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Abstract

Motivation: Nucleotide modification status can be decoded from the Oxford Nanopore Technologies nanopore-
sequencing ionic current signals. Although various algorithms have been developed for nanopore-sequencing-
based modification analysis, more detailed characterizations, such as modification numbers, corresponding signal
levels and proportions are still lacking.

Results: We present a framework for the unsupervised determination of the number of nucleotide modifications
from nanopore-sequencing readouts. We demonstrate the approach can effectively recapitulate the number of mod-
ifications, the corresponding ionic current signal levels, as well as mixing proportions under both DNA and RNA
contexts. We further show, by integrating information from multiple detected modification regions, that the modifi-
cation status of DNA and RNA molecules can be inferred. This method forms a key step of de novo characterization
of nucleotide modifications, shedding light on the interpretation of various biological questions.

Availability and implementation: Modified nanopolish: https://github.com/adbailey4/nanopolish/tree/cigar_output.
All other codes used to reproduce the results: https://github.com/hd2326/ModificationNumber.

Contact: hding16@ucsc.edu or benedict@soe.ucsc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Modified nucleotides play critical roles in diverse biological proc-
esses (Li and Mason, 2014; Lyko, 2018). Oxford Nanopore
Technologies (ONT) nanopore sequencing monitors ionic current
signal shifts caused by various chemical structures of the nucleotides
(Deamer et al., 2016), which opens up the possibility of routinely
identifying DNA/RNA modifications (Korlach and Turner, 2012).
Up to now, modification calling software has been shown to identify
6 mA (Liu et al., 2019; Ni et al., 2019; Rand et al., 2017), 5mC (Liu
et al., 2019; Ni et al., 2019; Rand et al., 2017; Simpson et al.,
2017), 5hmC (Rand et al., 2017) as well as the thymidine analogs
EdU, FdU, BrdU, IdU (Mueller et al., 2019) in DNA and 6 mA
(Workman et al., 2019), inosine (I) (Workman et al., 2019), 7-meth-
ylguanine (7mG) (Smith et al., 2019), pseudouridine (Q) (Smith
et al., 2019) in RNA. All of these softwares require some models of
the expected signals for given modifications. For instance, nanopol-
ish (Loman et al., 2015; Simpson et al., 2017), signalAlign (Rand
et al., 2017) and DNAscent (Mueller et al., 2019) perform

modification calling based on a priori kmer models, which keep
track of ionic current signals associated with all native and modified
kmers. DeepMod (Liu et al., 2019) and DeepSignal (Ni et al., 2019)
are deep learning-based modification detection algorithms, which
identify modifications based on neural networks trained on control
datasets. However, these algorithms can only analyze modifications
appeared in labeled training data, thereby considered as supervised
methodologies. Meanwhile, for unidentified modifications, potential
sites can be inferred using unsupervised approaches, e.g. tombo
(Stoiber et al., 2016) and nanocompore (Leger et al., 2019).
However, these unsupervised modification analysis techniques do
not include more detailed characterizations, such as modification
numbers, corresponding signal levels and proportions.
Understanding the number of modifications under specific sequence
contexts can provide critical biological insights. For instance, during
DNA demethylation, 5mC is sequentially converted into 5hmC, 5-
flucytosine (5fC), 5-carboxylcytosine (5caC) and finally C.
Therefore, the number and corresponding proportion of modifica-
tions would be indicator for DNA demethylation dynamics (Bhutani
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et al., 2011). Meanwhile, from a technological perspective, under-
standing the number of modifications is a crucial part of de novo
modification characterization, which is considered as one of the
most important topics in the nanopore-sequencing community.

2 Materials and methods

2.1 Data collection and preprocessing
Nanopore-sequencing datasets included here were composed of
fast5 files, which contain raw ionic current readouts from the se-
quencer, together with fastq files, which contain sequences base-
called from corresponding fast5 records. The fast5 and fastq files
are considered to be the ‘raw data’ to be collected and preprocessed.
Specifically, in cases where fastq files were embedded in fast5
records, nanopolish extract (0.11.1) (Loman et al., 2015), followed
by porechop demultiplexing (0.2.4), (Wick et al., 2017) was used to
recover the fastq files. We used a Zymo native-synthesized oligo
nanopore-sequencing dataset, which was provided by authors of the
original study (Rand et al., 2017). We also used a thymidine
analogs-containing primer extension and native yeast genomic DNA
nanopore-sequencing datasets, which are available at GEO with ac-
cession number GSE121941 (Mueller et al., 2019). Specifically, for
the thymidine analogs-containing primer extension dataset, EdU,
FdU, BrdU and IdU were incorporated in the synthesized ‘head’
oligo (GAATTGGGCCCGCTCAGCAGACACAGAGCCTGA
GCATCGCCGCGGAC, underscore denotes positions where thymi-
dine analogs were incorporated). For a specific read, incorporated
thymidine analog bases of the two positions are the same. And the
portions of EdU, FdU, BrdU, IdU and T were the same. Then primer
extension was performed, adding different extended ‘tail’ sequences
to different modifications, such that these reads with different modi-
fications can be separated by alignment. Our RNA control dataset is
a NA12878 cell line mRNA dataset (UCSC Run1 of Oxford
Nanopore Human Reference Datasets) is available at: https://github.
com/nanopore-wgs-consortium/NA12878/tree/master/nanopore-
human-transcriptome (Workman et al., 2019). The RNA modifica-
tion dataset is an E.coli 16S rRNA knockdown experiment provided
by authors of the original study (Smith et al., 2019). Three subdata-
sets were sequenced in this study, containing reads from native,
pseudouridine-deficient (Psi516) and m7G-deficient (m7G) strains.
For m7G strain, m7G at position 527 is substituted with G, while
for Psi516 strain, Q at position 516 is substituted with U (Smith
et al., 2019). For the m7G and Psi516 strains, mutations only affect
m7G at position 527 and Q at position 516, respectively, and such
mutation will cause 100% of the reads to be aberrantly modified.

2.2 Alignment, quality filtering and event table

generation
For the Zymo native-synthesized oligo, thymidine analogs-
containing primer extension, native yeast genomic DNA and
NA12878 cell line mRNA nanopore-sequencing datasets, in total
38 685, 3 173 426, 121 266 and 1 291 028 reads were obtained.
Such reads in fastq files were first indexed using nanopolish index
(0.11.1) (Loman et al., 2015), to establish one-to-one correspond-
ence between sequences and ionic current records. The indexed fastq
files were then aligned using minimap2 (2.16-r922) (Li, 2018), fol-
lowed by samtools view, sort and index (1.9) (Li et al., 2009), yield-
ing sorted and indexed bam files. Specifically, without loss of
generality, for yeast genomic DNA and NA12878 cell line mRNA
datasets, only reads mapped to the first chromosome were used for
downstream analysis. During the alignment, for ZYMO, primer ex-
tension, yeast genomic DNA and NA12878 cell line mRNA data-
sets, 35 280, 17 216, 117 970 and 1 269 076 reads were aligned,
respectively. After alignment, reads with MAPQ score equal to 60
and without secondary and supplementary alignments were kept for
downstream analysis. Specifically, for the thymidine analogs-
containing primer extension dataset, only reads mapped to the for-
ward strand, where thymidine analogs reside, were kept. After such
data filtering, for ZYMO, primer extension, yeast genomic DNA
and NA12878 cell line mRNA datasets, 30 241, 8450, 496 and

8640 reads were kept for downstream event level analysis, respect-
ively. The event tables were generated using nanopolish eventalign,
by taking fast5 files, bam files and indexed fastq files as described
above. Event tables contain kmer sequences and statistics of corre-
sponding ionic current signals, e.g. mean and standard deviation
(SD) values. Here, we modified nanopolish eventalign so that it can
also output per read event tables containing the position of each
kmer from the fastq sequence. We used these event tables to retrieve
corresponding CIGAR strings and Q-scores. Quality control results
were shown in Supplementary Figures S1, S2, S6 and S9–S12.
Specifically, filtered event tables for the 16S rRNA dataset were pro-
vided by authors of the original study, therefore the aforementioned
procedures were not applied.

2.3 Optimal kmer length determination
We first explored the kmer length that affects the signal (effective
length). So, in Figure 1,we analyzed both the native yeast genomic
DNA and the NA12878 cell line mRNA datasets. Kmers with vari-
ous lengths (4–8 for DNA, 3–7 for RNA) were generated based on
the event tables (see previous section) and reference sequences. The
event tables contain mapping positions of kmers, based on which
sequences covering þ2 to -2 positions (prolonged kmers) were
retrieved from the references. These prolonged kmers were then
trimmed centering around the original kmer. For instance, for native
yeast genomic DNA read 001082a7-d27b-418c-85f6-
a0297adb346b, the first signal event corresponded to ACGATT and
mapped to position 11 571, based on which the prolonged kmer
was determined as ATACGATTGC. This prolonged kmer was fur-
ther trimmed into, e.g. fATACGATT, TACGATTG, ACGATTGCg
for length¼8, annotated by the corresponding trimming strategy as
f8_2_0, 8_1_1, 8_0_2g. Since fATACGATT, TACGATTG,
ACGATTGCg were trimmed from the same signal event, they were
corresponded to the same signal event level, in this case 71.89 pA.
Following the same principle, we constructed other kmer trimming
strategies including f4_2_0, 4_1_1, 4_0_2, 5_1_0, 5_0_1, 7_1_0,
7_0_1g. Such kmers, together with the above mentioned f8_2_0,
8_1_1, 8_0_2g and original kmer f6_0_0g, were all corresponded
signal event level 71.89 pA. Then, for each trimming strategy, across
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Fig. 1. Optimal kmer length determination. For kmers with various lengths (4–8 for

DNA, 3–7 for RNA, see Section 2 for kmer-constructing strategies), corresponding

event signal MAD ecdf curve were shown. (A, B) Yeast genomic DNA and (C, D)

NA12787 cell line mRNA datasets were analyzed as examples for DNA and RNA

scenarios. The MAD distributions as opposed to kmer lengths and constructing

strategies were shown in (A, C) and (B, D)
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all kmers included, we calculated the distribution of single event me-
dian absolute deviation (MAD). As described in the main text, such
MAD distributions were used for determining optimal k for both
DNA and RNA contexts.

2.4 Assessing the contributions of kmer positions to the

ionic current shifts
We then determined the effect of kmer positions on the signal, as
shown in Supplementary Figures S4 and S5. We analyzed the same
datasets from the previous section. Pairwise signal differences within
kmer pth position quadruplet fNp-1ANkþ1-p, Np-1TNkþ1-p, Np-1

GNkþ1-p, Np-1CNkþ1-pg were analyzed to assess the contribution of
position p, where k equals 6 (DNA) or 5 (RNA), integer p ranges
from 1 to k, Ns range in fA, T, G, Cg and are identical for the same
position, the subscripts indicates the number of independently vary-
ing Ns. For instance, for DNA 6mer first position quadruplet
fATGCAT, TTGCAT, GTGCAT, CTGCATg, six pairwise absolute
value differences of kmer event signal medians (A–T, A–G, A–C, T–
G, T–C, G–C) were calculated. Together with distance values gener-
ated from all other included DNA 6mer first position quadruplets,
the contribution of first position can then be assessed. We then per-
formed this analysis across all positions (1–6 for DNA, 1–5 for
RNA) and used the distributions of absolute distance values as rep-
resentations of kmer positional contributions. We further assessed
the contribution of different nucleotides. For each nucleotide, e.g. A,
at a given position p (fNp-1ANkþ1-pg), we calculated the average
pairwise distance of event signal medians from the corresponding
three other nucleotides (fNp-1TNkþ1-p, Np-1GNkþ1-p, Np-1

CNkþ1-pg). The distributions of positional average signal shift for
each nucleotide were presented as quantification of nucleotide-
specific contributions.

2.5 Skewness and kurtosis determination
Skewness and kurtosis values were calculated using skewness() and
kurtosis() functions in the CRAN R package fe1071g. As shown in
Figure 2A–C, empirical signal distribution of kmers usually have

long tails caused by outlier events, which will bias the determination
of skewness and kurtosis. Therefore, for this specific analysis, we fil-
tered out the following kmer event signal data points:

Subscript i denotes one specific signal event, and s denotes all
corresponding events of a specific kmer.

2.6 Gaussian mixture model order determination
The order (number of components) of Gaussian mixture models
were determined by the statistical test reported in Chen and Li
(2009) and Chen et al. (2012), with the implementation of the
emtest.norm() function in the CRAN R package fMixtureInfg. The
statistical test was performed with the null hypothesis as order
equals m0, against an alternative hypothesis where order equals
2m0. We search across various null hypotheses (m0 equals 1–9 and
1–4 for primer extension and rRNA datasets, respectively) for em-
pirical kmer signal distributions, denoting the number of underlying
Gaussian components of a certain empirical kmer signal distribu-
tion. To ensure correct inference, we used a more stringent filter to
remove the following data points:

1. si < medians - 2 * MADs, or

2. si > medians þ 2 * MADs.

as outliers, before performing the fitting, considering they might ac-
count for the ‘long tails’ of the empirical kmer signal distribution,
further introducing additional Gaussian components as artifacts for
determining number of modifications. Subscript i denotes one spe-
cific signal event, and s denotes all corresponding events of a specific
kmer.

Elbow points on order-P-value curves were used to determine
the number of components. P-values quantify significant levels of
fitting performance gained by modeling with 2m0 as opposed to m0
components. Elbow points on the order-P-value curves denote mar-
ginal fitting performance gaining by including more components,
therefore considered as optimal number of components. Following
such principle, for both modified sites in the primer extension data-
set, seven was considered as the optimal number of components. By
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filtering out components whose proportions were less than 10%, for
both sites 4 components remained, corresponding to T-, FdU-, EdU-
and BrdU-IdU-containing kmers. Removed Gaussian components
usually account for noises. For instance, the first, second and sev-
enth components of GCCTGA fitting were removed, and compari-
son between red (with all 7 components) and green (with remaining
4 components) curves in Figure 3A showed such filtering majorly
affected the ‘tails’ of the signal distribution. Actually signal levels of
the removed Gaussian components were 88.897, 89.692 and
97.499, which were in the range of the ‘tails’. For CATCGC
(Fig. 3E), the signal levels of the three removed Gaussian compo-
nents were 110.597, 111.911 and 126.550, which were also in the
range of the ‘tails’. Specifically, BrdU- and IdU-containing kmers
were considered as the same component due to close signal levels,
which was further quantified by U-test (Supplementary Fig. S13A–
F). For both modified sites in the rRNA dataset, two was consid-
ered as the optimal number of components, corresponding to the
canonical and modified kmers (Supplementary Fig. S13G and H).

Reads were annotated based on their modification status in the
original studies for both primer extension and rRNA datasets.
Therefore, for every analyzed modification site, we took the original
annotation of reads covering this specific site, and calculated the
mixing proportions of modified kmers. We further calculated the
median values (Equations 3 and 4) of these modified kmers. Such
proportion and median values were further used as gold standard in
evaluating the performance of Gaussian mixture model.

2.7 Clustering nanopore-sequencing reads
Only nanopore-sequencing reads covering all targeted positions
(position 25–36 in the reference oligo sequence for primer

extension dataset; position 511–515 and 522–526 in the reference
transcript sequence for 16S rRNA dataset) were used for the ana-
lysis. Nanopore-sequencing positional kmer signal events were
then represented in read-position matrices, where reads in rows,
targeted positions in columns and corresponding signals as ele-
ments. Clustering analysis was performed based on such read-
position matrices.

3 Results

3.1 Determining effective length for kmers
Shifts in ionic current (signal events) can be associated with nucleo-
tide sequences (kmers) during their translocation through nanopores
(Deamer et al., 2016). For multiple methods, characterizing such
kmer–current relationships is essential to interpreting nanopore-
sequencing readouts. We first demonstrate that for our purpose, an
effective k for kmers (effective length for associating with the ionic
current) equals six and five for DNA and RNA, respectively, consist-
ent with the information provided by ONT. To determine an effect-
ive k for our datasets, we associated signal events to kmers of
various lengths (4–8 for DNA and 3–7 for RNA). We chose a k that
minimizes the variation in current observations between different
instances of the kmer while maximizing the numbers of distinct
observations of each kmer. Specifically, for every kmer, we used the
event signal fluctuation (quantified by MAD) as the criterion for
determining the optimal k (see Section 2). Here, we analyzed a na-
tive yeast genomic DNA dataset (Mueller et al., 2019) and one
NA12878 cell line mRNA dataset (Workman et al., 2019) (see
Section 2), as examples for DNA and RNA scenarios, respectively.
Genomic and transcriptomic sequences were used to make sure
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abundant sequence contexts could be included. As shown in
Figure 1, the MAD empirical cumulative distribution function (ecdf)
curve started to dramatically shift rightward when k became smaller
than six (DNA) or five (RNA). In contrast, marginal differences
were observed among MAD distributions when k exceeded six
(DNA) or five (RNA). Taken together, these indicate the effective se-
quence length for shifting ionic current during nanopore sequencing
equals six and five for DNA and RNA. We also quantified pairwise
Kolmogorov–Smirnov d-values between the ecdf curves of different
kmer constructing strategies, as confirmation of the effective kmer
lengths (Supplementary Fig. S3). We further assessed the contribu-
tions of kmer positions to the ionic current shifts by measuring the
difference in signal among constructed sets of four kmers that are
only different in one base at the examined position, e.g. fATGCAT,
TTGCAT, GTGCAT, CTGCATg (see Section 2). Results suggested
for DNA 6mers, the third position contributes the most, followed by
the fourth position. The second and fifth positions have minor con-
tributions and the first and sixth positions have least contributions.
For RNA 5mers, the second position contributes the most, followed
by the third and fourth positions, and the first and fifth positions
have least contributions (see Supplementary Figs S4 and S5).

3.2 Empirical signal event distribution follows Gaussian
Gaussian has been widely used to model signal distribution. For
instance, kmer models provided by ONT, as well as several
widely acknowledged modification analysis algorithms (Loman
et al., 2015; Mueller et al., 2019; Simpson et al., 2017; Stoiber
et al., 2016), assume the kmer signal distribution follows
Gaussian. Here, we further demonstrated, using quantitative
measurements, that the empirical distribution of nanopore-
sequencing kmer signal event means can generally be modeled
by a normal distribution N (median, MAD). Specifically, we
analyzed a Zymo-synthesized oligo dataset (Rand et al., 2017)
(see Section 2), to make sure sequenced nucleotide molecules
were well-controlled. Median and MAD are calculated from all
signal events of the corresponding kmer (Fig. 2A). Compared to
N (median, MAD), N (mean, SD) fittings tend to be ‘widened’
and ‘skewed’ compared to the empirical distributions (Fig. 2A).
Such ‘widened’ and ‘skewed’ fittings can be explained by devi-
ated means and increased SDs (Fig. 2D and E), which are caused
by ‘long tails’ of kmer signal event empirical distributions. We
argue such ‘long tails’ are outlier kmer signal events well mod-
eled by accounting for low sequencing quality and compromised
alignment, rather than being due to the nature of an underlying
kmer signal event distribution. We used the z-score computed
from the kmer signal event median and MAD as a measurement
of the likelihood of being an outlier. As shown in Figure 2B, C
and Supplementary Figure S7, the likelihood of being an outlier
is correlated with sequencing quality (quantified by Q-score)
and affected by alignment status (quantified by the number of
matches in the CIGAR string), indicating that the ‘long tails’ are
caused by outliers. Indeed most of the analyzed kmers can be
well modeled by a normal distribution, suggested by absolute
kurtosis and skewness (see Section 2): as shown in Figure 2F,
for 90.4% of analyzed kmers, such values ranged in the interval
[0, 0.5].

3.3 Gaussian mixture model-based modification num-

ber inference
Considering that the signal event distribution for a given kmer can
be reasonably modeled as normal, we can use a Gaussian mixture
model to determine the number of ‘isoforms’ for a specific kmer. If
there’s no sequence variation, such as a single nucleotide variation,
then we can consider such ‘isoforms’ as different base modifica-
tions. The number of modifications correspond to the order (num-
ber of components) of the Gaussian mixture model, determined by
the statistical test reported in Chen and Li (2009) and Chen et al.
(2012) (see Section 2). As a proof of concept, we analyzed a thymi-
dine analog DNA primer extension dataset reported in Simpson
et al. (2017). Thymidines in the sequence

GAGCCTGAGCATCGCCG were substituted with EdU, FdU,
BrdU or IdU, therefore we analyzed kmers GCCTGA and
CATCGC (Fig. 3A–D and E–H). For both kmers, four components
were detected (Supplementary Fig. S13A and D, see Section 2), cor-
responding to T-, FdU-, EdU- and BrdU-IdU-containing kmers.
BrdU and IdU were considered as one component by the Gaussian
mixture model, due to the similar kmer event signal levels (Fig. 3A
and H, see Section 2). As negative controls, we analyzed those non-
modified sites, and 23 out of 26 sites were modeled by a single
Gaussian component (Supplementary Fig. S14). We further quanti-
fied the performance of a Gaussian mixture model in recapitulating
signal event median and MAD values, as well as mixing proportion,
for each kmer. As shown, median values were well recapitulated
(Fig. 3B and F); mixing proportions were in general recapitulated
(Fig. 3D and H); while inference on MAD values were unsatisfac-
tory (Fig. 3C and G). Such biases were caused by the ‘long tails’ of
the kmer signal event empirical distribution (Fig. 3A and H), as pre-
viously discussed in Figure 2. Although such unsatisfactory per-
formance on MAD inference can be considered as a limitation of
the method, we argue MAD values are not very informative for
describing kmer signal events. As shown in Supplementary Figure
S8 for kmer signal events >95% of the MAD values fall into the
range of [1, 3], with no significant correlation with the correspond-
ing median values. We speculate the variation of kmer signal events
is largely caused by the noise associated with the nanopore-
sequencing platform itself, rather than an inherent characteristic of
individual kmer signal events.

We further applied the Gaussian mixture model approach in
analyzing RNA modifications. Specifically, we analyzed the data-
set reported in Smith et al. (2019), where E.coli 16S rRNAs from
native, pseudouridine-deficient (Psi516) and m7G-deficient
(m7G) strains were profiled. Compared to a native strain, in the
Psi516 strain pseudouridine in UCCGUGCCA site is substituted
with U, while in the m7G strain m7G in AGCCGCCGU site is
substituted with G, therefore we analyzed kmers UGCCA and
GCCGC. Following the same analytical pipeline as previously dis-
cussed for the DNA analysis (Supplementary Fig. S13G and H,
see Section 2), we recapitulated the signal event median values, as
well as the mixing proportions of the corresponding kmers
(Supplementary Fig. S15).

To further explore the detection limit of our approach, we per-
formed downsampling as well as remixing analysis. As a proof of
concept, we focused on the RNA 5mer UGCCA and corresponding
counterpart QGCCA (Q stands for pseudouridine), where we ana-
lyzed in Figure 3I. Specifically, we downsampled to 100, 1000 and
2000 observations, at various QGCCA fractions, including 0.01,
0.05, 0.1, 0.25 and 0.5. We performed such down-sampling as well
as remixing 10 times. It is clearly shown in Supplementary Figure
S16 that with as few as 100 observations, our approach can accur-
ately recapitulate signal level and proportion of QGCCA component
that accounts for 25% of total observations. If we have 2000 obser-
vations, such detection limits can further go down to only 1%.
Taken together these suggested the high robustness and sensitivity of
our approach.

3.4 Associating identified modifications
Now that we characterized the per sequence site modification pat-
tern, the next question is how these modifications associate with
each other. Therefore, we then performed sequencing read-level ana-
lysis to assess the association, e.g. the co-occurrence, mutual-exclu-
siveness or independence, of the detected modifications. Reads
covering all the modified regions were represented in read-position
signal matrices, based on which hierarchical clustering was per-
formed (see Section 2). As shown in Figure 4A, for the primer exten-
sion dataset, four major clusters (Cluster2–5, account for �96% of
total reads) were detected. We further quantified the composition of
the four clusters, and as shown in Figure 4B and C, Cluster2–5 were
majorly composed by T, FdU, EdU and Br/IdU reads, respectively.
These results further suggested the expected co-occurrence of the T,
FdU, EdU and Br/IdU (same modification at both T-sites), consistent
with the experimental design. As shown in Figure 4D, for the 16S
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rRNA dataset, three major clusters (Cluster1–3) were detected,
which were majorly composed of native, Psi516 and m7G reads, re-
spectively. These results further suggested the mutual-exclusiveness
of the U and G (in Psi516 strain pseudouridine is substituted with U,
and in m7G strain m7G is substituted with G), again consistent with
the experimental design.

4 Discussion

Nanopore sequencing has the potential to detect every canonical
and modified nucleotide accurately. Without improved de novo de-
tection techniques, progress in modification detection will be depend-
ent upon generating accurate labeled datasets for every modification.
Currently, there are over 40 known DNA modifications (Sood et al.,
2019) and over 150 known RNA modifications (Boccaletto et al.,
2018). Also considering there might be modifications that have never
been identified, generating labeled training datasets would be extreme-
ly challenging. Therefore, there is a pressing need for a de novo modifi-
cation analysis pipeline. Such a pipeline can further be divided into
three sequential steps, including de novo identification of modification
sites, then de novo determination of modification numbers and finally
de novo inference on the corresponding chemical structures. The first
step has been successfully implemented by Tombo (Stoiber et al.,
2016) and Nanocompore (Leger et al., 2019), and our study focuses
on the second step, providing a novel algorithm for the community.
Specifically, we first confirmed the effective length of kmers for shifting
ionic current signals during their translocation through nanopores

equals six and five for DNA and RNA, respectively. We then demon-
strated the distributions of such kmer signals are mostly normal. A
Gaussian mixture model can, therefore, be used for unsupervised
modification number determination. Such a Gaussian mixture model-
based approach can effectively recapitulate the number of modifica-
tions, the corresponding kmer signal event median values, as well as
the mixing proportions, in both DNA and RNA contexts. By integrat-
ing information from multiple regions, we further assessed the associ-
ation between the corresponding modifications, which will shed light
on modification status of DNA/RNA molecules, allowing for insights
into various biological questions. Now that we can accurately deter-
mine number, signal levels and proportions of modifications, the next
question is what are the corresponding chemical structures for each
determined modification component. Answering this question would
complete the pipeline for de novo modification analysis, which should
be one future direction to pursue.

One major limitation of the method, however, would be how to
handle kmers with non-Gaussian signal distributions. For instance,
as shown in Supplementary Figure S17, kmer TGATCC appeared
in three different sequence contexts of the Zymo dataset (Rand
et al., 2017), and in all cases a secondary peak was observed. Please
note such secondary peaks were unlikely to be caused by quality
issues, thus they cannot be removed by excluding low-quality reads.
Such non-Gaussianity will introduce artifacts when analyzing
modification numbers. We speculate the non-Gaussianity could be
something related to the biophysical characteristics of the nano-
pores, which are largely unknown. Therefore, another future direc-
tion would be to find appropriate mixture models, for instance the
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Fig. 4. Inferring association between modifications by read-level analysis. (A) Hierarchical clustering analysis on primer extension reads covering reference position 25–36 (see

Section 2). Branches of dendrogram were color-coded according to the cluster assignments. (B) Corresponding read annotation, including T- (cyan), IdU- (blue), FdU- (green),

EdU- (red) and BrdU-containing reads (black). (C) Read composition of each cluster. (D) Hierarchical clustering analysis on 16S rRNA reads covering reference position 511–

515 and 522–526 (see Section 2). Branches of dendrogram were color-coded according to the cluster assignments.� Please note that the part figures mentioned in second oc-

currence in Figure 4 have been changed from ‘B and C’ to ‘E and F’ respectively. Kindly check and confirm.�(E) Corresponding read annotation, including Psi516 (green),

Native (red) and m7G reads (black). (F) Read composition of each cluster
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extreme value mixture model as reported in the study by
MacDonald et al. (2011), to model the modifications on non-
Gaussian kmers.
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