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Abstract

Prenatal exposure to per- and polyfluoroalkyl substances (PFAS), a ubiquitous class of chemicals, 

is associated with adverse outcomes such as pre-eclampsia, low infant birth weight, and later-life 

adiposity. The objectives of this study were to examine PFAS levels in the placenta and identify 

sociodemographic risk factors in a high-risk pregnancy cohort (n = 122) in Chapel Hill, North 

Carolina. Of concern, PFOS, PFHxS, PFHpS, and PFUnA were detected above the reporting limit 

in 99, 75, 55, and 49% of placentas, respectively. Maternal race/ethnicity was associated with 

significant differences in PFUnA levels. While the data from this high-risk cohort did not provide 

evidence for an association with hypertensive disorders of pregnancy, fetal growth, or gestational 

age, the prevalence of detectable PFAS in the placenta suggests a need to biomonitor for exposure 

to PFAS during pregnancy. Future research should investigate factors underlying the differences in 

PFAS levels in association with a mother’s race/ethnicity, as well as potential effects on pregnancy 

and child health.

Graphical Abstract

1. INTRODUCTION

Per- and polyfluoroalkyl acids (PFAS) are a diverse chemical family of synthetic organic 

structures used for a variety of applications in both the United States and worldwide due to 

their water- and grease-resistant properties.1 PFAS are found in fabric surface treatment, 

pesticides, fire-fighting foam, food packaging, and a variety of other sources, reaching 

humans via air, contaminated water, food, and breast milk.2–8 PFAS consist of alkyl chains 

in which hydrogen atoms have been replaced by fluorine. These fluorine–hydrogen bonds 

are exceptionally strong, making PFAS resistant to degradation and highly persistent in the 
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environment and humans.9 Due to their persistence and pervasive use, PFAS have been 

detected in human blood worldwide.10,11 Between 1999 and 2012, a number of PFAS were 

found at detectable levels in blood in over 98% of the U.S. population.12,13 Concern is 

growing regarding widespread exposure to PFAS, and a number of PFAS are currently listed 

as Contaminants of Emerging Concern (CECs) by the U.S. Environmental Protection 

Agency.14

PFAS exposure in pregnant women has been associated with an increased risk of fertility 

problems, pre-eclampsia, and miscarriage.15–21 In utero PFAS exposure has been associated 

with an array of negative effects in children: low infant birth weight,22–27 congenital 

cerebral palsy in boys,28 dysregulated pubertal onset later in life,29 and greater adiposity.30 

Animal models have also shown deleterious effects of exposure to PFAS, including altered 

pubertal onset, reduced postnatal survival, and disturbed lactation in rodents exposed in 
utero.31–34 While a number of studies have focused on pregnancy as a time window of 

exposure to PFAS by assessing maternal blood or serum, few have focused on the placenta 

that is critical for understanding the effect of PFAS during pregnancy.35,36 As the transducer 

of the maternal to fetal environment during pregnancy, the placenta is important for adequate 

transport of nutrients, removal of waste, and secretion of hormones. Studies have shown that 

PFAS can transfer between maternal and fetal circulation via the placenta.37–40 Additionally, 

the placenta:maternal serum ratios of PFAS have been found to increase with gestational 

age, suggestive of the bioaccumulation of PFAS in the placenta over time.41 Despite 

growing concern over the effects of PFAS on pregnancy, fetal development, and their ability 

to cross the placenta, only three studies to date, all of which studied women outside of the 

United States, have detailed PFAS levels in the placenta.40–42 This study aimed to address 

this research gap in understanding the levels of PFAS in the placentas of a U.S.-based cohort 

and identify risk factors associated with high exposure.

In addition, the majority of studies on PFAS exposure focus on two perfluoroalkyl acids, 

mainly perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA);43 however, 

over 3000 PFAS are estimated to be in production.1 While some of these chemicals, 

including PFOS and PFOA, have been discontinued by major manufacturers in the United 

States, their persistence in the environment and continued use internationally make them a 

continued toxicological concern.44 Moreover, hexafluoropropylene oxide dimer acid 

(HFPO-DA, ammonium salt with trade name: GenX), a modern replacement for PFOA, has 

recently contaminated drinking water from the Cape Fear River in the Wilmington area, NC, 

warranting immediate analysis of the prevalence of PFAS in NC populations.45

In the present study, we set out to characterize the PFAS level in the placenta and understand 

risk factors associated with high PFAS exposure in a high-risk pregnancy cohort in the 

United States. To carry out this research, we utilized specimens from a cohort of pregnant 

women at risk for preterm birth in North Carolina. The primary goals of this work were to (i) 

establish baseline data on 22 different PFAS levels in the placenta, (ii) identify 

sociodemographic risk factors associated with increased placental PFAS levels in this 

cohort, and (iii) investigate whether PFAS placental levels change with gestational age at 

delivery, fetal growth, or hypertensive disorders of pregnancy (preeclampsia and gestational 

hypertension).
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2. MATERIALS AND METHODS

2.1. Study Population.

This cross-sectional study was derived from the UNC Preterm Birth Biobank (PTB) Study.46 

The original purpose of this overarching study was to establish a database and tissue bank to 

evaluate clinical and biochemical markers of preterm birth. Participants were identified and 

recruited through UNC-CH obstetrics and gynecology clinics and inpatient obstetric units at 

the North Carolina Women’s Hospital from 2015 to 2018. Women at high risk for 

spontaneous preterm birth due to (a) a prior spontaneous preterm birth, (b) short mid-

trimester transvaginal cervical length (<25 mm, assessed between 16.0 and 23.9 weeks’ 

gestation) in the current pregnancy, (c) twin or triplet gestation, or (d) antepartum admission 

due to threatened preterm labor following cervical change and/or cervical dilation in the 

setting of at least six symptomatic uterine contractions per hour were included in the UNC 

PTB Biobank. Women carrying fetuses with major structural anomalies or aneuploidy were 

excluded. Pregnancies were dated by the last menstrual period (if available) and ultrasound 

using standard American College of Obstetricians and Gynecologists criteria.47 All 

pregnancy management decisions were made at the discretion of the primary obstetric 

provider. This study was approved by the Institutional Review Board of the University of 

North Carolina, Chapel Hill (IRB# 14–2855), and all women provided written, informed 

consent.

Baseline clinical and demographic information (including maternal educational attainment, 

race and ethnicity, marital status, and prepregnancy body mass index (kg/m2)) were 

collected from participants through structured interviews and supplemented by a review of 

electronic medical records. In addition, the antenatal course, delivery indications, and 

pregnancy outcomes (including infant gender, birth weight, gestational age at delivery) were 

obtained from the electronic medical record following delivery.

After delivery, three full-thickness placental biopsies were obtained from the fetal side, 2 cm 

from the placental cord insertion site using a standard 3 mm punch biopsy tool, and frozen at 

−80 °C within 24 h of delivery until analysis. Care was taken to avoid biopsies of placental 

sites with obvious gross abnormalities. Two hundred and seventy-one women were enrolled 

in the UNC PTB Biobank study: 2 had a first-trimester miscarriage, 13 were lost to follow-

up or had missing data on gestational age at delivery, resulting in 256 viable placentas, of 

which 122 had enough remaining placental sample to be used in the present analysis.

2.2. Placenta PFAS Quantification.

Extraction and quantification by liquid chromatography–mass spectrometry (LC–MS/MS) 

method established utilized in this study were previously established in Bangma et al. 2018 

and included 15 total PFAS.48 In the current study, the method was updated to include a total 

of 22 PFAS as follows: perfluorobutyric acid (PFBA), perfluoropentanoic acid (PFPeA), 

perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanic acid 

(PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), 

perfluoroundecanoic acid (PFUdA), perfluorododecanoic acid (PFDoA), 

perfluorotridecanoic acid (PFTrDA), perfluorotetradecanoic acid (PFTeDA), 
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perfluorohexadecanoic acid (PFHxDA), perfluorobutanesulfonic acid (PFBS), 

perfluoropentanesulfonic acid (PFPeS), perfluorohexanesulfonic acid (PFHxS), 

perfluoroheptanesulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), 

perfluorononanesulfonic acid (PFNS), perfluorodecanesulfonic acid (PFDS), 

perfluorododecancesulfonic acid (PFDoS), 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 

FTS), and 2,3,3,3-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid (HFPO-

DA also known as GenX). In-depth information detailing the Bangma et al. 2018 method as 

it was utilized for placenta PFAS quantification can be found in the Supporting Information 

(SI).

2.3. Statistical Analysis.

PFHpS, PFHxS, PFOS, and PFUnA were identified as having approximately 50% or more 

of samples over the reporting limit (RL). Using an established gravimetric method, the 

reporting limit (RL) is calculated in two ways: (1) using the lowest detectable calibrant 

divided by the mass of the extracted sample or (2) taking the average amount of compound 

detected in the blanks divided by the mass of the extracted sample.49,50 To be conservative, 

from the two methods of calculating the RL, the RL that was the highest for that PFAS and 

sample was designated as the respective RL for PFAS in that sample (Supporting 

Information File S1). The concentrations determined include isomers for applicable PFAS. 

For statistical analysis, all samples below the RL were set to half the RL detection limit for 

that sample and PFAS.51 This allowed for the preservation of sample size for the PFAS 

included in the statistical analysis. Spearman rank correlations between concentrations of 

each of the PFAS were calculated to evaluate patterns of co-occurrence.

For this analysis, the race was categorized as non-hispanic white, hispanic white, non-

hispanic black, or other. Education was trichotomized into less than high school, completed 

high school, or further education beyond high school. Marital status was dichotomized as 

married or not married. Delivery gestational age was maintained as a continuous variable for 

regression analyses and was also trichotomized into very preterm (delivery before 340/7 

weeks of gestation), preterm (delivery between 340/7 and 366/7 weeks of gestation), and term 

(delivery ≥ 370/7 weeks of gestation) for a categorical variable. Insurance was trichotomized 

into private insurance, Medicaid/Medicare insurance, or self-pay. Maternal age was 

trichotomized into below 20 years old at delivery (<20 years), between 20 and 35 years of 

age at delivery (≥20 to <35 years), and over 35 years and older at delivery (≥35 years). 

Prepregnancy BMI was categorized into underweight (BMI <18.5 kg/m2), normal weight 

(≥18.5–24.9 kg/m2), overweight (≥25.0–29.9 kg/m2), and obese (≥30.0 kg/m2) categories. 

Gestational hypertension was defined as new-onset hypertension, with at least two blood 

pressure readings ≥ 140/90 at least 6 h apart at or after 20 weeks’ gestation. Pre-eclampsia 

was defined as hypertension accompanied by new-onset proteinuria (urine protein:creatine 

ratio ≥0.30 or 24 h urine protein ≥ 300 mg/dL) and/or laboratory abnormalities (platelet 

count <100 per microliter, serum aspartate transaminase, or aminotransferase twice normal 

or ≥70 U/L) and/or severe headache or visual disturbance. Women with chronic 

hypertension were considered to have super-imposed pre-eclampsia if they had an 

exacerbation of their hypertension in addition to one of the above laboratory abnormalities 

or physical symptoms. Because the American College of Obstetricians and Gynecologists 
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recognize that preeclampsia can develop in the absence of proteinuria, and the management 

of gestational hypertension and pre-eclampsia is similar, these diagnoses were combined 

into one “hypertensive disorders of pregnancy” variable, dichotomized as yes or no.47 For 

assessing the association with fetal growth, small for gestational age (SGA), appropriate for 

gestational age (AGA), and large for gestational age (LGA) newborns were identified using 

gender-specific fetal growth curves from a nationally representative, racially diverse 

reference population. Small for gestational age was defined as birth weight in grams ≤10th 

percentile and large for gestational age was defined as birth weight in grams ≥ 90th 

percentile of this reference population.52 Those born <23 weeks’ gestation were considered 

as having missing data for fetal growth category because there is no nationally representative 

data on birth weight distributions below this gestational age from the reference used. 

Smoking status was not included in analyses as only 9 mothers reported active smoking 

during pregnancy and 112 mothers reported nonsmoking status.

Distributions of each PFAS were evaluated for normality via Shapiro–Wilks tests of both 

original and log-transformed data. All PFAS evaluated were determined to have non-normal 

distributions in both original and log-transformed forms; thus, to examine differences across 

categorical variables, non-parametric tests were employed to test the equality of medians. 

Wilcoxon tests were used to evaluate differences between dichotomous sociodemographic 

variables and hypertensive disorders of pregnancy, and Kruskal–Wallis tests were used to 

evaluate differences between sociodemographic variables with more than two groups and 

fetal growth categories. The p-values of these tests are reported with significance defined as 

p < 0.05.

To evaluate whether PFAS levels varied by gestational age, both univariate and multivariate 

linear regression models were performed to generate crude and adjusted estimates of change 

in PFAS levels by gestational age. For the multivariate linear regression, control variables 

were identified as having significant or borderline significant differences in medians across 

groups from the sociodemographic risk factor analysis described above. To assess temporal 

changes in PFAS concentrations of the placenta, univariate linear regression models were 

used to evaluate the association between delivery date and PFAS concentration. For this 

model, births in 2018 were excluded due to a low sample size (n = 2 births in 2018). All 

analyses were conducted in SAS 9.4 software.

3. RESULTS

3.1. Study Population Characteristics.

This cohort of 122 women included 42 (37.5%) non-hispanic white, 30 (26.8%) hispanic 

white, 37 (33.0%) non-hispanic black, and 3 (2.7%) women who self-reported other for race/

ethnicity (Table 1). The majority (63.1%) of women were between 20 and 34 years old. Just 

over half (53.9%) had private medical insurance, with 38.5% using Medicaid/Medicare 

insurance. In this high-risk group, the mean gestational age at delivery was 33.9 weeks. A 

total of 44 women (36.9%) delivered very preterm (less than 34 weeks), 12 women (9.8%) 

delivered preterm (between 34 and 37 weeks), and 65 women (53.3%) delivered term (37 

weeks or over). Fourteen (11.5%) women had pregnancies complicated by hypertensive 

disorders. The mean birth weight was 2,375 g (range 159–4300 g). In comparison to the 
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National Vital Statistics data from 2016 and 2017 representatives of all births in the United 

States, the present cohort differs slightly with regard to racial demographics (U.S. 

population, 2017: 51.68% white mothers, 14.54% to non-hispanic black, 23.3% hispanic) 

but is similar with regard to the percentage of insurance types (U.S. population, 2017: 49.1% 

private insurance, 43% Medicaid).53,54 As expected, given the high-risk characteristics of 

the cohort, the mean gestational age at delivery (prevalence of preterm births) and mean 

birth weight differed from the general U.S. population.53,54

3.2. PFAS Levels in the Study Population.

Of the 22 PFAS examined in the placenta, 11 PFAS were detected in at least one placenta 

sample (n = 122) (Table 2). Compared to three other non-U.S.-based studies of placenta 

PFAS levels, these data are relatively consistent, with PFOS and PFOA found at the 

maximum values (Figure 1). PFHxS, PFHpS, PFOS, and PFUnA were detected over the RL 

in approximately 50% or more of samples. As a significant lack of detection would skew 

results, for all subsequent analyses, only these four PFAS are considered and values below 

the RL were imputed as half the RL. The highest levels detected were of PFOS, followed by 

PFHxS, PFUnA, and then PFHpS (Figure 2). PFOS was detected at a median of 0.480 ng/g 

and a maximum of 4.87 ng/g. Comparatively, PFHxS had a median of 0.067 ng/g and a 

maximum of 0.446 ng/g and PFUnA had a median value under the RL and a maximum of 

0.240 ng/g. PFHpS was found to have a median concentration of 0.009 ng/g and a maximum 

of 0.063 ng/g. Correlation between the levels of PFHxS, PFHpS, PFOS, and PFUnA was 

common (Supporting Information Figure S1 and Table S1). Specifically, all pairings other 

than PFUnA and PFHxS were significantly positively correlated. The most significant 

correlation was PFHpS and PFHxS (Spearman correlation coefficient = 0.532, p-value = 

2.907 × 10−10).

The median and interquartile ranges of PFAS in the total cohort and stratified by select 

sociodemographic characteristics were calculated (Table 3). Median and interquartile ranges 

for the remaining sociodemographic characteristics can be found in the Supporting 

Information Table S2. Additionally, p-value results of Wilcoxon or Kruskal–Wallis test for 

difference in median levels are displayed. Two comparisons were statistically significant (p 
< 0.05). PFUnA levels in the placenta were significantly different according to race/ethnicity 

status (p = 0.0002). One comparison was approaching the statistical significance: difference 

in PFHpS levels in the placenta in mothers of different ages (p = 0.0936).

3.3. PFAS Levels and Race/Ethnicity.

Significant differences in PFUnA levels were observed by maternal race and ethnicity. The 

three women of other race/ethnicities had the highest maximum and median values: 0.156 

and 0.081 ng/g, respectively. This was followed by hispanic white, non-hispanic white, and 

non-hispanic black women, according to their median value. No other comparisons of PFAS 

levels by race/ethnicity were significant, and the order from the highest to lowest median 

values was not consistent across the different PFAS.

Bangma et al. Page 7

Environ Sci Technol. Author manuscript; available in PMC 2020 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4. PFAS Levels and Maternal Age.

Differences by maternal age in PFHpS were trending toward significance (p = 0.09). Older 

mothers were observed to have higher levels of PFHpS than younger mothers. The median 

PFHpS in mothers under 20 years old was 0.004 ng/g, mothers between 20 and 35 years old 

had a median level of 0.009 ng/g, and mothers over the age of 35 had a median level of 

0.011 ng/g.

3.5. PFAS Levels and Hypertensive Complications of Pregnancy.

No significant differences in PFHxS, PFHpS, or PFOS by hypertensive disorders of 

pregnancy were found (Supporting Information Table S3). A borderline significant 

difference was observed of PFUnA levels by hypertensive complications of pregnancy status 

(p = 0.09). In women with hypertensive complications of pregnancy, the median PFUnA 

level was 0.044 ng/g, compared to 0.020 ng/g in women without hypertensive complications 

of pregnancy. All median values were higher in placentas of mothers with hypertensive 

complications of pregnancy. Associations were examined in a sex-specific manner (e.g., 

stratified by fetal sex), and no significant differences were observed (data not shown).

3.6. PFAS Levels and Fetal Growth.

Fetal growth was categorized into small for gestational age (SGA), appropriate for 

gestational age (AGA), and large for gestational (LGA). Of the cohorts, 8.0% was SGA and 

10.6% was LGA. No significant differences in median placental levels of PFOS, PFHxS, 

PFHpS, nor PFUnA were seen by fetal growth categories (Supporting Information Table 

S4). No consistent patterns were seen for PFAS levels across fetal growth categories. 

Associations were examined in a sex-specific manner (e.g., stratified by fetal sex), and no 

significant differences were observed (data not shown).

3.7. PFAS Levels and Gestational Age.

Gestational ages in this cohort ranged from 18 to 41 weeks. Both crude and adjusted linear 

regression models regressing PFAS level onto gestational age showed no significant 

association (Supporting Information Table S5A,B). β values representing the predicted 

change in the PFAS level in μg/g with each additional week of gestation were positive for 

PFHxS and PFHpS (increase in the placental PFAS level with an increase in gestational age) 

and negative for PFOS and PFUnA (a decrease in the placental PFAS level with an increase 

in gestational age) in both the crude and adjusted models.

For the remaining seven PFAS detected below 50% RL, associations between gestational 

age and detection of PFAS above the RL were investigated utilizing unadjusted binomial 

regression models. PFAS levels were dichotomized into two categories (detected above RL 

or detected below RL). PFOA was significantly more likely (p = 0.04) to be detected above 

RL in later gestational ages compared to that in earlier gestation age placentas (Supporting 

Information Table S6). Associations were examined in a sex-specific manner (e.g., stratified 

by fetal sex), and no significant differences were observed (data not shown).
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3.8. PFAS Levels Over Time (Year of Delivery).

Dates of birth in this cohort ranged from 04/12/2015 to 01/12/2018. As only two participants 

had births in 2018, for the analysis of the effect of year of delivery, these two observations 

were removed. PFOS, PFHxS, and PFUnA were all found to decrease in concentration in 

placental tissues over time (Supporting Information Table S7). However, only PFHxS 

significantly decreased over time, with a predicted change with each passing year of −0.024 

ng/g (p-value = 0.04). PFHpS showed an increase in levels with each subsequent year; 

however, this association was not significant.

4. DISCUSSION

PFAS exposure during pregnancy has been associated with health risks for both the mother 

and the fetus.15,16,20,22,26,27,30,55 Despite growing concern over the effects of prenatal 

exposure to PFAS, and the understanding that PFAS can cross the maternal fetal barrier via 

the placenta, a limited number of studies have evaluated PFAS levels in the placenta.37–40 

Investigating the placenta separately from maternal serum can lend additional information as 

to the extent to which PFAS accumulate in the placenta. This is particularly important 

because it cannot be assumed that serum concentrations are representative of PFAS 

accumulation in specific critical organs. For example, studies have observed certain PFAS in 

higher levels in brain and lung compartments despite low rates of detection in serum.56 The 

present study provides novel information as it is among the first to quantify and analyze 

placental levels of PFAS in a U.S. cohort. Overall, there were three major findings. First, 

many of the placental samples had levels of specific PFAS chemicals similar to international 

studies. Of concern, PFOS, PFHxS, PFHpS, and PFUnA were detected above the reporting 

limit in 99, 75, 55, and 49% of placentas, respectively. Second, placental PFAS levels varied 

by race/ethnicity for PFUnA. Finally, associations between the levels of PFAS in the 

placenta in the study cohort and gestational age, hypertensive disorders of pregnancy, and 

fetal growth were performed but did not reach statistical significance. While placental PFAS 

were not associated with pregnancy or child health outcomes in this high-risk cohort, the 

prevalence of their detection in the placenta suggests a need to biomonitor during pregnancy.

Of the four PFAS detected above RL in approximately 50% or more of samples, PFOS was 

found in the highest concentration. This finding is consistent with the current literature. 

Previously published studies on PFAS in the placenta are limited to three studies: one in 

China and two in Denmark.40–42 Similar to the results from the present study, these studies 

found PFOS and PFOA as having the highest and second highest median ng/g wet weights, 

respectively, compared to other PFAS. Moreover, in the analysis of PFAS in serum measured 

by the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2016, 

PFOS was consistently found in the greatest concentration compared to other PFAS.57 

Notably, of the four PFAS detected above RL in the present study, only PFOS and PFHxS 

are currently tracked by NHANES; therefore, comparison to the general US population for 

exposure to PFHpS and PFUnA is not possible at this time. In NHANES, the geometric 

means in the serum of PFOS and PFHxS (2015–2016) are 4.72 and 1.18 μg/L, respectively.
57 Despite PFOS being phased out of production in the United States since 2002,57,58 the 
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presence of PFOS in the placenta in this study highlights the persistence of PFAS and 

signifies the importance of continued PFAS monitoring and reduction efforts.

In the present study, maternal race and ethnicity were associated with significant differences 

in PFUnA levels, with those who self-reported their race/ethnicity as other than non-hispanic 

white, hispanic white, and non-hispanic black having the greatest measured median wet 

weight in ng/g of PFUnA, while non-hispanic black women had the lowest. PFAS 

concentrations have been found to vary by race/ethnicity in nonpregnancy cohorts; however, 

consistent patterns have not been established and different PFAS appear to demonstrate 

varied distributions by race and ethnicity.59–61 Research concerning associations between 

race/ethnicity and PFAS levels in pregnant women is limited. To our knowledge, the only 

studies to investigate race/ethnicity and PFAS in pregnant U.S. women are the Health 

Outcomes and Measures of the Environment (HOME) Study and Project Viva. The HOME 

study observed significantly different serum PFAS concentrations in pregnant mothers based 

on maternal race.36,62,63 In addition, both Project Viva and the HOME Study found that 

maternal race can be a predictor of PFAS levels in children, with children born to black 

mothers showing lower PFAS levels than children born to white mothers.62–64 Additional 

research on the relationship between PFAS levels and maternal race and ethnicity is 

warranted to discern environmental exposure disparities, sources, and pathways.

Finally, this study evaluated changes in PFAS with gestational age at birth and pre-eclampsia 

or gestational hypertension. Previously, Mamsen and colleagues investigated placentas in the 

first through third trimester and identified five PFAS, including PFOS, PFOA, PFDA, PFNA, 

and PFUnA, that increased as gestational age increased.41,42 In the present study, none of the 

PFAS displayed a significant association between PFAS levels and gestational age. The 

differences between the Mamsen studies and the current study could be due to several 

factors. First, this high-risk cohort is enriched with placentas from preterm deliveries 

compared to the larger U.S. population. As a result, the placentas are likely physiologically 

distinct from term placentas, which may influence PFAS accumulation.65,66 Second, the 

current study investigated placentas from mid-second to third trimester pregnancies (18–41 

weeks’ gestation), while Mamsen et al. investigated placentas from the first to third 

trimesters. Third, our study cohort placentas were obtained from live births, while the 

Mamsen studies investigated PFAS in the placenta and fetal organs from intrauterine fetal 

demise (IUFD). In addition, in the present study, we observed no associations between pre-

eclampsia or gestational hypertension and placental PFAS. Previous literature is divided on 

the subject of PFAS and pre-eclampsia with one study reporting no association,17 while 

other studies report associations for at least one PFAS, including PFOS, PFOA, PFNA, and 

PFBS.15,16,19,20 It is important to note that placental studies are limited to cross-sectional 

design and therefore hindered by the potential for reverse causality.67,68

While this study is among the first to examine PFAS placental levels in a U.S. cohort, it is 

not without limitations. Concentrations of PFAS quantified in the placenta are usually lower 

than matching fetal cord serum and maternal serum.40 This limitation often reduces the 

number of PFAS measured above the reporting limit and can impact the ability of 

researchers to identify associations between PFAS and potential risk factors; for example, 

PFUnA, in our study, was detected above the RL in 49% of placentas. Future studies will 
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investigate PFAS in matching maternal serum from this cohort. Finally, the cohort used in 

this study comprises women at high risk for spontaneous preterm birth in North Carolina. As 

mentioned, the exposure levels and associations detected in this cohort are likely not 

generalizable to the broader U.S. population of pregnant women due to the geographical and 

obstetric characteristics of this cohort.69 Specifically, pathologies of the placenta may 

influence bioaccumulation of PFAS, and thus, reverse causality cannot be excluded with a 

cross-sectional study. Future research should investigate the associations between PFAS 

accumulation in the placenta and pregnancy complications in a more generalizable cohort.

For the 122 placentas investigated, similar PFOS and PFOA levels were observed in this 

U.S.-based cohort as compared to cohorts in China and Denmark. Maternal race/ethnicity 

was associated with significant differences in PFUnA levels. No significant associations 

between PFAS and fetal growth, gestational age, or hypertensive disorders of pregnancy 

were observed in the current study. Overall, this study expands on the limited data 

describing PFAS levels in the placenta and further highlights the need for biomonitoring of 

PFAS during pregnancy among women of child-bearing age.
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Figure 1. 
Maximum, minimum, and median (means are indicated when medians were not reported in 

the literature) PFAS levels measured by ng/g wet weight in the human placenta as reported 

in the literature for Chen et al. 2017 (n = 32), Mamsen et al. 2019 (n = 78), Mamsen et al. 

2017 (n = 34, means reported), and placentas included in the current study, Bangma et al. (n 
= 122). Frequently reported PFAS, including PFOS, PFOA, PFNA, and PFDA, were 

included in the graph as well as any additional PFAS detected in ~50% of the placenta in the 

current study, including PFUnA, PFHxS, and PFHpS.
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Figure 2. 
Whisker plots of the distribution of PFAS of the four PFAS included in statistical analysis: 

PFHpS, PFHxS, PFOS, and PFUnA. Circles represent individual PFAS values, and bars 

represent median and interquartile ranges.
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