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Abstract—Parkinson’s disease (PD) is a progressive disorder
of the central nervous system that causes motor dysfunctions
in affected patients. Objective assessment of symptoms can
support neurologists in fine evaluations, improving patients’
quality of care. Herein, this study aimed to develop data-
driven models based on regression algorithms to investigate
the potential of kinematic features to predict PD severity
levels. Sixty-four patients with PD (PwPD) and 50 healthy
subjects of control (HC) were asked to perform 13 motor
tasks from the MDS-UPDRS III while wearing wearable
inertial sensors. Simultaneously, the clinician provided the
evaluation of the tasks based on the MDS-UPDRS scores.
One hundred-ninety kinematic features were extracted from
the inertial motor data. Data processing and statistical
analysis identified a set of parameters able to distinguish
between HC and PwPD. Then, multiple feature selection
methods allowed selecting the best subset of parameters for
obtaining the greatest accuracy when used as input for
several predicting regression algorithms. The maximum
correlation coefficient, equal to 0.814, was obtained with
the adaptive neuro-fuzzy inference system (ANFIS). There-
fore, this predictive model could be useful as a decision
support system for a reliable objective assessment of PD
severity levels based on motion performance, improving
patients monitoring over time.

Keywords—ANFIS, Artificial intelligence, Regression mod-

els, Predictive methods, Parkinson disease severity.

INTRODUCTION

Parkinson’s disease (PD) is a common degenerative
disorder of the central nervous system characterized by
both motor and non-motor symptoms. Traditionally,
in clinical practice, PD motor signs are assessed by
neurologists while they observe patients performing
motor tasks described in section III of the Movement
Disorders Society Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS III) and patient diaries.10

Thus, the clinical evaluation is mainly based on the
experience of clinicians that assign a score ranging
from 0 (no signs clinically evident) to 4 (severely im-
paired) for each task performed by patients. Finally,
the overall score, which is the sum of all the exercises,
represents a semi-quantitative index for identifying the
severity of the impairments due to the pathology. To
evaluate the PD progression, it is necessary to under-
stand the long-term monitoring of the disease, assess-
ing the patients periodically.

This traditional evaluation, based on clinical scales,
however, relies on clinical expertise, and is subjected to
inter- and intra- observer variability.20 Moreover,
using diaries can be difficult for patients with recalling
bias when reporting motor fluctuations. Therefore, the
traditional evaluation methods are suboptimal for PD
diagnosis and monitoring, and novel methods and
technologies should be investigated.6,22

In this direction, different tools have investigated as
diagnostic or prognostic indicators, such as: the use of
image guidance and robot-assisted techniques to im-
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prove the accuracy of electrode placement during deep
brain stimulation surgery29; the use of Leap Motion
Controller as non-invasive methods to assess motor
tasks4; the use of EEG algorithmic complexity as
prognosis for idiopathic rapid eye movement sleep
behaviour disorder (RBD) which is a serious risk fac-
tor for PD23; or the use of an olfactory identification
test as prognosis for idiopathic hyposmia that is an-
other preclinical marker of PD.16 Furthermore, recent
studies endorse the idea that wearable devices together
with artificial intelligence technology could provide
decision-making support systems that can help the
clinical practitioners in the objective assessment of
PD,26 allowing also the long-term monitoring and
management of the pathology.18 Furthermore, accu-
rately defining PD subtypes can be challenging as well.
Since PD is a progressive disease with heterogeneity in
individual disease trajectories,31 investigating the lon-
gitudinal clinical records is necessary to understand the
disease progression. To detect the motor impairment
changes and to identify PD related symptoms in indi-
vidual, multiple sensor-based measurements of
UPDRS could provide useful information.8 Capturing
the data from multiple affected limbs (upper and
lower) provides an opportunity for investigating the
relationships between clinical rating scale of motor
tasks. Moreover, machine learning methods could
provide a useful decision support system to support
clinicians in PD management.6,22

In this direction, recent studies analysed motor tasks
for PD subtyping identification with wearable tech-
nology that primarily relied on machine learning
techniques9 to develop predictive models. This is
basically treated as a clustering problem, where the
model can compute continuous numeric signal metrics
for the subgrouping of the clusters. In previous studies,
for the assessment of the motor dysfunction in PD,
different regression models were applied. The regres-
sion analysis provides a functional relationship among
variables that are expressed in the form of a dependent
variable and one or more explanatory variables. In a
recent study, logistic regression was used to classify
freezing of gait and non-freezing of gait in PD patients
affected by motor fluctuations by using acceleration
sensors.19 Regression techniques were used to assess
the fine motor skills of PD patients and healthy sub-
jects through the analysis of touchscreen typing pat-
tern.13 In this study, evolving the binary classification
problem into a regression analysis for estimating the
severity of individual PD motor symptoms could assist
physicians by providing explainable insights into the
subject’s condition against PD. Furthermore, a sup-
port vector machine regression model was also suc-

cessfully used for remote tracking of PD based on
speech signal analysis.7 Additionally, Patel et al.18

proposed to implement a regression random forest for
the longitudinal assessment of motor fluctuations by
analysing MDS-UPDRS III tasks from both upper
and lower limbs with wearable sensors. Finally, a
treatment-response index estimated from wearable
sensors for quantifying PD motor states was developed
by Thomas et al.,27 thus supporting personalized
treatment for advanced PD patients.

In general, very few studies, to the best of our
knowledge, use the clinical score as a predictor against
the extracted parameters from wearable technology
and apply regression models to classify healthy and PD
subjects. Moreover, there are few studies focused on
multiple sensor-based measurements approach to
capturing data from multiple affected limbs of PD.
First, our study aims to understand the significance of
the extracted parameters for the prediction of Parkin-
son disease progression using motion data acquired
from two wearable devices, called SensHand6 and
SensFoot.22 In this study, we aimed at investigating the
relationship between the extracted information from
the sensors and the clinical scores provided by the
clinicians according to the MDS-UPDRS. To achieve
this goal, multiple feature selection methods,4,15 com-
bined with multiple regression models,11,12,17,25 were
investigated to understand which technique could be
the most helpful for longitudinal clinical data analysis
and long-term monitoring of PD progression. We al-
ready investigated classification approach with super-
vised learning in previous works, considering both
binary classification21 (i.e., PD patients vs healthy
controls), and multigroup classification (i.e., PD
patients, healthy subjects, and subjects with idiopathic
hyposmia that are at risk for developing the dis-
ease).6,22 Differently, here we want to investigate
whether our system is able to identify the pathology
progression, from the mild to advanced stages.
Therefore, we applied the regression approach, which
is projected towards the possibility to have a continu-
ous curve of the evolution of the pathology for
improving the fine assessment of PD patients accord-
ing to their motor performances.

The remain of the paper is structured as follows: in
the Materials and Methods section we describe the
participants to the study, the wearable system used to
measure the motor performance, the experimental
protocol and data analysis. In the Results section, the
findings about features selection and the accuracy of
the regression models are reported. Then, in Discus-
sion section, we provide an interpretation of the results
considering also the limitations of the study.
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MATERIALS AND METHODS

The methodology applied in this study is synthe-
sized in the flowchart in Fig. 1.

Involved Subjects

A total of 114 subjects (64 PD patients: 40 males, 24
females; mean age ± standard deviation (SD)
66.60 ± 8.87 years old, mean Hoehn&Yahr stage ±

SD 1.9 ± 0.7, mean MDS-UPDRS III score ± SD
15.7 ± 8.9; and 50 HC: 39 male, 11 females; mean
age ± standard deviation 65.46 ± 2.70 years old) were
involved in this study. The neurologist that supported
the experiment defined the exclusion criteria. Those
who had impairments (e.g., prosthesis or arthrosis) or
diseases other than PD (e.g., neurological) that could
affect the performance of the required tasks were ex-
cluded from the study. Before and during the experi-
ments, all patients were on the medication state and
were examined by the neurologist. All subjects
involved in this study gave written informed consent
before the beginning of the experimental sessions.
Procedures of this study were approved by the local
Medical Ethical Committee (Azienda Sanitaria Locale,
Massa and Carrara, Italy; Approval No. 1148/
12.10.10).

Instruments

The system used in this work is composed of two
wearable modules that provide an objective and
quantitative analysis of the movements of the upper
and lower limbs through inertial measurement units
(IMUs). IMUs, integrated into the iNEMO-M1 board
and composed of three-axis gyroscope L3G4200D, six-
axis geomagnetic module LSM303DLHC and ARM-
based 32-bit microcontroller STM32F103RE (STMi-
croelectronics, Italy), were used to develop SensHand
and SensFoot device (Fig. 2), respectively, for upper
and lower limb analysis.22

The SensHand includes 4 iNEMO-M1, which are
positioned on the wrist and on the distal phalanges of
the thumb, index, and middle fingers and connected
and synchronized between them through the CAN-bus
standard.

The SensFoot includes a iNEMO-M1 and is placed
on the dorsum of the subject’s foot with a Velcro-strap
to ensure integrity between the foot and sensor.6 Both
modules are supplied by a rechargeable LiPo battery
and integrated with a Bluetooth module
(SPBT2632C2A, v3.0, STMicroelectronics) for wireless
data transmission to a remote PC, where data were
stored and analysed offline. Both modules collected
data with a sampling frequency of 100 Hz.

Experimental Protocol and Feature Extraction

The trial session included exercises for upper and
lower limbs, based on the tasks of the MDS-UPDRS
III. During the exercises, the subjects took a com-
fortable and standardized sitting position, holding a
right angle between the trunk and the thigh (on the
hip) and between the thigh and the shin (on the knee).
Initial and final fixed positions were established for
each exercise to allow a static acquisition of 3 s to
acquire the initial position as a reference for each trial.
Participants were directed to perform each exercise for
10 s, as fast as possible. The following are descriptions
of the 13 exercises (see Supplementary Material for an
explicative video about tasks performance):

� Gait: The subject stood still with arms along sides,
and then linearly walked 15 meters. The subject
had to walk at their preferred speed in the most
natural way (MDS-UPDRS 3.10).

� Rotation (ROTA): At the beginning and at the end
of the cycle, the subject had to stand still with arms
along sides. The subject turned 360�. The rotation
was performed both in the clockwise and counter-
clockwise directions (MDS-UPDRS 3.10).

� Heel tapping, toe pin (HTTP): The subject touched
the heel on the floor, and the forefoot was always in
contact with the ground.

� Toe tapping, heel pin (TTHP): The subject touched
the toe on the floor and kept the heel in contact
with the ground (MDS-UPDRS 3.7).

� Heel-toe tapping (HETO): The subject tapped the
heel and forefoot on the floor alternately.

� Heel–heel tapping (HEHE): The subject touched
the heel on the floor and kept the forefoot up.
(MDS-UPDRS 3.9).

� Forearm pronation-supination (PSUP): The sub-
ject placed the arm in front, with the wrist stable,
the hand prone. The movements of the prono-
supination had to be carried out in parallel with the
floor (MDS-UPDRS 3.6).

� Hand opening–closing (OPCL): The subject bent
the arm at the elbow, which was resting on the
table, and held the hand palm up in front. The
subject had to open and close the hand alternately,
holding the forearm and wrist stable (MDS-
UPDRS 3.5).

� Thumb-forefinger tapping (THFF): The subject
held the hand on the desk so that the plane where
thumb and forefinger tapped was parallel to the
table. The thumb and forefinger were in contact in
the starting position; then, the subject touched the
forefinger against the thumb (MDS-UPDRS 3.4).

� Thumb-middle finger tapping (THMF): The sub-
ject kept the hand fixed on the desk so that the
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plane where the thumb and middle finger joined
was parallel to the table. The thumb and middle
finger were in contact in the starting position; then,
the subject touched the middle finger to the thumb.

� Arms swing (ARMS): The subject walked in a
linear manner for 15 meters at the preferred speed
(MDS-UPDRS 3.10).

� Rest tremor (HRST): The subject placed the hand
on the table. For the entire duration of the exercise,
the subject kept the hand completely relaxed,
without contrasting the potential tremor (MDS-
UPDRS 3.17).

� Postural tremor (POST): The subject placed the
arm in front with a stable wrist, the hand in a prone
position and the fingers about 1 cm apart. For the
entire duration of the exercise, the subject remained
in this fixed position (MDS-UPDRS 3.15).

Data acquired from both accelerometer and gyro-
scope were preprocessed with adequate filters: band-
pass 0.5–15 Hz for HRST, bandpass 0.5–20 Hz for
POST, low-pass with cutoff frequency equals to 3 Hz
for GAIT, low-pass with cutoff frequency equals to
5 Hz for all the others. Custom-made algorithms were
applied to calculate spatiotemporal and frequency
features, as already described in previous works 6,22 for
both upper and lower limbs, obtaining 190 parameters.

FIGURE 1. Methodology flowchart.

FIGURE 2. The wearable system: SensHand and SensFoot.
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All exercises were performed twice, both for the left
and right sides; then, the average value of the param-
eters for each side was calculated and used for the data
analysis.

Data Analysis and Machine Learning Methods

Statistical Analysis

All the statistical analyses were performed with
SPSS21 (IBM, Armonk, North Castle, NY, USA).
First, the Kolmogorov–Smirnov test was applied to
each measured parameter to verify if it had a normal or
abnormal distribution. Since each parameter had an
abnormal distribution, the unpaired Mann–Whitney
(MW) U-test for non-parametric samples was calcu-
lated28 to identify the features that were statistically
significant for distinguishing between the HC and PD
groups. The test is issued to determine whether two
independent samples (in our case healthy and patients)
have the same distributions with the same median
without assuming normal distributions.9 The choice of
the cut-off points to accept the alternative hypothesis
was p £ 0.05.2 All the measured features were nor-
malized according to the linear relationship reported in
Eq. (1):

x0 ¼ x�min xð Þ
max xð Þ �min xð Þ ð1Þ

The normalized features were used for further
investigations in this paper. This scaling procedure is
more robust to control for both scale (min and max)
and location (mean). The mean and standard deviation
of a group gives information on how different the
individual group population is from the other group in
terms of the location of numeric values (mean) and
variation in the values (standard deviation). With the
linear scaling, it is easier to estimate the group differ-
ence in terms of mean and standard deviation between
the values 0 and 1.

Feature Selection Algorithms All the features iden-
tified as significant by the MW test were included for
the analysis with multiple feature selection methods.
The feature selection step involves finding the most
relevant subset of features from the original set by
eliminating inappropriate or redundant features.14 In
this study, multiple tests were run using various algo-
rithms developed in Weka 3.8 to define the optimal
subsets of attributes, which would help to avoid over-
fitting due to redundant information. The chosen fea-
ture selection methods have been used in previous
studies to obtain the optimum set of parameters to
increase the overall accuracy of the system.4,15

Specifically, five feature selection methods1 were
investigated in this study:

� Correlation-based feature subset evaluation
(CfsSubsetEval): This method evaluates the worth
of a subset of attributes that work well together,
preferring sets of attributes that are highly corre-
lated with the class but that have low intercorre-
lation. This multivariate method ignores irrelevant
and redundant features from the dataset. This
evaluator is implemented with the Best-First search
algorithm.

� PCA ranker: Ranker methods basically use single-
attribute evaluators to generate a ranked list.
Unlike other single-attribute evaluators, PCA
transforms the set of attributes and then ranks
the new attributes according to their eigenvalues.

� Correlation attribute evaluation: This method
evaluates the worth of an attribute by measuring
the correlation coefficient, based on Pearson’s
correlation, between each attribute and the class.

� C2 attribute evaluation: The C2 is calculated
between each feature and the target, and the
features with the best C2 scores are selected. This
method determines if the association between two
categorical variables of the sample would reflect
their real association in the population.

� Wrapper subset evaluation: This method evaluates
the worth of the attribute sets by using a learning
scheme, and it employs cross-validation to estimate
the accuracy of the learning scheme for each set of
attributes. Based on the prediction performance, a
score is assigned to each subset, and the best subset
is chosen.

Regression Methods for PD Severity Evaluation

After selecting the optimal feature array, multiple
regression techniques were applied to evaluate the
accuracy of the proposed system in automatically
quantifying the severity of the disease in clinical terms.
Indeed, the regression models can estimate the func-
tional relationship between explanatory variables and
a target variable. Moreover, regression trees can be
studied to develop a prediction model able to over-
come the discrete scores and severity levels of the tra-
ditional clinical scales toward the possibility to
associate a continuous response score to each patient
according to the pathology progression. In particular,
supervised machine learning techniques, such as sup-
port vector regression (SVR),17 random forest (RF),3

adaptive neuro-fuzzy inference system (ANFIS),12,17

and linear regression (LR)11 were tested in this work.
Based on preliminary investigations with different
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hyperparameters configurations, default hyperparam-
eters tuning was used since it allowed obtaining the
best accuracy in regression models. All the methods
were run over the ten-fold cross-validation. For
applying the regression models, both the clinical scores
and the extracted features from the sensors were used
in the normalized form (see Eq. 1) to make sure to fit
the model completely and not to overlap the predictor
and target values. All the prediction algorithms were
developed on the open-source platform Weka 3.8 ex-
cept for the ANFIS model, which was developed on
MATLAB 2019b (The MathWorks, Inc., Natick, MA,
USA). Following, a description of each model is
reported:

Support Vector Regression

Support vector machine was proposed for solving
the binary classification problem. As for the multi-class
classification problem, the form of SVR allows for
estimating the continuous function of training data-
sets. It is able to model complex nonlinear relation-
ships by using an appropriate kernel function that
maps the input into higher-dimensional feature space
and transforms the nonlinear relationships into linear
forms.17 Since previous studies endorsed the signifi-
cance of the RBF kernel,11 it was used also in this
work. For the prediction, the margin of tolerance
(epsilon) for the loss function is set to 0.1, while the
weight vector is set to measure the number of succes-
sive trails.

SVR looks for the optimal function fx ¼ w; xð Þ þ b,
where w is the weight vector and b is the threshold
value. Thus, SVR minimizes the expected risk predic-
tion. The optimal function is solved in the feature
space to make predetermined risk function minimiza-
tion. After the introduction of the kernel, the regressive
function becomes as in Eq. (2):

fx ¼
Xn

i¼1

ai � a�i
� �

K xi; xð Þ þ b ð2Þ

where K xi; xð Þ is a kernel function, and ai and a�i are
Lagrangian multipliers.17

Adaptive Neuro-Fuzzy Inference System

The path for building fuzzy systems and informa-
tion extraction is usually based on two parts (i.e., the
knowledge formulation from the conscious path and
knowledge formulation from the subconscious path).
In the first path, rules and membership functions (MF)
are consequent from human intelligence based on their
expertise, experience, and understanding. With the
subconscious formulation of knowledge, rules and

membership functions are developed using automated
techniques such as gradient methods, learning tech-
niques, and clustering methods. Fuzzy reasoning is a
procedure to derive a conclusion from a set of fuzzy if–
then rules. These rules are evaluated using the MF,
which is a curve where each point in the input space
maps the degree of membership between 0 and 1. The
fuzzification step maps the input characteristics to
quantify the grade of membership of the fuzzy set via
the Gaussian MF with hybrid learning methodology.
Then, defuzzification converts the input MF into if–
then rules, which derive the output characteristics for
output MFs. Before gathering data using a fuzzy C-
means (FCM), some parameters need to be quantified,
such as: number of clusters (in our case 2), partition
matrix exponent (default is 2) for final partition or
membership function matrix U, maximum number of
repetitions (default is 200), and minimum improve-
ment (default is 1e-5). For this work, the default

stopping threshold of 10�5 was applied.24 The final
step is associated with the sum of all the output MFs
into one single-value output. In this study, a fuzzy
inference system (FIS) was generated with an FCM
algorithm to cluster the inputs. The dataset was di-
vided into a predefined number of clusters using the
FCM algorithm. The number of clusters is pre-speci-
fied to help in defining the preliminary number of rules
for each cluster and the membership of each set of data
in the cluster. This technique is also known as semi-
supervised since the information about the MF is
predefined by the user with the identifying hyper-pa-
rameters.17

Random Forest

Random forest uses multiple learning algorithms for
forecasting both classification and regression prob-
lems. RF combines the results of decision trees trained
by the ‘‘bagging’’ method. RF is one of the most
accurate classifiers among the current algorithms that
use decision tree methods and maintains accuracy
when a large proportion of the data are missing. It can
handle many input variables. It generates an internal
unbiased estimation of the generalization error as the
forest building progresses.. It runs quickly to produce a
forest of decision trees for the classifier. It is assumed
that the number of cases in the training set is N, and
the number of variables in the classifier is M. The
system selects the number of input variables that will
be used to determine the decision at a node of the tree.
For each node of the tree, m of the M variables is
randomly selected, and the decision at the node is
based on them. The best split based on these m vari-
ables is calculated in the training set.

BIOMEDICAL
ENGINEERING 
SOCIETY

Data Models for Parkinson’s Disease Objective Grading 2981



Linear Regression

Linear regression is a linear approach to modelling
the relation between scalar response and one or more
explanatory variables. When the outcome and all the
attributes are numeric, linear regression is a natural
technique to consider. The idea is to express the out-
come as a linear combination of the attributes, with
predetermined weights as in Eq. (3):

x ¼ w0 þ w1a1 þ w2a2 þ � � �wkak ð3Þ

where x is the class; a1; a2 . . . :ak are the attribute val-
ues; and w0;w1; . . .wk are weights. The weights are
calculated from the training data.30

RESULTS

Mann–Whitney Significance Test Between PD Patients
and HC

The unpaired MW U-test was employed to identify
the significant features, among the 190 extracted
parameters, for comparing healthy controls and the
PD group. Both right and left sides were separately
compared, and a parameter was considered significant
if the MW U-test showed statistical significance in at
least one side. Normalized mean values, standard
deviations and p value were reported in Tables 1 and 2
for each measured feature. Statistically significant
parameters were selected from all the exercises; in

TABLE 1. Extracted parameters (mean 6 standard deviation) as normalized values from lower limb exercises for both PD
patients and HC subjects.

Ex Biomechanical features Acronym Patients Control p value

GAIT Gait Time

Gait Strides

Gait Frequency

Stride Time

Swing Time

Stance Time

Relative Stance

Angular Excursion

F_GT

F_GSTRD

F_GF

F_GSTRDT

F_GSWT

F_GSTT

F_GRS

F_GANG

0.155 ± 0.145

0.127 ± 0.142

0.544 ± 0.222

0.127 ± 0.142

0.329 ± 0.144

0.379 ± 0.202

0.564 ± 0.183

0.671 ± 0.191

0.928 ± 0.426

0.661 ± 0.363

0.571 ± 0.169

0.661 ± 0.363

0.311 ± 0.104

0.385 ± 0.154

0.594 ± 0.136

0.746 ± 0.125

0.002*

0.000*

0.803

0.000*

0.380

0.623

0.417

0.016*

ROTA Rotation Time

Rotation Strides

Rotation Frequency

Stance Time

Relative Stance

F_RT

F_RSTRD

F_RF

F_RSTT

F_RRS

0.226 ± 0.548

0.207 ± 0.176

0.372 ± 0.211

0.207 ± 0.176

0.596 ± 0.150

0.787 ± 0.548

0.104 ± 0.503

0.437 ± 0.248

0.104 ± 0.503

0.552 ± 0.142

0.000*

0.000*

0.220

0.000*

0.127

HTTP Heel Frequency

Taps

Heel angle

Heel Frequency CV

Heel angle CV

Energy Expenditure

F_HTTP_fH

F_HTTP_taps

F_HTTP_H-angle

F_HTTP_CV-fH

F_HTTP_CV-Hangle

F_HTTP_IAV

0.521 ± 0.220

0.514 ± 0.221

0.233 ± 0.199

0.539 ± 0.248

0.660 ± 0.260

0.552 ± 0.198

0.691 ± 0.140

0.685 ± 0.143

0.345 ± 0.215

0.507 ± 0.202

0.651 ± 0.235

0.706 ± 0.105

0.000*

0.000*

0.007*

0.466

0.985

0.000*

TTHP Toe Frequency

Taps

Toe angle

Toe Frequency CV

Toe angle CV

Energy Expenditure

F_TTHP_fT

F_TTHP_taps

F_TTHP_T-angle

F_TTHP_CV-fT

F_TTHP_CV-Tangle

F_TTHP_IAV

0.490 ± 0.212

0.532 ± 0.201

0.634 ± 0.226

0.496 ± 0.259

0.634 ± 0.226

0.670 ± 0.244

0.530 ± 0.194

0.581 ± 0.178

0.420 ± 0.253

0.425 ± 0.259

0.528 ± 0.283

0.820 ± 0.580

0.128

0.118

0.021*

0.215

0.063

0.020*

HETO Toe Frequency

Heel Frequency

Heel-Toe Frequency

Taps

Toe Angle

Heel Angle

Heel-Toe Frequency CV

Toe Angle CV

Heel Angle CV

Energy Expenditure

F_HETO_fTT

F_HETO_fHH

F_HETO_fHT

F_HETO_taps

F_HETO_ToeAng

F_HETO_HeelAg

F_HETO_fHT_Cv

F_HETO_ToeAngC

F_HETO_HeelAng_CV

F_HETO_IAV

0.308 ± 0.117

0.312 ± 0.117

0.315 ± 0.121

0.298 ± 0.121

0.286 ± 0.160

0.285 ± 0.151

0.330 ± 0.126

0.286 ± 0.160

0.285 ± 0.151

0.762 ± 0.182

0.420 ± 0.155

0.425 ± 0.154

0.426 ± 0.146

0.416 ± 0.156

0.432 ± 0.173

0.422 ± 0.169

0.370 ± 0.154

0.432 ± 0.173

0.422 ± 0.169

0.855 ± 0.076

0.000*

0.000*

0.000*

0.000*

0.000*

0.000*

0.152

0.000*

0.000*

0.007*

HEHE Signal Average Power

Fundamental Frequency

Peak in PSD

Energy Expenditure

F_HEHE_AVGPWR

F_HEHE_FREQ

F_HEHE_PEAK

F_HEHE_IAV

0.202 ± 0.229

0.282 ± 0.140

0.121 ± 0.139

0.221 ± 0.167

0.525 ± 0.202

0.330 ± 0.115

0.339 ± 0.196

0.441 ± 0.167

0.000*

0.028*

0.000*

0.000*

Also, p values from the Mann–Whitney test are reported.

*Statistical significance at 95% confidence level (p < 0.05).
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TABLE 2. Extracted parameters (mean 6 standard deviation) as normalized values from upper limb exercises for both PD
patients and HC subjects.

Ex Biomechanical features Acronym Patients Control p value

Hand opening/closing (OPCL) Movement Frequency

Movements

Movement amplitude

Opening velocity

Closing velocity

Variability in frequency

Variability in amplitude

Energy expenditure

H_fOC

H_numOC

H_excOC

H_wop

H_wcl

H_fCV-OC

H_tetaCV-OC

H_OC-IAV

0.398 ± 0.197

0.409 ± 0.201

0.466 ± 0.230

0.412 ± 0.221

0.373 ± 0.213

0.324 ± 0.217

0.526 ± 0.260

0.305 ± 0.258

0.570 ± 0.139

0.580 ± 0.139

0.425 ± 0.176

0.538 ± 0.201

0.544 ± 0.190

0.222 ± 0.124

0.502 ± 0.194

0.555 ± 0.209

0.000*

0.000*

0.449

0.004*

0.000*

0.033

0.877

0.000*

Forearm prono/supination (PSUP) Movement Frequency

Movements

Movement amplitude

Supination velocity

Pronation velocity

Variability in frequency

Variability in amplitude

Energy expenditure

H_fPS

H_numPS

H_excPS

H_wps

H_wsp

H_fCV-PS

H_tetaCV-PS

H_PS-IAV

0.399 ± 0.252

0.415 ± 0.255

0.409 ± 0.180

0.350 ± 0.202

0.340 ± 0.131

0.239 ± 0.198

0.305 ± 0.195

0.204 ± 0.173

0.505 ± 0.181

0.526 ± 0.179

0.634 ± 0.157

0.6515 ± 0.15

0.590 ± 0.165

0.214 ± 0.173

0.237 ± 0.189

0.468 ± 0.233

0.011*

0.009*

0.000*

0.000*

0.000*

0.502

0.015*

0.000*

Thumb-forefinger tapping (THFF) Movement Frequency

Movements

Movement amplitude

Opening velocity

Closing velocity

Variability in frequency

Variability in amplitude

Energy expenditure

H_fTF

H_tapTF

H_tetaTF

H_woTF

H_wcTF

H_fCV-TF

H_tetaCV-TF

H_TF-IAV

0.575 ± 0.219

0.562 ± 0.223

0.216 ± 0.205

0.297 ± 0.244

0.297 ± 0.243

0.436 ± 0.252

0.647 ± 0.280

0.324 ± 0.192

0.741 ± 0.151

0.738 ± 0.149

0.716 ± 0.129

0.322 ± 0.202

0.336 ± 0.201

0.285 ± 0.186

0.619 ± 0.233

0.436 ± 0.165

0.000*

0.000*

0.481

0.689

0.437

0.006*

0.689

0.006*

Thumb-middle finger tapping (THMF) Tap Frequency

Movements

Movement amplitude

Opening velocity

Closing velocity

Variability in frequency

Variability in amplitude

Energy expenditure

H_fTM

H_tapTM

H_tetaTM

H_woTM

H_wcTM

H_fCV-TM

H_tetaCV-TM

H_TM-IAV

0.910 ± 0.414

0.498 ± 0.234

0.159 ± 0.146

0.308 ± 0.239

0.292 ± 0.234

0.491 ± 0.254

0.626 ± 0.259

0.605 ± 0.129

0.127 ± 0.262

0.700 ± 0.152

0.134 ± 0.928

0.431 ± 0.214

0.431 ± 0.209

0.270 ± 0.214

0.532 ± 0.245

0.737 ± 0.107

0.000*

0.000*

0.612

0.010

0.003*

0.000*

0.087

0.000*

Arms swing arms swinging (ARMS) Swing arms frequency

Movements

Movement amplitude

Front velocity

Back velocity

Variability in frequency

Variability in amplitude

Energy expenditure

H_fSW

H_swing

H_tetaSW

H_wfSW

H_wbSW

H_fCV-SW

H_tetaCV-SW

H_SW-IAV

0.410 ± 0.133

0.304 ± 0.142

0.261 ± 0.189

0.289 ± 0.181

0.467 ± 0.260

0.343 ± 0.307

0.322 ± 0.223

0.180 ± 0.146

0.426 ± 0.687

0.250 ± 0.611

0.520 ± 0.223

0.492 ± 0.230

0.411 ± 0.268

0.215 ± 0.214

0.534 ± 0.206

0.152 ± 0.666

0.486

0.025

0.000*

0.000*

0.253

0.029

0.000*

0.347

Postural tremor (POST) Accelerometer signal power

Acc fundamental freq.

Acc %power band [3.5-7.5 Hz]

Acc %power band [8-12 Hz]

Energy expenditure

Gyroscope signal power

Gyr fundamental frequency

Gyr %power in band [3.5-7.5 Hz]

Gyr %power in band [8-12 Hz]

H_a_pwrP

H_a_fP

H_a_pwrpP1

H_a_pwrpP2

H_IAV-P

H_g_pwrP

H_g_fP

H_g_pwrpP1

H_g_pwrpP2

0.334 ± 0.215

0.556 ± 0.168

0.334 ± 0.215

0.412 ± 0.209

0.085 ± 0.188

0.040 ± 0.190

0.483 ± 0.215

0.311 ± 0.230

0.354 ± 0.206

0.183 ± 0.111

0.591 ± 0.235

0.183 ± 0.111

0.501 ± 0.208

0.034 ± 0.014

0.000 ± 0.000

0.535 ± 0.271

0.159 ± 0.697

0.430 ± 0.144

0.000*

0.342

0.000*

0.078

0.002*

0.007*

0.276

0.000*

0.013*

Rest tremor (REST) Accelerometer signal power

Acc fundamental frequency

Acc %power in band [3.5-7.5 Hz]

Energy expenditure

Gyroscope signal power

Gyr fundamental frequency

Gyr %power in band [3.5-7.5 Hz]

H_a_pwrR

H_a_fR

H_a_pwrpR2

H_IAV-R

H_g_pwrR

H_g_fR

H_g_pwrpR2

0.340 ± 0.189

0.525 ± 0.246

0.244 ± 0.121

0.432 ± 0.286

0.521 ± 0.149

0.508 ± 0.213

0.435 ± 0.219

0.437 ± 0.210

0.542 ± 0.220

0.193 ± 0.651

0.261 ± 0.132

0.006 ± 0.116

0.512 ± 0.222

0.288 ± 0.115

0.041*

0.854

0.001*

0.004*

0.000*

0.948

0.000*

Also, p values from the Mann–Whitney test are reported.

*Statistical significance at 95% confidence level (p < 0.05).
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particular, 52 features were selected from the lower
limbs and 78 from the upper limbs. Therefore, each
exercise contributed to distinguishing PD and HC.
Furthermore, both features extracted from
accelerometer and gyroscope showed significance, thus
suggesting that both the sensors are equally important
for the assessment of the disease progression.

One hundred thirty significant parameters were se-
lected and further investigated with the feature selec-
tion methods to select the best subset of features that
could be applied as input to data-driven predictive
models (i.e., SVR, RF, ANFIS, and LR) to improve
the PD severity classification.

Predictive Accuracy from the Regression Methods

The four investigated regression algorithms were
applied to each of the five feature selection methods,
and the accuracy of the obtained results are reported in
terms of correlation coefficient and root mean squared
error in Table 3.

The correlation-based feature subset evaluation
feature selection method with the Best-First search
algorithm selected thirteen featuresas input for the
predictive models. The best-performing model was
ANFIS with 0.814 accuracy (as correlation coefficient),
whereas SVR, RF, and LR, obtained 0.799, 0.790, and
0.738, respectively.

Nineteen parameters were selected with the PCA
ranker method, 20 parameters with the correlation

attribute evaluation, 15 parameters with the C2 attri-
bute evaluation, and 12 with the wrapper method. RF
resulted in the best performance for PCA ranker
(0.685), correlation attribute (0.648), and wrapper
evaluation (0.606). Differently, ANFIS achieved the
best performance for the aforementioned CfsSubsetE-
val and for the C2 attribute evaluation method.

DISCUSSION

This study aimed at providing an objective assess-
ment of fine motion performance decline in PD motor
symptoms and at examining different regression mod-
els that allowed the identification of a linear relation-
ship between the measured motion parameters and the
clinical scores assigned by the neurologists according
to the MDS-UPDRS III. Currently, indeed, the clinical
scales represent the gold standard for clinical evalua-
tions. Therefore, the first step of our study is to
demonstrate that our system agrees with traditional
clinical evaluations. Furthermore, it offers the neurol-
ogist the opportunity to objectify the clinical assess-
ment. This is a fundamental step to achieve the trust of
the neurologist in adopting our system as a decision
support tool for improving PD diagnosis procedure.
Using regression algorithms can significantly improve
the method of performing PD diagnosis because they
not only allow identification of whether or not a sub-
ject has motor impairments caused by the pathology,

TABLE 3. Predictive accuracy of the evaluated regression methods reported as correlation coefficients using different selection
feature methods.

Feature selec-

tion method Selected features

Regression method

SVR RF ANFIS LR

CfsSubsetEval

Best first

search

FL_GT; FL_GSTRD; FR_HETO_taps;

HR_excPS; HR_PS-IAV; HL_fPS; HL_PS-

IAV; HL_TF-IAV; HR_tapTM; HR_woTM;

HL_tetaCV-SW; HR_IAV-P; HR_g_pwrpP1

0.799

RMSE = 0.117

0.790

RMSE = 0.121

0.814

RMSE = 0.101

0.738

RMSE = 0.135

PCA ranker Principal Components (PC1 – PC19) 0.596

RMSE = 0.158

0.658

RMSE = 0.1506

0.385

RMSE = 0.217

0.497

RMSE = 0.181

Correlation at-

tribute eval-

uation

FR_GSTRD;FL_GT; FR_RSTRD;FR_RT;

FL_RSTRD;FR_GANG; HR_tapTM; HL_-

tapTF; HR_wfSW; FL_HETO_ToeAng;

HL_a_pwrR; HL_g_pwrpR2; HR_IAV-P;

HR_fCV-TF; HL_a_pwrpP1

0.5937

Rmse = 0.158

0.648

Rmse = 0.146

0.517

Rmse = 0.1905

0.406

Rmse = 0.199

C2 attribute

evaluation

FR_GT; FR_GSTRD; FR_GANG; FL_GT;

FR_RT; FR_RSTRD; FL_RT, FL_RSTRD;

FL_HETO_ToeAng; HL_TapTF; HR_tapTM;

HL_tapTM; HR_wfSW; HL_g_pwrpP1;

HL_g_pwrpR2

0.6244

RMSE = 0.1539

0.640

RMSE = 0.149

0.652

RMSE = 0.1999

0.475

RMSE = 0.149

Wrapper sub-

set evalua-

tion

FR_GT; FR_GSTRD; FR_GANG; FL_GT;

FR_RSTRD; FL_RT; FL_RSTRD; FL_HE-

TO_ToeAng; HL_tapTF; HR_tapTM; HL_-

tapTM; HL_a_PwrR

0.6057

RMSE = 0.1569

0.606

RMSE = 0.1569

0.423

RMSE = 0.2262

0.400

RMSE = 0.1981
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as supervised binary classification algorithms can be
used, but they also could allow better ranking of the
disease progression. Regression models, indeed, permit
quantification of the grade of these impairments,
allowing classification of patients according to the
severity of PD.

After 190 spatiotemporal features were extracted
from the wearable sensor system, the final feature sets
were selected for the regression models and features
were included from both upper and lower limbs, rein-
forcing the hypothesis that a complete motion analysis
provides better results than using a reduced set of
exercises.5

Indeed, the set of spatiotemporal features that
obtained the maximum accuracy included parameters
extracted from Gait, Heel-Toe Tapping, Pronation/
Supination, Finger Tapping, Arms Swing, and Postu-
ral Tremor, confirming the significance of these exer-
cises already found in previous works4,5 for the
assessment of motor dysfunction in patients with PD.
Furthermore, the selected features are derived from
accelerometers and gyroscopes, suggesting that both
sensors are equally important for capturing clinically
relevant information.

Among the different investigated feature selection
methods, the ‘‘CfsSubsetEval’’ provided the best solu-
tion for selecting a feature array of 13 parameters to
use as input for the regression algorithms. In particu-
lar, the best performance was obtained with the AN-
FIS model that reached a correlation coefficient equal
to 0.814. The good results endorse the significance of
the selected parameters to evaluate the motor perfor-
mance in PD patients. ANFIS and SVR were also
investigated together previously for the assessment of
the PD progression,11,12,17 and particularly ANFIS
already achieved the highest accuracy12,17 for the
assessment of disease progression, promoting the idea
that such algorithm could represent a robust method
to assess the progressive degenerative process that
characterizes the PD development. Thus, it should be
further investigated in future studies using larger da-
tasets.

Since ANFIS is a combination of a fuzzy inference
system (FIS) and neural network (NN), it can learn
automatically from the data, which incidentally is the
strength of feed-forward artificial NN.17 NN repre-
sents a broad class of computational models inspired
by biological networks found in the central nervous
systems and animal brains. They can be used to
approximate unknown mapping of a large number of
inputs,12 such as the parameters derived from the
wearable system used in this study. Moreover, the C-
means clustering used to develop the ANFIS model
improved the predictive accuracy. Fuzzy C-means is a
method of clustering that allows one piece of data to

belong to two or more clusters. This capability is
important for the intended application since the mea-
surements used for PD assessment include several
nonlinear patterns.

Nevertheless, the main limitation of the ANFIS
model is that it cannot work very well with many
features. Thus, there is the need to identify a reduced
number of significant features that allows the highest
accuracy to be obtained when using this predictor
method.

Additionally, even if a sizeable number of subjects
were involved in the study when considering different
stages of pathology, the size of each group drastically
decreases, resulting also in unbalanced groups that is a
limitation of this study and could bias the accuracy of
the system. Thus, in future works, the dataset should
be enlarged, paying attention to recruiting balanced
groups of patients with different levels of the disease.
Also, in this work we had not the possibility to average
multiple clinical gradings from different physicians, but
we performed single evaluations on patients collabo-
rating with the Neurology department of the Apuane
Hospital, a small hospital in the Nord-West area of
Tuscany, Italy. The Neurology department con-
tributed to this study with a team, composed of two
neurologists (the head physician and another physi-
cian) and one assistant physician that performed all the
clinical evaluations. Adding more clinicians for evalu-
ating the performance of the patients according to the
clinical scales could reduce the inter-rater variability
and improve the accuracy of the machine learning
methods. In future works, we are managing multicen-
ter studies with HD video recording evaluations to
enable more physicians to clinically evaluate patients
directly in place or offline later and then make a more
statistically robust grading and data processing.

In conclusion, this work shows a high linear corre-
lation between the extracted information from the
sensors and clinical scores provided by the clinician.
Therefore, this work represents a first unavoidable step
toward a data-driven objective assessment of the
pathology that could support the neurologist in
improving the accuracy of the PD evaluations. Such a
system, combining wearable technologies and artificial
intelligence techniques, can aim at overcoming the
traditional assessment of the pathology, based on semi-
quantitative scales with a limited number of levels,
where the scores are mainly based on the expertise of
the clinicians, and provide a more continuous grading
of the disease, defined on the basis of objectively
measured parameters. Certainly, a data-driven assess-
ment can help to reduce the inter-rater variability that
typically affects the PD diagnosis, moving to more
precise evaluations, and potentially improve the qual-
ity of care for PD patients.
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