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Single-cell RNA sequencing of human breast
tumour-infiltrating immune cells reveals a γδ T-cell
subtype associated with good clinical outcome
Katerina Boufea1, Victor Gonzalez-Huici1 , Marcus Lindberg1 , Nelly N Olova2, Stefan Symeonides3 ,
Olga Oikonomidou3, Nizar N Batada1

The association of increased levels of tumour-infiltrating gamma-
delta (γδ) T cells with favorable prognosis across many cancer
types and their ability to recognize stress antigens in an MHC
unrestricted manner has led to an increased interest in exploiting
them for cancer immunotherapy. We performed single-cell RNA
sequencing (scRNA-seq) of peripheral blood γδ T cells from
healthy adult donors and from fresh tumour biopsies of breast
cancer patients. We identified five γδ T cells subtypes in blood
and three subtypes of γδ T cells in breast tumour. These subtypes
differed in the expression of genes contributing to effector
functions such as antigen presentation, cytotoxicity, and IL17A
and IFNγ production. Compared with the blood γδ T cells, the
breast tumour-infiltrating γδ T cells weremore activated, expressed
higher levels of cytotoxic genes, yet were immunosuppressed. One
subtype in the breast tumour that was IFNγ-positive had no
obvious similarity to any of the subtypes observed in the blood γδ
T cell and was the only subtype associated with improved overall
survival of breast cancer patients. Taken together, our study has
identified markers of subtypes of human blood γδ T cells and
uncovered a tumour-infiltrating γδ T cells subtype associated
improved overall cancer survival.
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Introduction

Whereas the conventional population of T cells use a CD3-associated
alpha/beta (αβ) TCR for recognition of processed peptide antigens
presented on MHCs, a minor population of T cells express a gamma-
delta (γδ) TCR, which can recognize both peptide and non-peptide
antigens directly (Sebestyen et al, 2020). In human peripheral
blood, two major γδ T-cell subsets are defined based on the type of

variable segment of the delta (Vδ) chain that is present in their TCR
and there is non-random pairing between Vδ chains and Vγ chains.
For instance, the Vγ9-Vδ2 γδ T-cell subtype, which carries out re-
sponse to transformed cells and invasive pathogens, makes up
between 50% and 90% of the γδ T cells in the human peripheral
blood (Dimova et al, 2015).

In addition to the TCR composition–based classification, γδ T-cell
subtypes have also been distinguished based on their effector
functions. Two broad subgroups defined based on cellular function
include effector γδ T cells, which can kill cells such as tumours
directly (Kabelitz et al, 2007), and regulatory γδ T cells, that promote
immunity through secreting cytokines (Zhao et al, 2018). For ex-
ample, mouse γδ T-cell have a functionally well-defined and
mutually exclusive IL17A producing and an IFNγ-producing sub-
types (Ribot et al, 2009).

Using a candidate gene approach, Ryan et al (2016) have
identified CD16 and CD28 as markers of two distinct blood Vδ2
subtypes. However, subtypes and markers of Vδ1 have remained
unclear. Pizzolato et al (2019) carried out single-cell RNA se-
quencing (scRNA-seq) of Vδ1 and Vδ2 sorted subsets of human
blood γδ T cells. Although their data allowed identification of genes
differentially expressed between the sorted Vδ1 and Vδ2 subsets of
γδ T cells, the relatively low number of cells that were sequenced
did not allow identification of subclusters within them. Additional
deep scRNA-seq provides an opportunity to uncover γδ T subtypes,
their markers, and putative functions unbiasedly (Regev et al, 2017).

Whereas the human γδ T cells have been characterized largely in
the peripheral blood and in the context of bacterial and viral in-
fections, computational study of The Cancer Genome Atlas (TCGA)
cancer data has shown that elevated levels of γδ T cells in a variety
of solid tumours are associated with favourable prognosis (Ma et al,
2012; Gentles et al, 2015; Wu et al, 2019). Using ex vivo grid culture
expansion of γδ T cells isolated from breast tumours, Wu et al (2019)
identified an IFNγ-positive innate-like δ1 subtype that was asso-
ciated with favorable overall survival in triple-negative breast
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Figure 1. Unsupervised analysis of single-cell RNA sequencing (scRNA-seq) data on γδ T cells from peripheral blood of healthy adult donors identifies multiple
subtypes.
(A) UMAP-based projection of the merged single cell gene expression data of blood derived γδ T cells from three healthy donors. Different clusters are named arbitrarily
with c.γδ prefix (to indicate γδ cells from circulation). (B) Overlay of data source on UMAP-based projection of scRNA-seq data. Cells from donor HD4 and HD5 were pooled
before performing scRNA-seq and labeled as HD4/5. The number of cells from each dataset is shown above the projection. (C) Labeling of cells positive for TCR delta
genes. Overlay of cells that have genesmapping to the TRDC (left), TRDV2 (middle) and TRGV9 (right) gene segments. (D)Quantification of TRDV2 and TRGV9 in each cluster.
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cancer patients. However, markers unique to this subtype and the
gene expression programs that potentially underlie their clinical
association have not been defined. Here, we generated a large
reference-level scRNA-seq dataset on blood γδ T cells from three
healthy donors and from two breast tumours. Our large dataset
containing transcriptomes from a total of ~7,000 γδ T cells identified
multiple novel subsets of and marker genes for both δ1 and δ2
subtypes, including a δ1 breast tumour-infiltrating γδ T-cell subtype
that is absent in blood and is associated with favorable overall
survival of breast cancer patients.

Results

Unsupervised clustering of scRNA-seq of blood γδ T cells

Peripheral blood γδ T cells from three healthy donors were sorted
using anti-TCR γδ antibody (see the Materials and Methods section)
and subjected to 10x Chromium (Zheng et al, 2017) single-cell 39
gene expression library generation and subsequently sequenced
on Illumina NovaSeq S1 platform. Cells from donors HD4 and HD5
were pooled before performing scRNA-seq and labeled as HD4/5.
Raw sequence reads were processed using the Cell Ranger pipeline
(see the Materials and Methods section). The resulting gene ex-
pression counts for each sample were merged using Seurat (Butler
et al, 2018; Stuart et al, 2019). Only clusters that were CD3E and TCR δ
constant gene segment (TRDC), which is a pan-γδ T-cell maker,
positive and present in both the datasets were retained and the
final combined data comprised 6,116 cells with an average of 1,084
genes per cell representing 12,943 different genes in total.

Community based clustering (as implemented in Seurat) identified
five clusters and two-dimensional projection of the merged scRNA-seq
data using UMAP (McInnes et al, 2018 Preprint) revealed two macro-
clusters (Fig 1A). Clustering seemed not to be affected by confounding
technical or biological variation: (1) all clusters had similar proportion of
cells in each phase of the cell cycle suggesting that the clusters are not
driven by cell-cycle differences, (2) removing cell-cycle genes did not
affect clustering, and (3) clustering of subsamples of the data had
consistent clustering (Fig S1). Moreover, clustering of datasets separately
(HD4/5 or HD6) had the same number of clusters as that seen in the
mergeddata and, in themerged data, cells fromeach of the two datasets
(HD4/5 and HD6) were relatively evenly distributed among the clusters
(Fig 1B). Only the TRDV2 (TCR Vδ2 variable gene segment) and TRGV9 (TCR
Vγ9 variable gene segment) transcript reads were the only ones of the
TRD/TRG gene family that were unambiguously mappable with the short
(90basepair) transcript readsequences that comprisedourdata (see the
Materials and Methods section; Fig 1C and D).

To assess if the clustering is biologically meaningful, we looked
at the distribution of various known markers and curated gene
signatures that associate with effector functions known to be

carried out by γδ−Τ cells (Fig 1E–G). As expected, we observed
mutual exclusive expression of markers defining the IFNγ and IL17A
producing subtypes that define two well-characterized γδ−T clus-
ters. Furthermore, the cluster (c.γδ5) differentially expressed CCR6
and RORC, which are well known markers of IL17A producing cells
(Haas et al, 2009). Based on the above data, we suggest the fol-
lowing functional annotations for these clusters: (i) the c.γδ1 cluster
appears to be naive or immature (as indicated by LEF1), (ii) the c.γδ2
cluster appears to be recent thymus emigrants (as indicated by
CCR7) (Reinhardt et al, 2014), (iii) the c.γδ3 and c.γδ4 clusters ap-
pears to carry out canonical Vδ2 cytotoxic functions namely anti-
bacterial, antigen presentation function and IFNγ producer; and (iv)
the c.γδ5 cluster is a IL17A producer (which was enriched for RORC
and CCR6 expression) (Singh et al, 2008).

Ryan et al (2016) identified two different anti-TRDV2+ subtypes in
blood γδ T cells that aremarked bymutually exclusive expression of
CD28 and CD16, which we also observe in our data (Fig 2A). Whereas
CD16 was specifically enriched in only one IFNγ+ cluster (i.e., c.γδ3)
that is also TRDV2high (Fig 1C and D), CD28 was more diffused and
present in all the other subtypes including the smaller macro-
cluster that had low levels of TRDV2 (Fig 1C and D). To corroborate
this with a larger gene set, we scored all the subclusters for the
published gene signatures of the γδ-T-cell partitioning defined by
CD16 and CD28 (Ryan et al, 2016). As before, whereas CD16 gene
signature was exclusive to one subtype of γδ T cells, the CD28 gene
signature was enriched in all the other subtypes, including the two
of the smaller macrocluster subtypes (Fig 2B). Identification of
cluster enriched genes via unsupervised clustering (Fig 1G) iden-
tified CXCR6, a surface protein for which commercial antibody
existed, which suggested that is may be a better marker than CD28
for isolating CD16 negative Vδ2 cells, because unlike CD28, it is
absent in the smaller macrocluster that is low in TRDV2. To test this
hypothesis, we performed immunostaining with anti-CXCR6 (present
in both c.γδ4 and c.γδ5) and with anti-GPR56 (present in c.γδ3) (Fig
2C). We stained blood from three donors (including two additional
healthy donors, HD9 and HD10) with anti-CD3, anti-TCRγδ−Vδ2, anti-
GPR56, and anti-CXCR6 (Fig 2D). The L-shaped scatter plot of GPR56
and CXCR6 suggests mutual exclusion and corroborates they mark
different δ2 subpopulations within human blood γδ-T population.
Thus, the clusters identified in our data are consistent with what
has been reported in the literature regarding human blood γδ T
cells and our analysis allowed us to identify a better marker for
separating these subtypes.

Identification of γδ T-cell subtypes within breast tumour
microenvironment

To uncover γδ T-cell subtypes and their gene expression programs
in the tumour microenvironment, we dissociated fresh triple-
negative (TNBC) and Her2+ breast tumour biopsies into single

y-axis shows the per cent of cells within each cluster (x-axis) of the merged data that is positive for TRDV2 (blue) and TRGV9 (red) gene segments. Numbers above the
bars show the number of positive cells. (E) UMAP of PBMC cells coloured by the expression of a selected set of markers, LEF1, SOX4, CCR7, IFNG, CCR6, and RORC. Grey
indicates zero expression and purple indicates high expression. (F) Scores of curated effector gene sets for IFNγ production, IL17A production, cytotoxicity, adaptive (i.e.,
antigen presentation on MHC class 1), and innate gene sets in each of the blood γδ T-cell cluster (x-axis). (G) Heat map showing genes (rows) enriched in each of the
cluster (columns). Yellow represents enrichment and purple represents depletion. Only the top four genes per cluster are labeled.
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cells and performed scRNA-seq on all immune cells (CD45+) (see the
Materials and Methods section). Three clusters that were double
positive for CD3 and TRDC were present in both the BC samples and
thus designated as γδ T cells (Fig 3A and B). All the three clusters

were relatively uniform in TRDC but only one cluster (γδ-T.3) appeared
to be TRDV2+ (Fig 3C and D).

To identify IL17A+ and IFNγ+ subtypes, we looked at the ex-
pression of their markers in the γδ-T clusters indicating that cluster

Figure 2. Validation of the blood γδ T-cell subtypes.
(A) Feature plot showing CD16 and CD28, which are published markers of the δ2 subtype of blood γδ T cells (Ryan et al, 2016). Each dot is a cell. Grey indicates no
expression and purple indicates high expression. (B) Scores for published gene signatures of CD16 (white) and CD28 (black) δ2 subtypes in the clusters found in our blood
γδ T-cell scRNA-seq data (x-axis). P-values were computed using Wilcoxon signed-rank test. (C) Feature plot showing expression of GPR56 and CXCR6, markers that appear
to be mutually exclusive in blood δ2 subtypes. (D) Flow cytometry based validation of novel markers, GPR56 (y-axis) and CXCR6 (x-axis), in peripheral blood γδ T cells
TCRδ2 subtypes. Healthy donor identities (which include blood γδ T cells from two new donors, HD9 and HD10) are indicated in the title. Numbers in each quadrant
indicate percentage of δ2 cells.
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2 is an IFNγ producer and cluster 3 is IL17A producer (Fig 3E). Su-
pervised scoring of clusters with genes defining effector functions,
as performed previously, indicated that γδ-T.1 is highly cytotoxic,
γδ-T.2 was most innate-like subtype and also had the highest levels
of IFNγ production and antigen presentation. γδ-T.3 was the only
IL17A producing subtype (Fig 3F).

We next investigated if these γδ T-cell BC clusters had different
clinical impact. Using mathematical deconvolution to infer pro-
portion of various immune cell types from bulk RNA-seq data,
elevated levels of total γδ T cells were found to be associated with
better survival in breast cancer (Ma et al, 2012) and across all
cancers (Gentles et al, 2015); however, recent work observed an
improved overall survival in TNBC breast cancer for a Vδ1 innate-
like subtype of γδ Τ cells but not for the overall levels of γδ Τ cells
(Wu et al, 2019). We sought to repeat this analysis but using BC γδ
T-cell subtype–specific gene signatures identified here. We first
confirmed that the gene signatures of each cluster were indeed
specific by scoring each of the CD45+ immune clusters in BC1 for the
three BC γδ-T signatures. The result suggested that these gene
signatures were highly specific for the respective BC γδ T-cell
clusters (Fig S2). Survival analysis of the breast cancer data from
TCGA (Ciriello et al, 2015), indicated that only the enrichment of BC
γδ-T.2 gene signature, but not the signature of the other two BC γδ
T-cell clusters, is associated with improved survival (Fig 3G). Sur-
prisingly, the TCGA BRCA patients with higher scores of BC γδ-T.2
gene signature had lower levels of predictors of better overall
survival i.e. expression of αβ T cell markers, cytolytic scores (Rooney
et al, 2015) and tumour mutation burden compared to the TCGA
BRCA patients that had lower scores of BC γδ-T.2 gene signature (Fig
S3). NCAM1, a marker known to be very high in activated cells and not
just in NK cells (Van Acker, Capsomidis et al, 2017), was the top most
differentially expressed gene in this clinically relevant BC γδ
T-cell subtype (Fig 3H).

Comparison of blood and breast tumour-infiltrating γδ T cells

Last, we sought to compare and contrast breast tissue infiltrating γδ
T cells with their counterparts in the peripheral blood. We first
focused on selected genes relevant for anti-tumour immune
function. Overall, the BC γδ T cells were more activated, had higher
abundance of transcripts of genes involved in cytotoxicity and
exhaustion, whereas the markers of memory and naive T cells were
significantly lower in breast tumour γδ T cells compared to those in
blood (Fig 4A). To identify equivalent clusters across BC and blood
γδ-T datasets, we used scID (Boufea et al, 2020) which revealed that
BC γδ-T.1 cluster was equivalent to blood c.γδ3 cluster (and con-
sistent with both being marked by CD16 and positive for IFNγ) and
BC γδ-T.3 cluster was equivalent to blood c.γδ5 cluster (and con-
sistent with both being marked by CCR6 and positive for IL17A) (Figs
4B and C, 1E, and 3E). However, none of the blood clusters were
similar to BC γδ-T.2 cluster, which was defined by expression of
NCAM1 (CD56) (Fig 4C). These results suggest a refined classification
of human γδ T cells based on our scRNA-seq data: SOX4 and NCAM1
can distinguish the three TRDV2low clusters, whereas the combination
of CD16 and CCR6 can be used to define the three TRDV2high

subtypes (Fig 4D and Tables S2–S6).

Discussion

Human γδ T cells are a poorly understood subset of T cells with
untapped potential for exploiting them for immunotherapy. They
are canonically defined either by the Vδ chains in their TCRs or by
production of IL17A or INFγ. Unbiased characterization of their
subtypes, markers that can be used for isolation of these subtypes
and the gene expression programs that define these subtypes will
provide a much needed resource for functional characterization
and exploitation of these primitive cells that, unlike conventional T
cells, can respond to both peptide and non-peptide stress antigens
in both an adaptive or innate-like mode (Hayday, 2019).

To better characterize human γδ T-cell subtypes and uncover
their gene signatures andmarkers, we performed scRNA-seq of pan
γδ T cells from the human blood and breast tumour samples. We
identified five subtypes of human blood γδ T cells, three of which
were TRDV2high positive and two were TRDV2low (Fig 1C and D). In the
human breast cancer setting we identified three subtypes, one of
which was classified as TRDV2high while the TCR Vδ chain identity of
the other cluster (γδ-T.1 and γδ-T.2) was unclear (Fig 3C and D). Thus,
within the same TCR defined γδ T-cell compartment, there is
heterogeneity in gene expression program and possibly effector
functions. Two of the three breast tumour γδ T-cell subtypes, had a
counter part in the blood γδ-T cells (Fig 4B); however, the one
subtype that did not have a counter part in the blood was the only
subtype associated with better overall survival in a large cohort of
breast cancer patients characterized by the TCGA consortium
(Ciriello et al, 2015). Thus, in agreement with another recent pub-
lication (Wu et al, 2019), only specific subsets of γδ T cells rather
than the total γδ T cell level (Gentles et al, 2015) is associated with
improved clinical outcome. Based on computational character-
ization of effector functions (Fig 3F), the clinically associated γδ-T.2
subtype appears to be similar or identical to the one identified
recently using functional assays (Wu et al, 2019). We have identified
a gene signature of this clinically associated subtype, which can be
useful in their isolation and use as a potential prognostic biomarker
of survival of breast cancer patients.

In the blood, the two TRDV2low subtypes can be distinguished
based on their immaturity (LEF1 and CCR7), whereas the other
appears to be recent thymus emigrant that has a moderate cy-
totoxic and antigen potential (Fig 1E). The three blood TRDV2high

subtypes can be distinguished based on their gene expression
programs—the CCR6 subtype is an IL17A producer and the other two
subtypes (CD16 and CCR7−CD16−) are IFNγ producers but the latter
appears to have a higher capacity for antigen presentation and the
former has higher cytotoxic potential (Fig 1G). Our data are con-
sistent with the previously described CD16/CD28 axis in the TCR-
Vδ2+ compartment (Ryan et al, 2016). We identified and validated
GPR56 as an alternative marker to CD16 and CXCR6 as more specific
marker of the two non-CD16 TRDV2high subtypes (Fig 2).

In breast tumour, just like its counterpart in the blood (Fig 4B),
the CCR6 defines an IL17A producer and the CD16 subtype is an IFNγ
producer with high cytotoxic potential (Fig 3G). The breast tumour
NCAM1-positive subtype that does not appear to have a counter
part in the adult peripheral blood, is a strong IFNγ producer and
higher expression of innate gene signature (Fig 3F). We suggest that
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Figure 3. Characterization of breast tumour-infiltrating γδ T cells uncovers a subtype that is associated with favourable outcome.
(A) UMAP-based projection of the merged single-cell gene expression data of breast tumour-infiltrating immune cell datasets from two patients. Three clusters were
double positive for CD3 and TRDCwere classified as γδ T cells (CD3E+). Mph, Macrophage (CD14+), T-reg (FOXP3+), regulatory T cells; B, B cells (CD19+); CD8-T, CD8+ αβ T cells;
CD4-T, CD4+ αβ T cells. (B) Overlay of donor identity on UMAP-based projection of scRNA-seq data. The number of cells from each donor is shown above the projection. BC1
is a triple-negative subtype and BC2 is a Her2+ subtype of breast cancer (BC). (C) Identification of cells positive for genes encoding TCR δ chain. Overlay of cells that have
genes mapping to the TRDC (left) and TRDV2 (right) gene segments. (D) Quantification of enrichment of genes encoding TRDV2 and TRGV9 γ chain in the BC γδ T

γδ T-cell single-cell RNA-seq Boufea et al. https://doi.org/10.26508/lsa.202000680 vol 4 | no 1 | e202000680 6 of 10

https://doi.org/10.26508/lsa.202000680


theNCAM1+ subtype is likely equivalent to the one recently found by
Wu et al (2019) who discovered that a Vδ1+ IL17AnegIFNγ+ subtype
was in association with better overall survival of triple-negative
breast cancer patients. Our studies corroborate and complement
each other as we reached this conclusion through an unbiased
gene expression approach, while their study reached the same
conclusion via TCR sequencing and functional assays.

In summary, we have generated a large single-cell RNA-seq
dataset on γδ T cells and have uncovered subtypes, potential
functions, and markers. Our study is significant because (1) it
identified new markers and refined classification (Fig 4D) that
will help in isolation of γδ T-cell subtypes for further functional
characterization; (2) it identified previously hidden gene ex-
pression heterogeneity in both the TRDV2low and TRDV2high sub-
types and (3) it identified gene signature and a marker of a IFNG+
TRDV2low subtype in breast tumours that is associated with better
survival of breast cancer patients. Our analysis has contributed to a
better understanding of the functional diversity of γδ T cells, and our
data will serve as a valuable resource for the community that can be
mined to identify markers useful for isolating novel subsets to be
able to further interrogate their functions.

Materials and Methods

Sample acquisition, processing, and sorting

Breast cancer patient samples and blood from healthy donors
were obtained with consent (NHS Lothian, Tissue Request No.
2017/SR865). Within ~30 min of obtaining the donor blood, blood
was isolated via the Ficoll density gradient centrifugation fol-
lowing the manufacturer’s protocol and cryopreserved in 10%
DMSO. Cryopreserved blood were thawed rapidly and then in-
cubated for 30 min at 4 degrees with appropriate antibodies
(Table S1). Fresh breast tumour biopsies were obtained and
processed within 1 h of surgical resection. Tumour tissue was first
manually dissected and then chemically dissociated with a
cocktail of Liberase DL/TL (Roche) for 30 min and then immu-
nostained with anti-CD45 (Table S1) antibody. Dissociated cells
were sorted for live singlet cells with appropriate gating strategy
on BD FACSAria II (Fig S1).

Single-cell sequencing

Sorted cells were counted on Countess and the gated population
and the number of cells per sample that were loaded on Chromium
10× (version 2) were as follows: (1) HD4/5 (CD45+CD3+pan-TCR γδ+;
10,000 cells from HD4 + 10,000 cells from HD5) and loaded on one
lane; (2) HD6 (CD45+CD3+pan-TCR γδ+; 20,000 cells were loaded on

one lane); (3) BC1 (CD45+; 18,000 cells were loaded on one lane); (4)
BC2 (CD45+; 12,000 cells were loaded on one lane). scRNA library
generation was carried out according to the manufacturer’s guide-
lines. Libraries from HD4/5 and HD6 were sequenced on NovaSeq S1
with 26 + 90-bp reads. Libraries from BC1 and BC2 were sequenced on
HiSeq2500 with 75 + 75-bp reads. Raw FASTQ format sequence reads
were processed using the Cell Ranger pipeline for human genome
hg19 assembly. Counts data from the cellranger count (Zheng et al,
2017) pipeline were further filtered if they were present in fewer than
0.2% total cells or 10 cells or had high levels of mitochondrial genes
(>2%).

Annotation of cells positive for the various TCR gamma and delta
gene segments

To determine the identity of the TRD and TRG gene segments
present in each cell, FASTQ reads from each cell were aligned to the
VDJ gene sequences (refdata-cellranger-vdj-GRCh38-alts-ensembl-
2.0.0 from Cell Ranger) using BWA. Reads uniquelymapping (mapping
quality > 30) to TRDV2 and TRGV9 gene sequences were the only ones
specifically enriched in the TRDCpositive clusters in the CD45 positive
cells in the BC1 data, thus were the only ones retained for further
analysis (Supplemental Data 1).

Generation of merged analysis-ready γδ T-cell scRNA-seq
datasets

Post-filtered blood γδ T-cell scRNA-seq datasets (HD4/5 and HD6)
were integrated and clustered using the Canonical Correlation
Analysis (Butler et al, 2018) from the Seurat package (version 3.1.0)
using the first 20 principal components. TRDC positive clusters from
the merged dataset were retained. The final blood γδ T-cell data
used here consisted of 6,116 cells. Post-filtered breast tumour
scRNA-seq datasets (BC1 and BC2) were integrated and clustered
using Canonical Correlation Analysis from the Seurat package using
first 20 principal components. TRDC positive clusters from the
merged dataset were retained for subsequent analysis.

Identification of differentially expressed genes in single-cell
RNA-seq datasets

The MAST function implemented in the Seurat package was used to
identify differentially up-regulated genes between δ1 and δ2 sub-
types. To identify tissue specific differences between γδ T cells from
healthy blood and BRCA tissues, we converted each single-cell
dataset into pseudo-bulk data, one per cluster, where the ex-
pression of each gene was defined as the sum of the expression of
the gene in all cells from that cluster.

clusters. y-axis shows the per cent of cells positive for the indicated TRDV2 (blue) and TRGV9 (white) gene within each BC γδ T-cell cluster (x-axis). Numbers above
bars show the number of positive cells. (E) UMAP of BC γδ T cells coloured by the expression of a selected set of markers for identification of IFNG and IL17A subtypes.
Grey indicates no expression and purple for high expression. (F) Distribution of gene signature scores (y-axis) for IFNγ production, IL17A production, cytotoxicity,
adaptive (i.e., antigen presentation on MHC class 1), and innate gene sets in each of the BC γδ T-cell cluster (x-axis). (G) Kaplan–Meir survival curve of the The Cancer
Genome Atlas breast cancer data (Ciriello et al, 2015). Patients were partitioned into high and low group based on scores for gene signatures of each of the indicated
BC γδ T-cell cluster. y-axis shows overall survival. (H) Heat map showing top differentially expressed genes (row labels) between the three BC γδ T-cell subtypes.
Yellow represents high expression and purple represents low expression.
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Figure 4. Comparison of γδ T cells from peripheral blood and breast tumour.
(A) Comparison of expression of selected genes (rows) involved in activation, cytotoxicity, exhaustion, and naive T-cell state between blood γδ T-cell and breast tumour-
infiltrating γδ T-cell subtypes. Grey represents low average expression and red represents high average expression of the genes in each subtype (columns). (B)
Assessment of similarity of the γδ T-cell subtypes in blood and breast tumour. Boxplot of scID scores (y-axis) of the BC cluster-specific gene signatures in the blood clusters
(x-axis). Scores above the dashed line indicates enrichment of the indicated gene signature. Mann–Whitney U test was used to compute statistical significance of
different scores within each cluster. “***” indicates P < 0.001. (C) Feature plots showing expression of suggested cluster defining markers in the γδ T-cell subtypes in blood
(top row) and BC (bottom row). Grey indicates low expression and purple indicates high expression. (D) Table summarizing the proposed refinement of subtype
classification of γδ T cells supported by the scRNA-seq data from this study.
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Enrichment of functional gene sets in the γδ T-cell subtypes

We used scID (Boufea et al, 2020) but with equal weights for all
genes to calculate an enrichment score per cell for the gene sig-
natures. To identify highly enriched genes we manually selected
thresholds based on the distribution of the scores in the cells
within each dataset. The lists of genes within the gene signatures
were curated from literature and are as follows: IFNγ gene signature
(TBX21, EOMES, STAT1, STAT4, IL12RB, and IFNG), IL17 gene signature
(RORC, IL23R, CCR6, IL1R1, RORA, BLK, and IL17A), cytotoxicity gene
signature (GZMA, GZMB, GZMK, GZMM, GZMH, PRF1, TRAIL, FAS, and
IL12), antigen presentation gene signature (HLA-DQPB1, HLA-DRA,
and HLA-DPA1), and innate gene signature (KLRK1/NKG2D and
HCST/DAP10).

Cytolytic score

The cytolytic score was calculated for the TCGA breast cancer data
(https://portal.gdc.cancer.gov/projects/TCGA-BRCA) as the geo-
metric mean of the expression of PRF1 and GZMA within each
sample.

Survival analysis

We performed survival analysis to test if presence or absence of
any γδ T-cell subtype was associated with survival rates of patients
with breast cancer. We obtained RNA-seq and clinical data for the
TCGA breast cancer study (Ciriello et al, 2015) from Genomic Data
Commons Data Portal (https://portal.gdc.cancer.gov/projects/
TCGA-BRCA). We filtered the samples based on purity with the
following criteria. We removed samples with low purity as they are
unlikely to reflect immune cells altered by presence of tumour. We
also removed samples with very high purity as they will contain only
a small proportion of immune cells that is unlikely to consist of γδ T
cells given their rareness. This filtering resulted in 191 samples with
purity between 0.6 and 0.7. From the breast tumour single-cell RNA-
seq datasets, gene signatures for each of the γδ T cells clusters
were extracted using the MAST method as implemented in the
Seurat R package, but comparing each γδ T-cell cluster to all other
CD45+ clusters to ensure these signatures do not pick up signals
from other immune cells in the TCGA RNA-seq samples. We next
calculated an enrichment score for each sample and each of the γδ
T subtype gene signatures, as the weighted average of the ex-
pression of these gene signatures in each TCGA sample, with
weights being the log fold change values obtained from differential
expression analysis. Then, for each signature, we selected the
bottom and top 1/3 of the samples to represent the samples with
low and high expression of the gene signature accordingly and
performed survival analysis between the two groups using the
survfit function of the survival R library (Version 2.44.1.1).

Mapping across datasets with scID

To identify BC-equivalent γδ T-cell subpopulations in the blood we
used scID and calculated a score of each blood cell for each of the
BC γδ T-cell subcluster signature. Each signature consists of genes
that are up-regulated and genes that are down-regulated in the

reference BC cluster, thus positive scID scores indicate cells that
express the up-regulated genes and not the down-regulated and
negative scores indicate cells that express the down-regulated
genes and not the up-regulated.

Flow cytometry–based validation of clusters

We selected top differentially expressed surface markers for which
antibodies were commercially available. Whole blood samples
were collected with EDTA 3 healthy donors. Blood samples were
purified fromwhole blood using Ficoll–Paque PLUS according to the
manufacturer’s protocol. Blood samples were washed with 1×
Dulbecco’s PBS and cryopreserved in 10% DMSO at −80°C.

Fluorophores were optimised for the panel using the
BioLegend Fluorescence Spectra Analyzer (BioLegend, 2019. http://
www.biolegend.com/spectraanalyzer) to minimise spectral overlap.
Antibodies were titrated on healthy donor blood. Blood samples
were thawed and rested for 30 min in fresh DMEM supplemented
with 10% FBS. Cells were filtered with a 40-μm cell strainer and
incubated with Human TruStain FcX (BioLegend) for 20 min before
staining. The cells were incubated with antibody (Table S1) for 30
min at 4°C and washed twice with FACS buffer (1× PBS, 1% BSA, and 1
mM EDTA) before a final resuspension in FACS buffer. Compensation
was performed using UltraComp eBeads (Invitrogen) compensation
beads incubated with 1 μl of antibody using the same protocol as
was used with the blood. Samples were analysed on a BD
LSRFortessa cell analyser. Flow cytometry files (.fcs) were analysed
using FlowJo (version 10.0).

Data Availability

All the code and processed data for generating the figures in this article
are available at: https://github.com/BatadaLab/gdT_paper_analysis.
Raw sequence data in fastq format and gene counts in matrix market
format produced by the cell ranger pipeline (for hg19 assembly)
have been deposited in Gene Expression Omnibus with study
accession number GSE141665. (1) HD45 (GSM4210786), (2) HD6
(GSM4210787), (3) BC1 (GSM4210788), and (4) BC2 (GSM4210789).
Differentially expressed genes are provided in Supplementary
Tables.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
202000680.
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