 
edges or interactions (Supplementary Figure S2).

Centrality analysis.  Eleven centrality indices were used in this study: Degree, Betweenness, Closeness, 
Bottleneck, Radiality, Stress, Clustering Coefficient, EcCentricity, Edge Percolated Component (EPC), Density 
of Maximum Neighborhood Component (DMNC), and Maximal Clique Centrality (MCC)33. Based on the pri-
mary ranking, eight centrality indices were informative and thus categorized in three groups: (1) representing 
the number of immediate neighbors of a node (Degree), (2) indicating the number of interactions in the circle of 
neighbors (DMNC, and Clustering Coefficient), and (3) reflecting distance and information flow in the network 
(EPC, Closeness, Radiality, Betweenness, and Stress).

Centrality indices in each category averaged out to give a combination index which we used to compute 
weighted and unweighted averages of protein ranks. Since we hypothesized that, in NIS-ERPIN, distance- and 
information flow-based centrality indices are better predictors of protein essentiality, weighted averages were 
computed to reflect this assumption. The weighted average was calculated by giving a factor of 0.7 to the average 
of information flow indices, 0.2 to Degree, and 0.1 to the average of Clustering Coefficient and DMNC.

Modularity analysis.  A network of protein interactions was generated using STRING database34. The 
output file, the list of protein interactions, was imported in Gephi 0.9.235 for modularity analysis by Blondel’s 
method36. A graph of 2039 nodes and 76,924 edges was created with the resolution set at one. For comparison, 
three random graphs with the same number of nodes and resolutions were also generated.

Mutated genes in ATC​.  To obtain the mutational landscape of genes that encode proteins of NIS-ERPIN, 
we used the results of the whole-exome sequencing on ATC samples with the largest sample size, including 22 
ATC tissue specimens and four ATC cell lines37. At the present study, the list of mutation frequencies for proteins 
of NIS-ERPIN in ATC is extracted from the results of Kunstman et al.37 study and is presented in Supplementary 
Table S2. The mutation frequencies, normalized and sorted based on the protein length, in ATC were compared 
with the lists obtained from the centrality analysis. The correlation between lists was evaluated using R software 
(version 3.5.2) in Mac Operating System.

Results
Scoring based on centrality indices and averaging out the proteins ranks.  Of the eleven central-
ity indices used, the results of three (Bottleneck, MCC, and EcCentricity) were not informative (data are not 
shown) and as a result were excluded from further analyses. They were not informative because their lists consist 
of mostly repetitive scores. The high-ranked proteins of the eight informative indices are presented in Table 1. 
Results of the weighted and unweighted averages of protein ranks of three centrality categories are presented in 
Table 2.

Modularity analysis.  The modularity score of 0.411 was calculated for NIS-ERPIN (plot of size distribution 
is presented in Fig. 1), whereas three random graphs with the same size of nodes had modularity scores of about 
one fifth (0.085, 0.084 and 0.082; plots of size distribution are presented in Supplementary Figure S3. Moreover, 
the graph of NIS-ERPIN contained seven communities of nodes, and the random graphs had nine, eight and ten 
communities, respectively.

Comparing centrality analysis with mutation frequencies.  Interested in the correlation between 
the rate of mutations and the essentiality of the protein products in NIS-ERPIN, we focused on the mutations 
of 167 protein-coding genes, reported by Kunstman et al. in the whole-exome sequencing of ATC samples and 
cell lines37. The list of mutations was compared with the lists of protein ranks from centrality analyses. There was 
no statistically significant correlation between the list of mutation frequencies and any of the centrality indices 
(Table 3). Also, all correlation coefficients were below 0.3 and considered weak.

Discussion
Centrality analysis has been recently explored in thyroid cancer research38,39. In doing so, the two groups of Shang 
et al. and Hossain et al. first regarded differential gene expression as their criterion for the importance of genes 
and then built their networks. Taking a different approach here, we have built our network without referring to 
the gene expression data and therefore we provide a protein interaction network which can be used as a basis 
for further studies. When creating strategies to disrupt the NIS expression regulatory network, gene expression 
data can be imported to strengthen or weaken edges and nodes of the network.

An interesting result of our investigation was finding the concentration of apoptotic proteins on top of the 
unweighted average list of the three centrality categories (Table 2). This outcome indicates that considering all 
eight centrality indices explored in this study, several apoptosis-related proteins, including BCL2L1, CASP9, 
XIAP, CASP3, and PARP1, are important in the network. Apoptosis has been proposed as a mechanism of cell 
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death after radioactive iodine uptake in thyroid40 and non-thyroid41–44 cancer cells. However, our results suggest 
that apoptosis-related proteins may have a notable role in regulating NIS expression.

Categorizing centrality indices, we hypothesized that those indices, indicating distance and information 
flow in the network, were better indicators of essentiality in the NIS-ERPIN, if one was going to disrupt the 
function of the network in ATC. These indices, including Betweenness, Closeness, Stress, Radiality, and EPC, 
can provide information about the fast flow of signal in the network. Betweenness and Closeness have been 
shown to present essential proteins of PPI networks in yeast, worm, and fruit fly22. Betweenness effectiveness in 

Table 1.   Top-20 proteins of the eight informative centrality indices.

No Degree Betwenness Closeness Radiality Stress EPC DMNC Clustering coefficient

1 AKT1 AKT1 AKT1 AKT1 AKT1 ALB MAPKAP1 GSX1

2 TP53 TP53 TP53 TP53 PIK3CA AKT1 IL1A PTTG1IP

3 GAPDH SRC GAPDH GAPDH IL6 GAPDH CASP9 ERRFI1

4 PIK3CA PIK3CA PIK3CA PIK3CA ALB PIK3CA XIAP CAMP

5 ALB ALB ALB ALB SRC JUN CAMP FOXE1

6 SRC IL6 SRC SRC TP53 TP53 PARP1 PDK1

7 IL6 MAPK1 IL6 IL6 MAPK1 MAPK3 BCL2L1 MAFA

8 MAPK1 TNF MAPK1 MAPK1 TNF PIK3CB WEE1 SLA

9 MAPK3 EGFR MAPK3 MAPK3 JAK2 IL6 CHEK1 DAPP1

10 JUN EGF JUN JUN PIK3CD PIK3CG FGF1 MAPKAP1

11 PIK3CG GAPDH PIK3CG PIK3CG PIK3CB PIK3CD MMP2 SLC5A5

12 PIK3CD MAPK3 PIK3CD PIK3CD EGF MAPK1 RPS6KA1 APEX1

13 TNF JUN TNF TNF MAPK3 MYC HIF1A NKX2-1

14 PIK3CB VEGFA PIK3CB PIK3CB EGFR SRC PPARG​ IL1A

15 EGF PIK3CD EGF EGF PIK3CG EGFR DAPP1 HES1

16 EGFR JAK2 EGFR EGFR GAPDH INS EGR1 TSHB

17 MYC PIK3CB MYC MYC VEGFA TNF CDC25A CDC25B

18 VEGFA PIK3CG VEGFA VEGFA JUN EGF EIF4EBP1 THRB

19 INS MYC INS INS IL2 MAPK8 MDM2 WEE1

20 MAPK8 INS MAPK8 MAPK8 TGFB1 HRAS CDC25C UBTF

Table 2.   Weighted and unweighted averages of proteins rank after categorizing centrality indices in three 
groups, as mentioned in “Methods”.

Distance and information flow Degree Interaction among neighbors Unweighted average Weighted average

AKT1 AKT1 TERF2IP PARP1 AKT1

PRDM10 PRDM10 CAMP BCL2L1 PRDM10

TP53 MBOAT4 MAPKAP1 CASP9 IL2

ALB TP53 IL1A XIAP NFKB1

PIK3CA GAPDH ERRFI1 FGF1 GAPDH

MBOAT4 PIK3CA DAPP1 MMP2 MBOAT4

IL6 ALB XIAP PPARG​ BCL2

SRC SRC WEE1 EGR1 TP53

GAPDH IL6 CASP9 CASP3 IL6

MAPK1 MAPK1 PDK1 HIF1A ALB

MAPK3 MAPK3 SLA MDM2 PIK3CA

JUN JUN CHEK1 IL1A JUN

TNF PIK3CG APEX1 CDC25A MTOR

PIK3CD PIK3CD CDC25B RB1 STAT3

PIK3CB TNF DDIT3 CDKN1B PIK3CB

PIK3CG PIK3CB PTTG1 IL1B MAPK3

EGF EGF PARP1 RPS6KA1 TNF

EGFR EGFR RPS6KA1 PTEN PIK3CD

MYC MYC UBTF ESR1 PIK3CG

VEGFA VEGFA EIF4EBP1 HGF SRC
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discriminating essential proteins is proposed to be independent of the number of connections (Degree central-
ity)22. In a homology-based study in yeast PPI network, Xiong et al. found that cancer proteins tend to have higher 
Betweenness scores than average24. In a study on prostate cancer, Closeness and Betweenness were found to be 
more predictive of unknown genes/proteins related to the disease, whereas Degree was able to explore known 
related genes/proteins accurately25. Centrality indices of Degree, Betweenness, and Closeness have been proposed 
to be profitable in exploring essential proteins of cancer PPI networks45 and have been applied in studying the 
pan-cancer network of proteins related to epithelial-mesenchymal transition46. However, we reasoned that Degree 
centrality could give high scores to more known proteins due to the simple fact that these more recognized pro-
teins have been the focus of more studies, and therefore more interactions (network neighbors) have been found 
for them. Considering the distance-based indices, we found that many top proteins in these lists are encoded 
by highly mutated genes in ATC (Table 2). The results of the present study suggest that information-flow- and 
distance-based centrality indices may be useful in predicting the essential proteins in regulating NIS expression.

To emphasize the importance of distance and information flow in the network, we put more weight on this 
category when averaging ranks. We found that top-20 positions are concentrated with proteins which have 
been frequently mutated in ATC, including AKT1, TP53, PIK3CA, PIK3CB, MAPK3, PIK3CD, PIK3CG, SRC, 
MAPK1, and MYC (Table 2). These are all main proteins of AKT/PI3K or MAPK pathways. The essentiality of 
distance-based and information-flow-based centrality indices in our study is in accordance with experimental 
efforts to restore the NIS function. By using small molecules to inhibit MEK, AKT, and histone deacetylase, Liu 
et al. could restore NIS expression and iodine uptake in several non-thyroid cell lines6. Also, Hou et al. gained 
similar results upon downregulation of BRAF and AKT in melanoma cells7. These observations confirm the 
significance of MAPK and AKT signaling pathways and epigenetic regulation in NIS expression. PI3K and TGFβ 
were shown to inhibit radioactive iodine uptake, and one mechanism in the case of TGFβ was NIS repression47. 
In another study to restore iodide uptake, transfection of ATC cells with vector encoding wide-type TP53 gene 
was successful to express NIS at the mRNA and protein levels and induce radioactive iodine concentration and 
eventually cell death48. Developing a high-throughput screening, Oh et al. recently found a new tyrosine kinase 
inhibitor leading to MAPK signaling pathway inactivation and NIS expression49. Accordingly, we conclude that 
not only do our results suggest that MAPK and AKT/PI3K pathways may be more important in regulating NIS 

Figure 1.   Size distribution of protein communities of NIS expression regulatory network. 7 communities were 
detected, and the modularity score was calculated 0.411.

Table 3.   Correlation analysis of mutation rates and centrality indices shows that there is no statistically 
significant correlation between any of the centrality indices and normalized mutation rates. Mutation data 
are from a study by Kunstman et al.37. † Group and weighted averages have been defined as following: Group 
1 average: average of ranks of DMNC and CC. Group 2 average: average of ranks of closeness, radiality, 
betweenness, stress and EPC. Group 3 average: average of ‘Group 1 average’, ‘Group 2 average’ and ranks of 
degree. Weighted average: average of ‘Group 1 average × 0.1’, ‘Group 2 average ✕ 0.7’ and ranks of ‘degree × 
0.2’.

Betweenness Closeness
Clustering 
coefficient Degree DMNC EPC MNC

Correlation  − 0.0782  − 0.0784 0.1077  − 0.0827 0.1483  − 0.0689  − 0.0827

P value 0.3138 0.3122 0.1647 0.2868 0.0551 0.3746 0.2864

Radiality Stress Total average
Group 1 average 
† Group 2 average Group 3 average

Weighted 
average

Correlation  − 0.0828  − 0.0769  − 0.0369 0.1512  − 0.0765 0.0262  − 0.0644

P value 0.2858 0.3217 0.6345 0.0504 0.3241 0.7361 0.4069
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expression but also, they confirm the importance of distance-based centrality indices in this network. Addition-
ally, other high-ranked proteins in the category of distance-related centrality indices may be interesting subjects 
of study.

In a modular network, communities of nodes which are densely connected can be found, whereas their 
connections with nodes of other communities are sparse36. Finding evidence of modularity is encouraging, as 
it suggests that there might be nodes which are highly essential for the integrity of the network, regarded as 
its weakness. The modularity of NIS-ERPIN emphasizes the significance of centrality analysis presented here. 
Moreover, we investigated if we can find nodes with high scores in Betweenness and low scores in Degree, which 
might be the connecting nodes of protein communities50. However, we observed that there was no such node, 
and that there was a very strong correlation between scores of Betweenness and Degree (data are not presented).

Curious about any correlation between centrality ranks of proteins and their rate of mutations, we also 
compared the results of the only available whole-exome sequencing of ATC samples with our lists of centrality 
indices and combinatory indices. Such a correlation may indicate the importance of highly mutated proteins for 
the NIS-ERPIN; however, we found no statistically significant correlation. This lack of meaningful correlation 
was not unexpected since mutation frequencies found in the whole-exome sequencing were only partially in 
accordance with mutation frequencies found in target-based sequencing studies8–12. Whether this controversial 
outcome is due to possibly inadequate ATC samples investigated in the whole-exome sequencing will be clari-
fied by further examinations. Therefore, future genetic studies may strengthen or weaken the implications of 
our centrality analysis.

Beginning with 167 input proteins to create our network and listing the top-20 in each index, we propose here 
the essential proteins of the NIS expression regulatory network (Fig. 2). We hypothesized that those centrality 
indices that represent the distance and flow of information would be better indicators of essential proteins of 

Figure 2.   Several proteins of the four signaling pathways, including MAPK (A), PI3K/AKT (B), TGFβ/SMAD 
(C) and TSH/TSHR (D), alongside a few transcription factors (E) with a role in the regulation of NIS expression 
in ATC from the list of 167 input proteins, also appeared in top-20 lists of centrality indices.
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NIS-ERPIN. We also found that several proteins encoded by highly mutated genes of ATC were high-ranked in 
these lists. This study can be used to exclude some targets and include other targets in experimental efforts to 
restore NIS expression. However, we are aware that NIS downregulation is not the only abnormality that results 
in an inability of thyroid cells to uptake iodide, and that NIS translocation is also worth considering15. Neverthe-
less, some proteins of our network probably have a role in the suppression of NIS function in ways other than 
expression regulation. For example, it has been shown that β-catenin regulates NIS distribution in thyroid cells51. 
Additionally, NIS inhibitory mutations should be considered, particularly in personalized therapy. In addition 
to the complicated manner of NIS suppression, it is worth noting that, to interpret raw data from the network 
analysis, careful reflection on biological context and/or experimental data is required. Besides, there are some 
limitations regarding the centrality analysis. One of them is different indices could lead to difference on the most 
important vertex in a network. Hence , using a proper index depends heavily on the context of the reconstructed 
network and should be chosen with a reasonable process. Another limitation is whether a combination of differ-
ent indices is more useful than considering an index alone. However, this issue also depends on the basics and 
properties of the reconstructed network. Therefore, one must find or suggest the proper indices in the study based 
on the context of the biological problem in the study52. Moreover, PPI networks are affected by false positives 
and, have also not yet been completed45, which is a source of inaccuracy in these analyses. Therefore, a more 
cautious approach to network analysis results is recommended.

Conclusion
The results of our modularity and centrality analyses suggest a combination therapy approach to induce NIS 
expression in ATC cases, particularly if the targets are essential proteins we present in this study. We propose 
several genes/proteins in the NIS expression regulatory network as interesting targets for manipulation, including: 
AKT1, TP53, PIK3C, MAPK1, MAPK3, SRC, MYC, EGR1, XIAP, BCL2L1, CASP3, and CASP9. Also, several 
previously unnoticed proteins which rank high in our analyses might prove to be interesting targets of study. 
Moreover, we presume that lower rank proteins of our weighted and unweighted combinatory indices are of 
little importance and interest, and that manipulations based on them will probably result in failure due to the 
fact that they are not essential enough in the NIS expression regulatory network.

Data availability
Data are available upon request from corresponding authors.
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