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INTRODUCTION

Lung cancer represents 11.6% of all cancers globally,
with more than 2 million new cases worldwide in
2018.1 Across all disease stages, non–small-cell lung
cancer (NSCLC) has an overall 5-year relative survival
rate of 23%; for metastatic NSCLC, the same rate is
6% in the United States.2 Various subgroups of met-
astatic NSCLC, such as KRAS-mutated NSCLC, are
typically associated with poorer survival.3

Advances in the understanding of NSCLC oncogenic
drivers have led to the development of targeted ther-
apies for several molecular subsets of lung adeno-
carcinoma, contributing to an improvement in patient
outcomes and survival.4-6 Although KRAS mutations
are observed in approximately one-third of patients
with lung adenocarcinoma inWestern populations,7 no
approved targeted therapies exist for this important
molecular subset.

OVERVIEW OF KRAS IN NSCLC

Introduction and Prevalence of KRAS Mutations

RAS genes encode small membrane-bound guanine
nucleotide-binding proteins (G proteins), including
NRAS, HRAS, and KRAS.8,9 These spherical proteins
have a relatively smooth molecular surface without
readily accessible binding pockets and have high af-
finity for guanosine diphosphate (GDP) and guanosine
triphosphate (GTP).10,11 RAS proteins have a slow
dissociation rate from the GDP-bound state. Guanine
nucleotide exchange factors (GEFs), such as son-of-
sevenless (SOS), promote conversion from the inactive
GDP-bound state to the active GTP-bound state
(Fig 1).10,12 Similarly, GTPase-activating proteins ac-
celerate conversion back to the inactive state when
they are recruited to the plasma membrane in direct
proximity to RAS.10

KRAS proteins are highly homologous (90%) with
other RAS proteins in the G or catalytic domain se-
quence.13 The G domain binds guanine nucleotides,
activating signal transduction. It includes four main
regions in the inactive GDP-bound (Fig 2A) and the
active GTP-bound protein (Fig 2B): amino acid resi-
dues 10-17 (the phosphate-binding loop), 30-40

(switch I), 60-76 (switch II), and 116-120 and 145-
147 (the base-binding loops).8,9,13 In contrast, the
C-terminus, which incorporates farnesyl or prenyl
groups, is a hypervariable region. The sequence di-
vergence between different RAS proteins contributes
to differential post-translational processing, subcellular
trafficking, cellular localization, and subsequent re-
sponse to therapy.13 There is approximately 8% se-
quence homology in the C-terminus between KRAS and
the other RAS proteins.8,13 In common with the other
RAS proteins, KRAS proteins are binary switches,
cycling between active GTP-bound and inactive GDP-
bound states in normal cells during signal transduction
to regulate downstream signaling pathways.9,10 This
results in conformational changes in the switch I and II
regions (Fig 2), enabling GTP-bound KRAS to in-
teract with and activate proteins regulating effector
pathways.9,13,14 In the active state, KRAS relays up-
stream signals from cell surface receptors to a number of
downstream pathways, including RAF/MEK/ERK, PI3K/
AKT/mTOR, RALGDS/RAL, and TIAM1/RAC, that con-
trol normal cell function and proliferation (Fig 1).8,13,15

KRAS mutations greatly diminish GTP hydrolysis,
thereby leading to increased GTP-bound mutant
KRAS in the active state. Constitutively active KRAS
then initiates downstream signaling and leads to un-
controlled cell proliferation and survival.16 As a result,
KRASmutations are oncogenic drivers associated with
numerous human cancers, including lung cancer.10

The mechanisms through which distinct KRAS mu-
tations lead to RAS activation are not thoroughly un-
derstood and might differ by allelotype.12 This has
made targeting RAS and KRAS extremely challenging
in the clinic.9,11,17

Across all cancers, the most common RAS mutations
are KRAS mutations (85%), with NRAS (12%) and
HRAS (3%) much less frequent. Globally, KRAS
mutations are associated with approximately 1 million
cancer-related deaths annually.10 Oncogenic KRAS
mutations occur at codons 12 and 13 (ie, within the
phosphate-binding loop) and at codon 61 (ie, within
switch II) of the G domain. Themost commonmutation
is at codon 12 and accounts for 80% of all KRAS
mutations.9,18 Single-base substitution mutations at

ASSOCIATED
CONTENT

Appendix

Author affiliations
and support
information (if
applicable) appear
at the end of this
article.

Accepted on
September 23, 2020
and published at
ascopubs.org/journal/
jco on October 26,
2020: DOI https://doi.
org/10.1200/JCO.20.
00744

© 2020 by American
Society of Clinical
Oncology

4208 Volume 38, Issue 35

http://ascopubs.org/journal/jco
http://ascopubs.org/journal/jco
http://ascopubs.org/doi/full/10.1200/JCO.20.00744
http://ascopubs.org/doi/full/10.1200/JCO.20.00744
http://ascopubs.org/doi/full/10.1200/JCO.20.00744


position 12 lead to stabilization of KRAS-GTP binding,
resulting in structural changes in KRAS and consequently
constitutively activated KRAS (GTP-bound state).9,19 For
example, the KRAS G12C mutation is a single point mu-
tation with a glycine-to-cysteine substitution at codon 12.
The cysteine 12 residue is located close to the nucleotide-
binding pocket and switches I and II. The glycine-to-cys-
teine substitution has an effect on GEF binding and
downstream signaling, leading to cell proliferation and
survival.13

In NSCLC, KRAS is one of the most frequently mutated
oncogenes. According to a large genomic study of human
lung tumors, KRAS mutations are more commonly ob-
served in the subtype of adenocarcinoma than in squa-
mous cell carcinoma or large cell carcinoma, with
a mutation frequency of 32.6% in adenocarcinoma.20 The
incidence of KRAS mutations is between 8% and 24% in
large clinical trials21 and between 27% and 32% in a series
of patients with adenocarcinoma.7,22 The majority of KRAS
mutations are found in current and former smokers23;
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however, KRAS G12D is also found in never-smokers.24 In
Western populations, approximately one-quarter to one-
third of patients with NSCLC have a KRAS mutation.25-27

The overall incidence of KRAS mutation is lower (approx-
imately 5%-10%) in Indian,28,29 Chinese,30-32 and Iranian
populations.33 AcrossWestern populations with NSCLC, the
prevalence of the KRAS G12C mutation is approximately
12%-14% (40%-50% of all KRAS mutations).8,19,22,25-27,34

KRAS G12V mutations account for approximately 20%-
25% of KRAS mutations in NSCLC,19,22 and others include
KRAS G12D, KRAS G12A, and KRAS G12S (Table 1).19,35

The proportion of KRAS G12C–mutated subtypes is slightly
lower (32%-34%) across large databases of Asian
populations.31,36 KRAS G12C and KRAS G12D mutations
are approximately equally distributed across disease stage
in patients with NSCLC.27 Of note, in KRAS G12C–mutant
tumors, KRAS G12C was a truncal mutation in the majority
of patients with NSCLC, suggesting that it is likely a driver
mutation in most of these patients.35

The clinicopathological features of NSCLC with KRAS
mutations are discussed in Appendix 1 (online only).

Relationship Between KRAS Mutation and Other

Oncogenic Mutations, PD-L1 Expression, and Tumor

Mutational Burden

Concurrent alterations in the expression of at least one other
gene (tumor suppressor genes: CDKN2A, KEAP1, STK11,
TP53; KRAS downstream effector genes: PIK3CA, BRAF,
AKT1) exist in approximately half of patients with KRAS
mutations (Appendix 2, online only, includes a discussion of
additional coalterations). Themost common comutations are
TP53 (approximately 40%) and STK11 (12%-20%).26,27,37

Furthermore, approximately one-quarter of patients with
KRAS mutations have more than one concurrent genetic
alteration,26 which depends on the underlying KRAS mu-
tation. For example, KRAS G12Cmutations tend to co-occur
with ERBB2 amplifications and ERBB4 mutations, KRAS
G12V mutations co-occur with PTEN mutations, and KRAS
G12D mutations co-occur with PDGFRA mutations.26 The
presence of comutations tends to indicate a highly ag-
gressive subgroup (Table 2); comutations may also have
negative overall impact on response to treatment (Appendix
2). In contrast, KRAS mutations are generally mutually ex-
clusive with other driver oncogenes in NSCLC, such as
EGFR, ALK, and ROS1 mutations in the treatment-naı̈ve
setting, and occur relatively infrequently in combination with
BRAF mutations.7,22,27

KRAS-mutated NSCLC tumor cells are associated with
higher PD-L1 expression levels than wild-type cells.38,39 It is
possible that the increased PD-L1 expression is due to
concurrent TP53 mutation40 or smoking status.41 The
upregulation of PD-L1 appears to be via activation of
phosphorylated extracellular signal–regulated kinase (ERK)
signaling.42 The extent of PD-L1 expression appears to be
related to the KRAS mutation subtype.38 KRAS G12D,
KRAS G12V, and KRAS G13C mutations are associated
with a higher proportion of PD-L1‒positive versus KRAS
G12A and KRAS G12C mutations, which are associated
with a higher proportion of PD-L1‒negative tumors.43

However, others have reported that KRAS G12C is
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FIG 2. Structure of the KRAS pro-
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TABLE 1. Percentage of KRASMutations in Lung Adenocarcinoma as
Assessed by Conventional Molecular Techniques and Next-Generation
Sequencing19,35

Mutation
Frequency of Mutation in Lung Adenocarcinoma

Across Data Sets, Range (%)

G12C 41.4-55.3

G12A 6.1-12.1

G13C 6.4-12.1

G12V 10.6-26.5

G12D 6.1-12.1

Q61L 1.7-2.0

Q61H 4.3a

G12R 1.7a

G12S 2.1-4.1

G13D 3.5-8.5

K88 2.0a

aOnly reported in a single data set.
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associated with PD-L1 positivity, yet at low levels of ex-
pression.27 Preliminary data also suggest that the distri-
bution of PD-L1 levels is higher in patients with KRAS
mutations versus those with wild-type disease.44

Finally, patients with KRAS-mutated NSCLC have a higher
tumor mutational burden (TMB) than those with wild-type
disease.39,44 Even when adjusted for smoking status, the
relationship between KRAS-mutant disease and TMB was
maintained; these factors, taken together, may contribute
to the positive response to immune checkpoint inhibitors
targeting PD-L1 in patients with KRAS mutations.39

Current Treatment Options for Patients With KRAS
Mutations: Clinical Outcomes

KRAS status and response to chemotherapy. KRAS muta-
tions appear to be predictive for treatment outcome and
can be associated with chemotherapy resistance.45-49 For
example, in vitro studies demonstrated that different KRAS
mutations led to differences in sensitivity to cytotoxic
chemotherapeutic agents,50 highlighting the need to con-
sider KRAS mutations at the subgroup level. When com-
pared with wild-type cells, KRAS G12C mutation was
associated with reduced cisplatin sensitivity in vitro and
in vivo.48,50 However, in patients with early-stage NSCLC
from the Lung Adjuvant Cisplatin Evaluation (LACE)–Bio
database, few biomarkers appeared to have prognostic or
predictive effect, with the possible exception of a subset of
KRASmutations.51 Patients with codon 12 KRASmutations

and those with wild-type disease appeared to derive no
benefit from adjuvant chemotherapy.52 In contrast, those
with codon 13 KRAS mutations had significantly worse
overall and disease-free survival.52 More recent data have
demonstrated a similar overall response to chemotherapy
(approximately 20%) in patients with KRAS G12C tumors
and those with wild-type disease in the locally advanced or
metastatic setting.44

KRAS status and response to targeted therapy. A meta-
analysis from 2008 identified an association between
KRAS mutations and lack of response to EGFR–tyrosine
kinase inhibitors (TKIs; predominantly gefitinib).53 This
association remained when potentially confounding factors
such as ethnicity, investigational treatment (erlotinib v
gefitinib), and previous treatment were taken into ac-
count.53 This finding results from the mutual exclusivity of
EGFRmutations with KRASmutations in NSCLC (Appendix
3, online only). In a single-center analysis, no patient with
KRAS-mutated disease responded to gefitinib or erlotinib
compared with 35.7% of patients with KRAS wild-type
disease achieving a complete or partial response.54 Simi-
larly, in a pooled analysis of four trials comparing EGFR-TKI
with placebo and including 968 patients with advanced
disease, KRAS mutation was associated with an extremely
low overall response rate (1.3%).55

KRAS status and response to immunotherapy. KRAS mu-
tation status tended to be associated with beneficial

TABLE 2. Association Between KRAS Mutations and KRAS G12C Mutations and Survival
Reference Subgroup (reference group)

Worse overall survival

El Osta et al, 201922 KRAS mutation (KRAS WT)a

KRAS comutation (no comutation [multivariate analysis])a

KRAS comutation with STK11 (no STK11 comutation)a

Svaton et al, 2016115 KRAS mutation (KRAS WT)b

KRAS G12C (KRAS WT)a

KRAS G12C (other KRAS mutations)

Nadal et al, 201434 KRAS mutation (KRAS WT)c

KRAS G12C (KRAS WT)c

Aredo et al, 201927 Distant disease stage (local disease)c

STK11 comutations (no STK11 comutations)a

KRAS G12D mutationa

Every 1-year increase in agea

Izar et al, 2014116 KRAS mutation (KRAS WT, EGFR mutant, KRAS/EGFR WT/WT)c

Improved overall survival

Izar et al, 2014116 KRAS G12C, KRAS G12V (other KRAS mutations)a

Zer et al, 201655 KRAS G12C (other KRAS mutations)b

Abbreviation: WT, wild-type.
aP , .05.
bP # .01 versus reference group.
cP # .001.
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outcome with immune checkpoint inhibitors such as
pembrolizumab, with prolonged progression-free survival
(PFS) in KRAS-mutated advanced NSCLC (14.7 months)
versus wild-type disease (3.5 months).40 It is possible that
comutations with STK11/LKB1 affect the response to
immunotherapy.56,57 In a retrospective study, PD-L1 ex-
pression seemed to be more relevant for predicting efficacy
of immune checkpoint inhibitors in KRAS-mutant NSCLC
(approximately 87% current or former smokers) than in
patients with other types of NSCLC.43 However, the benefits
of immune checkpoint inhibitors may not extend to all
KRAS-mutated subgroups. In one study, there was a trend
toward improved outcomes after immune checkpoint in-
hibitors in patients with KRAS G12A or KRAS G12V mu-
tations compared with KRAS G12C mutations; however,
this was not statistically significant.43 More recently, in
a study enrolling PD-L1–positive patients, pembrolizumab
monotherapy did not significantly improve outcomes
compared with chemotherapy for patients with wild-type
disease.44 However, pembrolizumab monotherapy did
improve PFS and overall survival in patients with KRAS-
mutant disease, particularly in the KRAS G12C subgroup.44

Median PFS in patients with KRAS G12C tumors was 15
months versus 6 months in those with wild-type disease
and 12 months in those with any KRAS mutation; overall
survival was not reached in the KRAS G12C subgroup
versus 15 months in those with wild-type disease and
12months in those with any KRASmutation.44 The addition
of chemotherapy to pembrolizumab eliminated the differ-
ential effect of KRAS mutations on pembrolizumab activ-
ity.58 PFS and overall survival were improved by the
combination versus chemotherapy alone in those with
wild-type and mutant disease.58

Considering the heterogeneity of responses by KRAS-
mutated subtypes of NSCLC to currently available thera-
pies, developing agents that effectively target and inhibit
specific KRAS subtypes is key to improving outcomes for
patients with KRAS-mutated NSCLC.

STRATEGIES FOR KRAS INHIBITION

Inhibition of KRAS Protein Activity

Early attempts to inhibit RAS proteins focused on de-
creasing RAS activation by identifying molecules prefer-
entially binding to the RAS-GTP pocket.11,13 As the first RAS
protein identified and sequenced, early focus was mostly
directed toward HRAS protein inhibition. However, KRAS
was subsequently found to be of more clinical relevance
and has become the target of renewed research efforts.10

Nonetheless, attempts to directly inhibit formation of the
GTP-bound protein have been unsuccessful because of the
high binding affinity of RAS proteins for GTP and the lack of
accessible binding pockets on RAS proteins large enough
to allow small-molecule binding (Table 313,59-66). Further-
more, given the ubiquitous nature of KRAS proteins and
their influence on multiple downstream pathways, it was

reasoned that arbitrarily inhibiting wild-type and mutant
KRAS proteins would likely be associated with unaccept-
able toxicity.9

An alternative approach to the direct inhibition of KRAS
proteins involves interfering with the peripheral association
of KRAS with the lipid membrane compartments (Fig 1).9

Early research demonstrated that RAS protein iso-
prenylation was required for peripheral association with
plasma and internal membranes and for subsequent on-
cogenic transformation.67 This led to the development of
farnesyl transferase inhibitors, which were found to inhibit
tumor growth of HRAS mutant cancers, and subsequently
demonstrated activity against KRAS-mutant cancer
in vitro68 and in murine models.69 However, clinical trials
evaluating farnesyl transferase inhibitors in KRAS-mutated
lung cancers have produced disappointing results.8 It
appears that the presence of alternative prenylation
pathways, via geranylgeranyltransferase type 1, allows for
the continued association of KRAS, but not HRAS, with the
cell membrane. This difference may account for the dif-
ferent outcomes of farnesyl transferase inhibitors in RAS-
mutant cancers.70 Furthermore, it has led to exploration of
combined farnesyl transferase and geranylgeranyl trans-
ferase type 1 inhibition.13 Other attempts to inhibit the
association of KRAS with the cell membrane have been
unsuccessful to date. For example, salirasib (trans-farne-
sylthiosalicyclic acid) was found to have preclinical activity
but had no demonstrable activity in the first phase II study
in patients with KRAS-mutant lung cancer.59 Salirasib has
not been further developed.59 Other research has focused
on inhibition of phosphodiesterase delta, a chaperone
protein involved in association of KRAS with lipid mem-
brane compartment.71 Despite the interest in targeting
membrane association of KRAS, this approach may be
relatively nonspecific and is unlikely to discriminate be-
tween the association of mutant and wild-type proteins,
leading to potential toxicity concerns.13

Preclinical studies found that GEF SOS1 inhibition com-
pletely inhibits the RAS/RAF/MEK/ERK pathway in cells
with wild-type KRAS and reduces phospho-ERK activity by
50% in KRAS-mutant cell lines regardless of the allelo-
type.72 Combinations with KRASG12C inhibitors are syner-
gistic; however, clinical efficacy and tolerability have not yet
been explored.72

Downstream Inhibition of Key KRAS Pathway Mediators

KRAS proteins have an integral role in regulating numerous
downstream effector pathways. Of these, the RAF/MEK/
ERK and PI3K/AKT/mTOR pathways are arguably the most
important in KRAS-mutated cancers and offer multiple
potential opportunities for targeted therapy in RAS-mutated
cancer (Fig 1).

The importance of feedback mechanisms across pathways
in RAS-mutated cancer is highlighted by the failure of RAF
inhibition in this subgroup and the paradoxical activation of
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the RAF/MEK/ERK pathway in cells expressing wild-type
BRAF.13,64 Currently available RAF inhibitors tend to inhibit
selected RAF dimers. However, next-generation RAF in-
hibitors, considered pan-RAF inhibitors, appear not to
cause paradoxical activation of the RAF/MEK/ERK pathway
and, thus, may be more effective in RAS-mutated dis-
ease.64 Similarly, MEK inhibition was considered a potential
therapeutic target.73 However, to date, monotherapy
with MEK inhibitors has not demonstrated clinical ac-
tivity because of increased upstream signaling mediated
via ERBB3 and FGFR1 leading to ERK signaling
activation.13,74,75 Consequently, MEK inhibitors were eval-
uated in combination regimens, with early results indicating
MEK inhibition may be synergistic with docetaxel in KRAS-
mutated NSCLC.76 However, this was not borne out with
a randomized comparative study.61 Finally, ERK inhibition
has been investigated as a strategy.13 Although not spe-
cifically in NSCLC, results of an in vitro analysis suggested
the ERK node may be the rate-limiting step in the RAF/
MEK/ERK pathway. Direct ERK inhibition may prevent relief
of negative feedback leading to ERK hyperactivation, which
is observed with RAF/MEK inhibitors, and may prove
a useful therapeutic approach.77 However, it is suggested
that resistance will likely occur because of single amino
acid mutations in the ERK DFG motif after exposure to ERK
inhibition.78

Similarly, it appears that pan-PI3K inhibitors and dual PI3K/
mTOR inhibitors inhibit growth of NSCLC cell lines in vitro.
However, limited efficacy has been observed in clinical
trials due to feedback mechanisms.79,80

Cyclin-dependent kinase 4/6 inhibitors, such as abema-
ciclib, have been reported to inhibit cell growth in vitro.
Early results were encouraging in patients with KRAS-
mutated NSCLC81,82; however, a phase III study compar-
ing abemaciclib with erlotinib in previously treated patients
failed to demonstrate efficacy.83

The focal adhesion kinase (FAK) pathway is another sig-
naling axis for KRAS-mutated NSCLC. FAK is a master
regulator of cell adhesion during cell motility and invasion,
and several FAK inhibitors are under development.84

Preclinical models have demonstrated that KRAS-mutant
cells with alterations in TP53 or CDKN2A are sensitive to
FAK inhibition.85 In patients with KRAS-mutated NSCLC,
the FAK inhibitor defactinib was reported to have modest
clinical activity; however, efficacy was not associated with
comutation (TP53 or CDKN2A) status.65

Small-molecule inhibitors of PARP impair the stabilization
and restart of stalled DNA replication forks, trapping PARP
on chromatin to achieve its cytotoxic effect. The combi-
nation with WEE1 inhibitors is associated with killing of
25%-40%of KRAS-mutant NSCLC cells,86 although clinical
efficacy in KRAS-mutated disease is yet to be determined.

To overcome the increased upstream signaling observed
when a single downstream effector pathway is targeted in
KRAS-mutated cancer, combination therapy targeting
multiple downstream pathways may be required.13,79

Combinations of MEK inhibitors and EGFR inhibitors
have demonstrated growth inhibition of KRAS-mutated
NSCLC cell lines in vitro and tumor regression in vivo in

TABLE 3. Overview of Unsuccessful Strategies to Target KRAS Mutations in NSCLC
Mechanism of Action Reason for Lack of Apparent Success

Inhibit KRAS protein binding

Small molecule antagonist to KRAS-GTP protein13 High picomolar affinity of RAS for GTP and high cellular concentration of GTP;
difficult for successful competition for the nucleotide-binding pocket

Disrupt binding of KRAS protein to a GEF catalyst
of nucleotide exchange63

Not sufficiently potent

Disrupt membrane binding of KRAS

Farnesyl transferase inhibitor13 Geranyl-geranylation provides an alternative mechanism to farnesylation for
activation of KRAS proteins

Competitive inhibition of attachment of GTP-bound
protein to plasma membrane59

Not sufficiently potent to warrant further investigation

Inhibit KRAS signaling of downstream effector pathways

MEK inhibition as monotherapy13,60 and in
combination with chemotherapy61,62

Upregulation of compensatory effector pathways, dose-limiting toxicities, and
development of resistance

BRAF inhibition as monotherapy64 Paradoxical ERK signal activation

Dual BRAF and ERK1/2 inhibitors64 Importance of BRAF and ERK targets in normal cells

Inhibition of FAKi65 Combination therapy may be required

Direct inhibitors of KRAS proteins

Noncovalently bind to RAS proteins and inhibit
RAS/RAF complex formation66

Not sufficiently potent; off-target activity could be problematic

Abbreviations: GEF, guanine nucleotide exchange factors; GTP, guanosine triphosphate; NSCLC, non–small-cell lung cancer.
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KRAS-mutated lung cancers, but in clinical trials the
combination was associated with unacceptable toxicity
without any clinical benefit.87 Combinations including PI3K
inhibitors have proven effective against KRAS-mutated cell
lines88,89 and in KRAS-mutated murine lung cancers90 and
were initially considered as a potential approach for the
treatment of KRAS-mutated NSCLC. However, combina-
tions of MEK and PI3K inhibitors appear to be associated
with unacceptable toxicity, and further clinical evaluation
appears unlikely.79 In contrast, the combination of P13K
inhibition with KRASG12C inhibition may offer a more ac-
ceptable therapeutic window in patients with KRAS
G12C–mutated NSCLC.79

Finally, the Src homology 2 domain-containing PTP2
(SHP2) protein is required for RAS/ERK pathway activation,
with evidence implicating SHP2 as an oncogenic driver.91

Inhibition of SHP2 is ineffective against KRAS-mutated
cancer cell lines in vitro, but in vivo evidence suggests
a role for SHP2 inhibition under growth factor–limiting
conditions.92 Combined with MEK inhibition, SHP2 in-
hibition may have therapeutic potential in KRAS-mutated
NSCLC.92

Synthetic lethal interaction partners of RAS are potentially
important because they represent genes that act as
modifiers of known oncogenes but have no effect on their
wild-type counterparts.93 Metabolic synthetic lethality ap-
pears a possible approach,94-96 with SLC7A11 suppression
being highly selective for KRASmutant versus wild-type cell
lines in vitro and leading to tumor regression in animal
models.95 Another potential partner includes CDKN1A.97

The heterogeneity of mutant KRAS proteins likely extends
to heterogeneity in synthetic lethality partners.97 Collateral
genetic dependencies specific to mutant KRAS proteins
may also be relevant to understand, and therapies targeting
these dependencies may enhance KRASG12C inhibition.81

Direct Inhibitors of Mutant KRAS

The lack of success with direct targeting of KRAS proteins,
downstream inhibition of KRAS effector pathways, and
other strategies contributed to a focus on developing
mutation-specific KRAS inhibitors.11,15 Given the crucial
role of KRAS proteins in normal physiology, KRAS inhibition
has potential for substantial toxicity.19 Inhibition of mutant
KRAS proteins, however, should limit toxicity in healthy
tissue and thus provide a therapeutic advantage over in-
hibition of wild-type proteins or the effector pathways.13

The identification of a hidden pocket adjacent to switch II in
GDP-bound KRAS9 has renewed interest in direct targeting
of KRAS mutant proteins (Fig 3).63,98 Covalent binding of
small molecules to KRASmutant proteins appears to lead to
changes in the switch I‒ or switch II‒binding regions, in-
terfering with the switch functions and affecting the binding
of GEFs to the GDP-bound protein, thereby preventing
conversion of the mutant protein to the GTP-bound active
state.98 These small-molecule inhibitors are KRAS mutant

protein–specific, with initial focus on KRASG12C proteins.
Cysteine 12 in KRASG12C protein offers the potential for
disulfide covalent binding with small-molecule inhibitors,
maintaining the mutant KRAS in its inactive GDP-bound
state.63,98 However, early KRASG12C inhibitors were not suf-
ficiently potent or were too unstable for further develop-
ment.63 AMG 510 is the most clinically advanced of the
covalent small-molecule inhibitors of KRASG12C mutant
proteins.99,100 AMG 510 selectively and irreversibly binds to
cysteine 12 in a small pocket, the H95 groove, on the
mutated KRASG12C protein.101 AMG 510 has been shown to
inhibit SOS-catalyzed nucleotide exchange in mutant
KRASG12C, resulting in in vitro inhibition of KRAS signaling
and impaired viability of KRAS G12C-mutated cell lines, but
not wild-type cells.102,103 Early phase I results support the
tolerability and antitumor efficacy of a small-molecule in-
hibitor of KRASG12C, but caution in result interpretation is
urged until survival advantages for direct inhibitors of mutant
proteins are confirmed in large-scale randomized trials.104

The benefit of direct KRASG12C inhibition is further supported
by preliminary evidence that a second covalent inhibitor of
KRASG12C, MRTX849, is associated with regression and
objective responses in patients with KRAS G12C-mutated
NSCLC.105 Clinical trials are also underway evaluating other
oral KRASG12C inhibitors, LY3499446 (ClinicalTrials.gov
identifier: NCT04165031) and JNJ-74699157 (Clinical-
Trials.gov identifier: NCT04006301), in patients with KRAS
G12C-mutated advanced solid tumors, including NSCLC.
Similarly, strategies to inhibit KRASG12D are also being de-
veloped and offer promise for future treatment options.106

Resistance to direct targeting of RAS proteins does occur
and may be due to genetic alterations in the nucleotide ex-
change function or adaptive mechanisms in either down-
stream pathways or in newly expressed KRASG12C.79,107-111 For

Hidden
pocket

FIG 3. A three-dimensional representation of KRAS in the gua-
nosine diphosphate–bound state showing the hidden pocket.
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example, newly expressed KRASG12C may stay in an active
state (ie, resistant to inhibition) as a result of EGFR or AURK
signaling pathways andmediated by PTPN11/SHP2 recruiting
SOS1 to promote conversion to the active state.111 Thus,
combination therapies are likely to provide greater benefit than
direct targeting of KRASG12C alone. In addition, increased
understanding of the biologic diversity underpinning KRAS-
mutated NSCLC will allow for improved identification of patient
subgroups most likely to benefit from a specific targeted
treatment.99 The presence of STK11/LKBI comutations, for
example, appears to have an important role in the resistance of
NSCLC to checkpoint inhibitors. Thus, combining checkpoint
inhibitors with the evolving new direct inhibitors of mutant
KRAS proteins may shift the balance away from an immune-
suppressive tumor microenvironment to allow effective anti-
tumor immunity110 and provide a new improved approach to
treating the disease.99 The combination of KRAS and SHP2
inhibitors offers potential synergistic activity, as described
above, and is worthy of being assessed clinically.101,111 Fur-
thermore,MEK inhibitors andSHP2 inhibitorswere found to be
synergistic in KRAS-mutant cancer cell lines, including NSCLC
lines, making this combination also worthy of additional
exploration.92,112,113 The SHP2 inhibitors, TNO155 (Novartis)
and RMC-4630 (Revolution Medicine), are currently in active

phase I/II clinical trials as monotherapy (ClinicalTrials.gov
identifiers: NCT03114319 and NCT03634982, respectively)
and in combinationwith a KRASG12C inhibitor (ClinicalTrials.gov
identifiers: NCT04330664 and NCT04185883) and a MEK
inhibitor (ClinicalTrials.gov identifier: NCT03989115), re-
spectively. Similarly, combinations of KRAS inhibitors with
inhibitors of the ErbB family including EGFR, PI3K, AKT, and
MEK1/2 have been evaluated in vitro and are also of interest.101

Triple-drug regimens are also explored, aimed to disrupt
compensatory feedback loops to avoid the onset of resistance,
while minimizing additive toxicities.114

In conclusion, the new class of KRASG12C inhibitors is
currently undergoing clinical assessment with promising early
results. This represents a major breakthrough against a mo-
lecular subtype of NSCLC present in a significant proportion of
patients with no currently available targeted treatment op-
tions. Extensive clinical and translational evaluation of AMG
510 and other KRAS inhibitors is being conducted in patients
with KRAS G12C mutation in ongoing studies. Efforts to
develop novel combination approaches building on AMG 510
are already being undertaken. These developments prompt
the inclusion of KRAS testing in the molecular testing strat-
egies for advanced lung adenocarcinoma.
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APPENDIX 1
Clinicopathological Features of Non–Small-Cell Lung

Cancer With KRAS Mutations

KRAS-mutated non–small-cell lung cancer (NSCLC) occurs with an
equal sex distribution across men and women (Dacic S, et al: Mod
Pathol 23:159-168, 2010). KRAS mutations are more frequent in
patients with a current or previous smoking history, with 93% of pa-
tients with KRASmutations being smokers,22 although in one series up
to 30% of patients with a KRAS mutation had never smoked.36 In
contrast, up to 73%22,36 of patients with EGFR-mutant disease (Midha
A, et al: Am J Cancer Res 5:2892-2911, 2015) had never smoked,
contributing to EGFR-mutant disease occurring more frequently in
women than men (Dacic S, et al: Mod Pathol 23:159-168, 2010;
Midha A, et al: Am J Cancer Res 5:2892-2911, 2015; Hsiao SH, et al:
Mol Clin Oncol 2:252-258, 2014). KRAS mutations occurred more
frequently in older patients (Lee B, et al: Oncotarget 7:23874-23884,
2016). KRAS-mutant tumors are more likely to be large and poorly
differentiated, with a solid pattern and of a mucinous type (Lee B, et al:
Oncotarget 7:23874-23884, 2016; Kakegawa S, et al: Cancer 117:
4257-4266, 2011).

KRAS-mutated NSCLC appears to be heterogeneous; of the three
prevalent KRASmutations, KRAS G12Cmutations are more likely than
KRAS G12D and KRAS G12V mutations to be nonmucinous (Lee B,
et al: Oncotarget 7:23874-23884, 2016). KRAS G12C mutations are
significantly more likely to be present in women with KRAS-mutant
lung cancer (43.4%) than in men (32.7%, P , .01); no significant
difference was observed between women and men for other subtypes
of KRAS mutations.23 Some studies have reported that tobacco car-
cinogens appear to be associated with transverse mutations such as
KRAS G12C mutations,23 although this association has not always
been reported to be significant (Kakegawa S, et al: Cancer 117:4257-
4266, 2011). It appears that women are more susceptible to tobacco
carcinogens, which may explain the higher incidence of KRAS G12C
mutations in women.23 Similarly, transversion mutations are more likely to
be associated with disease with bronchioloalveolar features (Kakegawa S,
et al: Cancer 117:4257-4266, 2011).

Finally, KRAS G12C mutation may be associated with poorer survival
than other KRASmutations, although results are not consistent across
analyses (Table 2).22,27,34,55,115,116

APPENDIX 2

Effect of Comutations on Prognosis

Recent evidence suggests that mutations in genes (ie, KEAP1/
NFE2L2) encoding proteins involved in the stress response pathway
may represent a highly aggressive, rapidly progressing subgroup of
non–small-cell lung cancer (NSCLC; Nadal E, et al: J Thorac Oncol 14:
1881-1883, 2019), regardless of smoking history, EGFR status, ALK
status, and KRAS (Goeman F, et al: J Thorac Oncol 14:1924-1934,
2019). Deregulation of the KEAP1/NFE2L2 pathway appears to lead to
resistance to various treatments (eg, tyrosine kinase inhibitors, im-
mune checkpoint inhibitors) and rapid proliferation of cancer cells
(Goeman F, et al: J Thorac Oncol 14:1924-1934, 2019). KEAP1/
NFE2L2 mutations co-occur with KRAS mutations but appear to be
mutually exclusive with TP53 mutations, a mutation leading to alter-
ation in the DNA damage response machinery (Goeman F, et al: J
Thorac Oncol 14:1924-1934, 2019). Survival results were worse in
patients with KRAS and STK11 mutation versus those with double
wild-type disease,22 or KRAS26 or STK11 mutations alone (Bange E
et al: JCO Precis Oncol 10.1200/PO.18.00326). It is suggested that the
STK11 mutation alongside the KRAS mutation results in augmented
downstream KRAS signaling and increased tumorigenesis (Bange E
et al: JCO Precis Oncol 10.1200/PO.18.00326).

Effect of Comutations on Clinical Outcomes

Concurrent mutations may also have a negative overall impact on
response to treatment. For example, the presence of concurrent

KEPA1/NEF2L2 mutations was associated with a shorter overall sur-
vival in patients with KRASmutations treated with immune checkpoint
inhibitor monotherapy (ie, nivolumab or pembrolizumab; Arbour KC,
et al: Clin Cancer Res 24:334-340, 2018).

Similarly, in preliminary results STK11/LKB1 mutations co-occurred
with KRAS mutations in approximately one-third of 49 patients from
a single study site.56 Across 17 study sites and nearly 500 patients,
STK11/LKB1 mutations were associated with significantly shorter
progression-free survival (PFS) and overall survival in patients treated
with chemo-immunotherapy (ie, pemetrexed/carboplatin/pembrolizumab)56

than those with STK11/LKB1–wild-type tumors (Skoulidis F, et al: J
Clin Oncol 37, 2019 [suppl 15; abstr 102]). Similarly, PFS was shorter
in those with STK11/LKB1 and KRAS comutations from a group of 174
patients from amulticenter trial treated with immune checkpoint inhibitor
monotherapy (ie, nivolumab).57 In contrast, patients with TP53 and
KRAS comutations were more sensitive to nivolumab, with a PFS similar
to those with only KRAS mutations.57 Furthermore, patients from the
Lung Adjuvant Cisplatin Evaluation (LACE) database receiving adjuvant
chemotherapy with cisplatin and with KRAS and TP53 comutations had
approximately 2.5 times worse overall survival than patients with double
wild-type disease (Shepherd FA, et al: J Clin Oncol 35:2018-2027,
2017). In contrast, KRAS mutation status was not predictive of survival
after adjuvant therapy in the absence of a TP53 comutation.52

NF1 loss in KRAS-mutant disease is associated with focal adhesion
kinase-1 hyperactivation and phosphoserine aminotransferase upre-
gulation, enhancing tumor cell viability and having the potential to be
associated with resistance to KRAS inhibitors (Wang X, et al: EMBO
Mol Med 11:e9856 2019).

APPENDIX 3

Molecularly Driven Subgroups of Non–Small-Cell Lung

Cancer: Testing and Treatment

Molecular testing, an essential first step in the diagnostic work-up of
advanced-stage non–small-cell lung cancer (NSCLC), supports the
selection of optimal targeted therapies for patients harboring certain
driver mutations/gene rearrangements (Osmani L, et al: Semin Cancer
Biol 52:103-109, 2018; Kalemkerian GP, et al: J Clin Oncol 36:911-
919, 2018; Planchard D, et al: Ann Oncol 29:iv192-iv237, 2018;
NationalComprehensiveCancerNetwork: https://www.nccn.org/professionals/
physician_gls/pdf/nscl.pdf). Of patients with lung cancer who re-
ceived personalized therapy matched to their mutational profile,
nearly 80% had a clinical benefit,4 with longer survival experienced
by those receiving targeted therapy (Aisner DL, et al: Clin Cancer Res
24:1038-1047, 2018), underlining the importance of molecular
testing and targeted treatment (Pennell NA, et al: Am Soc Clin Oncol
Educ Book 39:531-542, 2019).

Currently, EGFR, ALK, and ROS1 molecular testing is recommended
for patients with advanced adenocarcinoma in most European
countries and in the United States (Planchard D, et al: Ann Oncol 29:
iv192-iv237, 2018; Lindeman NI, et al: J Thorac Oncol 13:323-358,
2018; Liebs S, et al: Cancer Med 8:3761-3769, 2019; Hanna N, et al: J
Clin Oncol 35:3484-3515, 2017). As newer targeted therapies become
available, testing forBRAF V600Emutations andNTRK-gene fusions is
also recommended (Kalemkerian GP, et al: J Clin Oncol 36:911-919,
2018; Planchard D, et al: Ann Oncol 29:iv192-iv237, 2018; Lindeman
NI, et al: J Thorac Oncol 13:323-358, 2018; Liebs S, et al: Cancer Med
8:3761-3769, 2019). In addition, agents targeting MET, RET, and
ERBB2 (HER2) have demonstrated promising efficacy and are an-
ticipated to gain regulatory approval in the upcoming months. As the
list of targetable alterations has grown, many institutions have adopted
more comprehensive next-generation sequencing (NGS) panels to
detect less common targetable alterations as well as avoid the need for
repeat biopsies due to exhaustion of tissue from sequential testing.

In patients with NSCLC, EGFR, ALK, ROS1, and BRAF mutations are
often mutually exclusive and tend not to overlap with KRAS and other
driver mutations (Sholl LM, et al: J Thorac Oncol 10:768-777, 2015).
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Molecular testing at the time of acquired resistance to targeted
therapies is also recommended to select appropriate salvage therapy
for certain driver mutations (Planchard D, et al: Ann Oncol 29:iv192-
iv237, 2018; National Comprehensive Cancer Network: https://www.
nccn.org/professionals/physician_gls/pdf/nscl.pdf; Hanna N, et al: J Clin
Oncol 35:3484-3515, 2017).

In addition to identifying the presence of oncogenic driver mutations,
testing is also conducted to ascertain programmed death 1 (PD-1)/
programmed death ligand 1 (PD-L1) receptor expression levels as-
sociated with NSCLC (Planchard D, et al: Ann Oncol 29:iv192-iv237,
2018; National Comprehensive Cancer Network: https://www.nccn.org/
professionals/physician_gls/pdf/nscl.pdf). Despite the significant clinical
impact of conducting molecular testing, the uptake continues to be

suboptimal in the routine clinical practice setting (Mason C, et al: J Clin
Pathw 4:49-54, 2018).

Finally, KRAS testing should also be included as part of any expanded
testing panel able to detect a wide range of mutations, such as NGS,
and offered to all patients with advanced lung adenocarcinoma
(Kalemkerian GP, et al: J Clin Oncol 36:911-919, 2018; National
Comprehensive Cancer Network: https://www.nccn.org/professionals/
physician_gls/pdf/nscl.pdf; Lindeman NI, et al: J Thorac Oncol 13:
323-358, 2018; Kim ES, et al: J Thorac Oncol 14:338-342, 2019).
Outside of clinical trial scenarios, specific targeted therapies for pa-
tients with an identified KRAS mutation are not effective; hence,
single-gene testing is not current practice (Kalemkerian GP, et al: J Clin
Oncol 36:911-919, 2018).
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