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Abstract

Normal aging is associated with declines in sensorimotor function. Previous studies have linked 

age-related behavioral declines to decreases in neural differentiation (i.e., dedifferentiation), 

including decreases in the distinctiveness of neural activation patterns and in the segregation of 

large-scale neural networks at rest. However, no studies to date have explored the relationship 

between these two neural measures and whether they explain the same aspects of behavior. To 

investigate these issues, we collected a battery of sensorimotor behavioral measures in older and 

younger adults and estimated (a) the distinctiveness of neural representations in sensorimotor 

cortex and (b) sensorimotor network segregation in the same participants. Consistent with prior 

findings, sensorimotor representations were less distinct and sensorimotor resting state networks 

were less segregated in older compared to younger adults. We also found that participants with the 

most distinct sensorimotor representations exhibited the most segregated sensorimotor networks. 

However, only sensorimotor network segregation was associated with individual differences in 

sensorimotor performance, particularly in older adults. These novel findings link network 

segregation to neural distinctiveness, but also suggest that network segregation may play a larger 

role in maintaining sensorimotor performance with age.
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Introduction

Aging is associated with extensive declines in sensorimotor function including fine motor 

control, gait, and balance (Seidler et al., 2010). Although these declines can reflect changes 

in the peripheral sensorimotor system (Cole et al., 1999), they also likely reflect changes in 

the central nervous system, such as alterations in brain structure and function (Seidler et al., 

2010). A central challenge, then, is to advance our understanding of the neural mechanisms 

that underlie age-related declines in sensorimotor function. Doing so could lead to new 

interventions to extend work productivity and facilitate a variety of daily life activities in 

older adults.

Previous research has found that neural representations are less selective, or distinctive, in 

older compared with younger adults. This phenomenon is often referred to as age-related 
neural dedifferentiation (Li and Lindenberger, 1999), reflecting the fact that neural activity 

in response to different stimulus categories is less differentiated in older adults. For example, 

in young adults, the neural activation patterns evoked by looking at pictures of faces are 

quite different from those evoked by looking at pictures of houses. However, these activation 

patterns are more similar (i.e., less distinct or less differentiated) in older adults (Park et al., 

2004). Furthermore, older adults who exhibit less distinct neural representations often 

perform significantly worse on a range of cognitive (Park et al., 2010) and motor tasks 

(Bernard and Seidler, 2012) than older adults whose neural representations are more distinct.

Accumulating evidence also points to age differences in the organization of functional brain 

networks (Damoiseaux, 2017). This type of organization is most frequently investigated 

using resting-state functional connectivity (Biswal et al., 1995) and more recently, using 

graph theoretical analyses (Bullmore and Sporns, 2009). In graph theory, a brain network is 

treated as a set of nodes (corresponding to brain regions) with edges (corresponding to 

functional connections) between them. Using this framework, one can calculate multiple 

measures of brain networks. One common measure is network segregation, defined as the 

scaled difference between within-network connectivity and between-network connectivity. A 

number of studies have demonstrated that older age is associated with less segregated (i.e., 

dedifferentiated) networks (Damoiseaux, 2017). Further, less segregated networks predict 

poorer cognitive (Chan et al., 2014) and sensorimotor (King et al., 2018) performance.

Given that both neural distinctiveness and network segregation decline with age and that 

both are associated with behavior, a natural question is whether these two measures of neural 

dedifferentiation are actually measuring the same underlying construct and whether they 

predict similar aspects of behavior. One reason to suspect that they do is that previous work 

has found a relationship between the brain’s functional connectivity at rest and activity 

during task performance. For instance, Langan and colleagues found that reduced 

interhemispheric resting state connectivity in older adults was associated with greater 

activity in the non-dominant hemisphere during unimanual motor performance (Langan et 

al., 2010). Chan et al. recruited participants across the adult life span (from ages 20–89 

years), and demonstrated that reduced differentiation between network-specific connector 

and non-connector nodes measured at rest correlated with reduced differentiation of 

connector vs. non-connector nodes during visual and semantic task performance (Chan et 
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al., 2017). These findings suggest that network topology observed at rest may constrain 

functional activity of brain areas during motor, visual and semantic task performance, and 

that network segregation might be closely related to neural distinctiveness.

In this study, we investigated the relationship between neural distinctiveness and network 

segregation in the sensorimotor domain, by measuring both in the same participants. We also 

collected a battery of sensorimotor behavioral measures to examine the relationship between 

the neural measures and performance.

We explored three questions. First, do older adults exhibit reduced sensorimotor 

distinctiveness and sensorimotor network segregation relative to young adults? Second, are 

less distinct sensorimotor representations associated with less segregated sensorimotor 

networks? Third, are both neural distinctiveness and network segregation associated with 

sensorimotor performance and does either explain significant behavioral variance over and 

above the other?

Materials and methods

Participants

We collected data from 25 younger adults (age range 19 to 29 years; 16 females) and 46 

older adults (age range 65 to 81 years; 28 females), as part of the larger Michigan Neural 

Distinctiveness study (Gagnon et al., 2019). Some of these participants (22 younger adults 

and 23 older adults) were also included in our previous study, in which we examined 

sensorimotor network segregation and its relationship with GABA levels and sensorimotor 

behavior (Cassady et al., 2019). All participants were right-handed, native English speakers. 

They were screened to ensure they had no history of stroke, were not taking any medications 

with psychotropic effects, and were free of any MRI safety contraindications. Participants 

were also screened for cognitive impairments using the Montreal Cognitive Assessment 

(Brenkel et al., 2017), and only those with scores ≥23 were included in this study. Two 

younger adult participants were excluded from further task-based fMRI analyses because of 

excessive head motion in the MRI scanner (more than 3 mm or 3 degrees in any axis). An 

additional three older adult participants did not finish their fMRI task-based session and 

therefore were excluded from this analysis. A detailed explanation of the study was 

provided, and written informed consent was obtained from all participants. The study was 

approved by the Institutional Review Board of the University of Michigan.

Experimental Design and Statistical Analysis

All participants completed two separate test sessions: an imaging session during which we 

collected task-based and resting-state fMRI data and a behavioral session during which we 

collected sensorimotor behavioral data. The order of the fMRI and behavioral sessions was 

counterbalanced across participants. All data was obtained within an average period of 24 

days.

To examine age differences in neural distinctiveness, network segregation and behavior 

between young and older adults, we performed independent sample t-tests. To assess the 

relationship between distinctiveness and segregation, we performed partial correlation 
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analysis (controlling for age, GM volume, motion, and univariate activation). To examine the 

relationship between distinctiveness, segregation, and behavior, we performed multiple 

regressions across all participants (including the same covariates). For all statistical analyses, 

data points greater than three standard deviations above or below the group mean were 

excluded. SPSS software was used for all statistical analyses (SPSS Inc., Chicago IL).

Sensorimotor assessments

We used a National Institute of Health sensorimotor test battery that includes tests of fine 

motor dexterity (tested with the 9-hole pegboard dexterity test), grip strength, and endurance 

(measured with a 2-minute walk endurance test). Please refer to Cassady et al. (2019) and 

Gagnon et al., (2019) for details of the sensorimotor assessments. A summary of age-group 

means (and standard errors) for each behavioral measure is included in Table 1. Participants’ 

scores for all tests were submitted to an exploratory factor analysis in order reduce the 

dimensionality of the data. Please refer to the Table 21 for factor analysis model coefficients 

across all participants.

MRI data acquisition

Structural and functional brain images were obtained using a GE Signa 3-Tesla MRI 

scanner, located at the University of Michigan Functional Magnetic Resonance Imaging 

Laboratory. A 16-rod bird cage head coil was used for all participants, and movement was 

minimized by using head cushions and Velcro straps. During each participant’s scanning 

session, we acquired T1-weighted structural images, high-resolution structural images using 

spoiled 3D gradient-echo acquisition (SPGR), and T2*-weighted functional images (one 

resting state scan including 240 volumes and one task-based scan including 180 volumes). 

Functional images were obtained using a single-shot gradient-echo (GRE) reverse spiral 

pulse sequence. The field of view was 220 × 200 mm, the voxel size was 3 × 3 × 4 mm (40 

axial slices), the TR (repetition time) was 2 seconds, and the TE (echo time) was 30 ms. 

Respiratory and cardiac data were collected for both resting state and task scans, and were 

subsequently controlled for in first-level analyses.

Resting state fMRI preprocessing and analysis

Preprocessing of the resting state fMRI data was performed with the Statistical Parametric 

Mapping software (SPM; www.fil.ion.ucl.ac.uk/spm). Preprocessing steps included slice-

time correction, realignment, segmentation of structural images, normalization into standard 

Montreal Neurological Institute (MNI) space, and spatial smoothing using a Gaussian kernel 

of 8mm full width at half-maximum. To detect and reject head motion artifacts in the 

scanner, we used the Artifact Detection Toolbox (ART; https://www.nitrc.org/projects/

artifact_detect), which included “scrubbing” scans with excessive motion using a threshold 

of .2mm frame-wise displacement (FWD). Outliers in the global mean signal intensity and 

motion were subsequently included as nuisance covariates in the first level general linear 

model (GLM). There were a total of 40 outlier volumes from 6 participants during 

preprocessing for the resting state data (14 volumes in the older adult group and 26 volumes 

1Factor 1 (including dominant and non-dominant dexterity) refers to fine motor performance whereas Factor 2 (including dominant 
and non-dominant grip strength and endurance) refers to gross motor performance.
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in the younger adult group). The difference between the age groups was not statistically 

significant, t(69) = 0.87, p = .39. There were a total of 74 outlier volumes from 13 

participants during preprocessing for the task data (28 volumes from the older adult group 

and 46 volumes from the younger adult group). The difference between the age groups was 

not statistically significant, t(69) = 1, p = .33. Including both this measure of motion and the 

motion measure from the resting state data in the regression analyses did not alter the 

results.

We performed additional denoising on the resting state data with the CONN toolbox. The 

data were first filtered using a temporal band-pass filter of 0.008 to 0.09 Hz to examine the 

frequency band of interest and to exclude higher frequency sources of noise. For additional 

noise reduction, the anatomical component-based noise correction method, aCompCor 

(Behzadi et al., 2007), was used. This method models the influence of noise as a voxel-

specific linear combination of multiple empirically estimated noise sources by acquiring 

principal components from noise ROIs and subsequently including them as nuisance 

parameters in the first-level GLM. In particular, each participant’s structural image was 

segmented into white matter (WM), gray (GM) matter, and cerebrospinal fluid (CSF) masks. 

Next, the WM and CSF masks were eroded by one voxel in order to minimize partial 

voluming effects. Finally, these eroded WM and CF masks were used as nuisance ROIs. The 

signals from all ROIs were extracted from the unsmoothed functional images to avoid 

potential “spillage” of the BOLD signal from nearby regions. Residual head motion 

parameters (three rotations, three translations, and six parameters representing their first-

order temporal derivatives) and signals from WM and CSF were regressed out during the 

calculation of functional connectivity maps. To test whether there were age differences in the 

percentage of variance removed from preprocessing of the resting state data, we calculated 

the variance in the signal before and after preprocessing for all participants. We found that, 

on average, 81% of the variance was removed for older adult and 82% was removed for 

younger adults. There was no significant age group difference in this relationship, t(69) = 

1.1, p=.27.

We performed an ROI-to-ROI first-level functional connectivity analysis using the CONN 

toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). To do so, we first created (5mm 

radius spheres; each sphere has a volume of about 524 mm3) ROIs using MNI coordinates 

published in Power et al. (Power et al., 2011). We used all coordinates from this previous 

study except for those that belonged to “subcortical” and “undefined” networks, leaving us 

with 214 ROIs. Each ROI was labeled according to this published functional network map, 

which included ten networks (Hand sensorimotor, Visual, Mouth sensorimotor, Auditory, 

Default, Frontal-parietal control, Ventral attention, Cingulo-opercular control, Dorsal 

attention, and Salience networks). For each participant, the resting state time series within 

each ROI was then extracted from the unsmoothed functional images and the mean time 

series was computed. Next, the cross-correlation between each ROI’s time course with every 

other ROI’s time course was calculated, producing a 214 × 214 correlation matrix for each 

participant. Fisher’s r-to-z transformation was then used to convert correlation coefficients 

(i.e., graph edges) into z-values. Last, in keeping with previous functional connectivity 

studies, negatively-weighted edges were set to zero in each participant’s correlation matrix 

to avoid potential misinterpretation of negative edge weights2.
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Network segregation was calculated to examine within-network correlations in relation to 

between-network correlations. As introduced in Chan et al. (2014), network segregation was 

defined as the difference in mean within-network connectivity and mean between-network 

connectivity as a proportion of mean within-network connectivity:

Network segregation=
zw − zb

zw

where zw is the mean Fisher z-transformed correlation between ROIs within the same 

network and zb is the mean Fisher z-transformed correlation between ROIs of one network 

with all ROIs in other networks (Chan et al., 2014).

Task-based fMRI design, preprocessing and analysis

During the task-based fMRI session, participants performed one (6-minute) run of a 

sensorimotor task while blood oxygenation-level dependent (BOLD) data were collected. 

For this task, participants were instructed to tap their left thumb (six blocks per run), right 

thumb (six blocks per run), or to fixate at a crosshair stimulus in the center of the visual 

display (rest blocks; twelve blocks per run). The left/right tapping conditions were cued by 

flashing arrows that pointed to the left and to the right of the visual display. Each block 

consisted of the stimulus presented for 500ms with a 500ms inter-stimulus interval. The 

order of the experimental blocks was randomized and interleaved with rest blocks. Each 

experimental block lasted 20 seconds; each rest block lasted 10 seconds. Stimuli were 

presented using E-Prime (Psychology Software Tools, Pittsburgh, PA) and displayed using a 

back-projection system. Participant responses were collected via a Celeritas 5-button fiber 

optic response unit so that we could ensure that participants were following the instructions 

of the task. Subsequent analyses assessed the number of hits, misses, and reaction time for 

all participants.

To examine the specificity of the relationship between distinctiveness and segregation in the 

sensorimotor system, we also assessed the association between sensorimotor neural 

distinctiveness and network segregation outside of sensorimotor cortex (i.e., visual and 

auditory network segregation; refer to Chamberlain et al. (Chamberlain et al., 2019) and 

Lalwani et al (Lalwani et al., 2019) for further details about the visual and auditory tasks, 

respectively).

The visual task consisted of one six-minute run with six 20-second blocks of faces and six 

20-second blocks of houses, presented in a pseudorandom order. All experimental blocks 

were interleaved with 10-second fixation blocks. During the face blocks, participants viewed 

greyscale images of male faces. During the house blocks, participants viewed greyscale 

images of houses. Each stimulus appeared for 500ms, after which there was a 500ms inter-

2Although mathematically, negative values are treated as smaller than zero, negative correlations may actually reflect the presence of 
inhibitory connections. Using absolute values is another alternative, but then it is impossible to distinguish node pairs whose time 
series look similar (and that are likely part of the same network) from node pairs whose time series look dissimilar (and that are likely 
part of different networks). For these reasons and others, existing graph theoretical measures were mostly developed for networks with 
only positive connections and many graph theory metrics largely ignore fMRI networks’ negative edges (Zhan et al., 2017).
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stimulus interval. To ensure that participants were attending to the visual stimuli, they were 

instructed to press a button with their right index finger whenever they saw a female face 

during the face blocks and whenever they saw an apartment building during the house 

blocks. These “target” trials occurred about once per minute. Stimuli were presented using 

E-Prime 2.0 on a back-projection system. Participants’ responses were recorded using a 

Lumina response pad (Cedrus).

The auditory task consisted of six 20-second blocks of foreign speech clips, six 20-second 

blocks of instrumental music clips, and twelve 10-second blocks of fixation between each 

pair of auditory blocks. The order of speech and music blocks was pseudorandomized. 

Specifically, each speech block consisted of 20-second news segments in one of the 

following foreign languages: Creole, Macedonian, Marathi, Persian, Swahili and Ukrainian. 

Each music block consisted of 20-second segments of instrumental music from one of the 

following pieces: Bach Sinfonia No. 5, Smokey by Mountain, Bamboula by L.M Gottschalk, 

Spagnoletta Nuova by Fabritio Caroso, Kuhlau: Fantaisie for Solo Flute in D major (Op. 38, 

No. 3), and a violin adaptation of the country song “When the right one comes along”. To 

ensure that participants were attending to the auditory stimuli, target trials (consisting of 

guitar plucks) occurred randomly about once per minute during the task. Participants were 

instructed to press a button with their right index finger every time a target trial was 

presented. Auditory stimuli were presented using E-Prime 2.0 via an MRI-compatible 

Avotec Conformal Headset.

FreeSurfer and FSFAST were used to perform the preprocessing and first-level analyses of 

the task-based fMRI data (http://surfer.nmr.mgh.harvard.edu/). Surface-based methods as 

implemented in the FreeSurfer environment were used to reconstruct the cortical surface 

from the T1-weighted anatomical image. Preprocessing procedures included slice-timing 

correction, motion correction, and spatial smoothing using a Gaussian kernel with full width 

at half maximum of 5 mm. Given that the resting state data were preprocessed in MNI space 

(see above), we also analyzed the task-based data in MNI space to allow direct comparison 

with the volume-based resting state data. For this procedure, we performed the same 

preprocessing steps (except for the denoising steps) for the task-based data as we did for the 

resting state data.

Neural distinctiveness was measured using multi-voxel pattern analysis (MVPA) in both 

anatomically- and functionally-defined regions of interest (ROIs). Neural responses were 

first estimated by fitting a General Linear Model, implemented in FSFAST. The model 

included separate regressors for each of the experimental blocks convolved with a canonical 

hemodynamic response function.

Using FreeSurfer’s Cortical Parcellation technique (Dale et al., 1999; Fischl and Dale, 2000; 

Fischl et al., 2004), we created bilateral anatomical masks in each participant that included 

precentral gyrus, postcentral gyrus, and supramarginal gyrus. Estimates of gray matter 

volume were also computed in each of these anatomical regions to account for age 

differences in brain structure. Next, we used custom MATLAB code to define each 

participant’s functional ROI. To do so, we first sorted the vertices within each participant’s 

anatomical mask based on activation level for left hand tapping (experimental condition 1) 
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vs. rest. We then sorted the vertices within the anatomical ROI for right hand tapping 

(experimental condition 2) vs. rest. Finally, the functional ROI was defined by alternating 

between the two sorted lists, adding the most active voxel for condition 1 that had not 

already been included to the functional ROI, then adding the most active voxel for condition 

2 that had not already been included, then the next most active voxel for condition 1, and so 

on. This procedure was continued until we reached our target functional ROI size of 2000 

vertices (see Figure 1), which corresponds to a surface area of approximately 600 mm2.

It is also important to note that this ROI-defining procedure was orthogonal to the 

hypotheses tested later (involving age and behavior). The region-defining analyses were 

based on two within-subject comparisons: left vs. fixation and right vs. fixation. Specifically, 

the most active vertices for each of these contrasts in each participant were included in that 

participant’s functional ROI. Neural distinctiveness between the left and right conditions 

was then computed within this functional ROI. In contrast, the hypothesis testing involved 

two orthogonal between-subject contrasts, one involving age (is neural distinctiveness 

significantly different in young vs. older participants?) and one involving behavior (do 

participants exhibiting lower neural distinctiveness also exhibit worse sensorimotor 

performance?).

After defining each participant’s functional ROI, we used the activation estimates within 

each participant’s functional ROI to measure the distinctiveness of multi-voxel 

representations for the two experimental tasks (i.e., left vs. right hand tapping). Inspired by 

Haxby and colleagues (Haxby et al., 2001), neural distinctiveness was defined as the 

difference between the average within-condition Pearson correlation (i.e., the average of the 

correlations between left hand patterns and the correlations between right hand patterns) and 

between-conditions (i.e., the average of the correlations between left-hand and right-hand 

patterns). Higher scores indicate greater distinctiveness whereas lower scores indicate less 

distinctiveness. This approach was used rather than alternative classification methods (i.e., 

support vector machines) to avoid ceiling effects in classifier accuracy (Carp et al., 2011a) (a 

linear SVM classifier was 100% accurate in classifying the activation patterns for 28/46 

older adults and 18/25 younger adults).

To allow direct comparison with the volume-based resting state data, we also analyzed the 

task-based data in MNI space using the Power et al. (2011) sensorimotor hand ROIs as an 

anatomical mask (which includes about 435 voxels) for each subject. We used each 

participant’s activation estimates within this mask to measure the distinctiveness of multi-

voxel activation patterns associated with the experimental conditions (i.e., left vs. right hand 

tapping).

We also investigated main effects of age on univariate activation, using second-level t-tests 

with SPM. In these models, age effects on three first-level contrasts (1. right hand 

movement, 2. left hand movement, and 3. right vs. left hand movement) were examined and 

motion was included as a covariate. Statistical significance was determined by applying a 

family wise error (FWE) of p<.05 at the peak level to correct for multiple comparisons.
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Results

Age differences in sensorimotor performance

There were no age differences in performance during the sensorimotor fMRI task, either in 

hits (t(65)=.11, p=.92), misses (t(65)=.66, p.51), or reaction time (t(65)=.044, p=.97).

The factor analysis of all sensorimotor behavioral measures identified two factors: (1) grip 

strength and endurance and (2) fine motor dexterity. These two sensorimotor factors were 

used in all further statistical analyses. Given that grip strength and endurance reflect gross 

motor performance whereas dexterity reflects fine motor performance, we refer to the grip 

strength/endurance factor as “gross motor performance” and to the dexterity factor as “fine 

motor performance”.

Significant age differences were observed in both gross (t(68)=2.69, p=.009; Figure 2A) and 

fine (t(68)=5.01, p<.001; Figure 2B) motor performance, with older adults exhibiting worse 

performance than younger adults. To test whether sex differences influenced these results, 

we performed follow-up ANCOVAs using age group as the independent variable, behavior 

as the dependent variable, and sex as a covariate. After controlling for sex, we still observed 

significant age differences in both gross (F(1, 67)=14, p<.001) and fine (F(1, 67)=24.74, 

p<.001) motor performance. Moreover, there were no significant sex by age group 

interactions.

Age differences in network segregation

Consistent with our previous findings (Cassady et al., 2019), we found that sensorimotor 

network segregation was significantly reduced in older compared to younger adults, 

t(69)=2.55, p=.013 (See Figure 2C). To test whether sex influenced these results, we 

performed a follow-up ANCOVA using sex as a covariate in the model. After controlling for 

sex, we still found that sensorimotor segregation was significantly reduced in older 

compared to younger adults, (F(1, 67)=6.7, p=.012). Again, there were no significant sex by 

age group interactions.

Age differences in neural distinctiveness

The distinctiveness of activation patterns evoked by left vs. right hand movement was 

significantly lower in older compared to younger adults, t(62)=2.29, p=.025 (See Figure 

2D). Further, this effect was still observed after controlling for sex, (F(1, 61)=5.11, p=.027), 

and there were no significant sex by age group interactions.

To test whether functional ROI size influenced these results, we performed a repeated 

measures ANOVA with a Greenhouse-Geisser correction using ROI size as the within-

subjects factor (using ten functional ROI sizes of 50, 100, 200, 300, 400, 600, 1000, 2000, 

5000, and 10,000 vertices) and age group as the between-subjects factor. The results 

revealed a significant within-subject effect of ROI size on neural distinctiveness, F(1.68, 

107.71)=47.41, p<.001. Specifically, activation patterns for left vs. right hand movement 

were more distinctive at smaller ROI sizes and less distinctive at larger ROI sizes, F(1, 64) = 

54.97, p<.001 (See Figure 3). More importantly, the age differences in neural distinctiveness 
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that we observed did not vary with ROI size (i.e., there was not a significant ROI size x age 

group interaction (F(1.68, 107.71)=.70, p=.48). Neural distinctiveness was also significantly 

reduced in older compared to younger adults using the Power sensorimotor anatomical mask 

after processing the task-based data in MNI space, t(66)=2.1, p=.041.

In terms of univariate activation, we found that older adults activated a cluster including 

right precentral and superior frontal gyrus in addition to a smaller cluster including left 

precentral gyrus significantly more than young adults during right finger tapping (See Figure 

S1). We found no age differences in either left vs. rest or left vs. right finger tapping. For the 

significant clusters, we extracted the average beta value for each participant (YA group mean 

= −.34, SE = .06; OA group mean = .25, SE = .04) and included these as nuisance covariates 

in our subsequent statistical analyses (see below).

Relationship between network segregation and neural distinctiveness

We performed partial correlation analyses to assess the relationship between sensorimotor 

neural distinctiveness and sensorimotor network segregation. Controlling for age, GM 

volume, motion, and univariate activation, we observed a positive relationship between 

distinctiveness and segregation across all participants, r(57)=.36, p=.006 (see Figure 4A). 

Using the volume-based (rather than surface-based) distinctiveness measure in the partial 

correlation model (including the same nuisance covariates), we again observed a positive 

relationship between neural distinctiveness and network segregation, r(59)=.43, p=.001 (see 

Figure 4B).

To examine the specificity of the relationship between distinctiveness and segregation in the 

sensorimotor system, we calculated the partial correlation between sensorimotor neural 

distinctiveness and mean network segregation (averaged across all 10 networks). Controlling 

for age, GM volume, motion, and univariate activation, we observed a positive relationship, 

r(57)=.39, p=.003. We also examined the association between sensorimotor neural 

distinctiveness and network segregation outside of sensorimotor cortex (i.e., visual and 

auditory network segregation). We observed no significant relationships, either between 

sensorimotor neural distinctiveness and visual (r(59)=.13, p=.33) or auditory (r(59)=.17, 

p=.19) network segregation. Finally, we examined the association between sensorimotor 

network segregation and neural distinctiveness in ventral visual cortex (VVC) and auditory 

cortex (based on visual and auditory tasks, respectively). We did not observe a significant 

relationship between sensorimotor segregation and visual (r(61)=.25, p=.05) or auditory 

(r(60)=.14, p=.28) neural distinctiveness, although the association with visual distinctiveness 

approached significance.

Predicting behavior from models that include both network segregation and neural 
distinctiveness

We performed multiple regression analyses to predict sensorimotor performance based on 

age group, network segregation and neural distinctiveness (while controlling for GM 

volume, motion, and univariate activation). Please refer to Table S1 of supplemental material 

for correlation table that includes all factors used in model. We first created a model to 

predict gross sensorimotor performance. The fit of the overall model was significant 
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(F(9,54)=3.7, p=.001) with an R2 of .38 and an adjusted R2 of .28. Segregation was a 

significant predictor (B=.36, t=2.4, p=.041) (Figure 5A) but distinctiveness was not (B=−.02, 

t=−.13, p=.90) (Figure 5B). There were no significant age group interactions, either between 

age group and segregation (B=−.48, t=−.7, p=.49) or between age group and distinctiveness 

(B=.49, t=−1.2, p=.22). We next created a model to predict fine sensorimotor performance 

from the same factors/covariates. Again, the fit of the overall model was significant 

(F(9,54)=4.57, p<.001) with an R2 of .43 and an adjusted R2 of .34. Segregation was a 

significant predictor (B=.36, t=2.6, p=.013) (Figure 5C) but distinctiveness was not (B=.13, 

t=.92, p=.36) (Figure 5D). There were no significant age group interactions, either between 

age group and segregation (B=−.5, t=−.75, p=.45) or between age group and distinctiveness 

(B=−.18, t=−.47, p=.64).

Discussion

Previous studies have found that measures of neural dedifferentiation are associated with 

worse behavior among older adults. However, neural dedifferentiation has been 

operationalized in two very different ways in the field: task-based fMRI studies have 

measured the distinctiveness of neural activation patterns evoked by different task 

conditions, while resting-state fMRI studies have measured the segregation or modularity of 

resting-state networks. Both measures decline with age and both have been associated with 

individual differences in behavior, but how (or whether) the two measures relate to each 

other is currently unknown. The present study examined the potential links between 

sensorimotor neural distinctiveness, sensorimotor network segregation, and sensorimotor 

behavior, all in the same participants. Consistent with previous findings, older adults 

exhibited reduced sensorimotor neural distinctiveness and reduced sensorimotor (resting 

state) network segregation relative to younger adults. A novel finding of the present study 

was that participants with the most distinct sensorimotor representations exhibited the most 

segregated sensorimotor networks. Further, sensorimotor network segregation was 

associated with individual differences in sensorimotor performance, particularly in older 

adults, whereas sensorimotor neural distinctiveness was not. These findings link, for the first 

time, sensorimotor network segregation to sensorimotor neural distinctiveness. They also 

suggest that sensorimotor network segregation may be a more sensitive predictor of age-

related declines in sensorimotor behavior.

Age differences in network segregation and neural distinctiveness

Consistent with previous work (Cassady et al., 2019), we found that sensorimotor network 

segregation is significantly lower in older adults than in younger adults. Although we 

focused exclusively on the sensorimotor network in this study, previous studies have 

reported significant age differences in several sensorimotor and association (i.e., higher 

order cognitive) networks, suggesting that age-related reductions in network segregation 

occur at the whole-brain (i.e., multiple network) level.

We also demonstrated that older adults have significantly less distinctive neural 

representations in sensorimotor cortex than younger adults. This finding is consistent with 

previous studies that reported age differences in neural distinctiveness involving motor (Carp 
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et al., 2011a), visual (Park et al., 2004, 2010; Carp et al., 2011b), auditory ((Lalwani et al., 

2018)), and memory representations (Carp et al., 2010; Koen et al., 2018). Together, these 

findings suggest that age differences in neural distinctiveness are not limited to sensorimotor 

cortex, but rather are a general feature of the aging brain.

Network segregation is related to neural distinctiveness

Our study is the first to show that resting state sensorimotor network segregation varies with 

the distinctiveness of task-based activation patterns in sensorimotor cortex. This finding is 

consistent with previous data suggesting a relationship between the brain’s large-scale 

functional organization at rest and its functional recruitment during task performance 

(Langan et al., 2010; Chan et al., 2017)

In the context of aging, age differences in resting state brain organization may provide a 

network-based explanation for the commonly observed finding of age-related neural 

dedifferentiation of task-evoked activity. Or perhaps other neural factors influence the 

differentiation of both resting state networks and task-evoked activity. For instance, previous 

work by our group indicates that lower levels of the inhibitory neurotransmitter, gamma 

aminobutyric acid (GABA), are associated with reduced network segregation (Cassady et al., 

2019) and reduced neural distinctiveness (Lalwani et al., 2019). Reduced white matter 

integrity (Burzynska et al., 2010) and amyloid deposition (Buckner et al., 2009; Mormino et 

al., 2011) also disrupt the organization of functional networks and brain activity. Future 

work could employ multimodal imaging to investigate potential interactions between brain 

structure, function, and chemistry.

We also observed a significant association between sensorimotor neural distinctiveness and 

mean network segregation (averaged across all 10 networks). It is therefore logical to 

question whether the relationship between neural distinctiveness and network segregation is 

regionally specific or not. Our results suggest that the relationship is regionally-specific, at 

least to some degree. For example, sensorimotor segregation was significantly correlated 

with sensorimotor distinctiveness, but not with neural distinctiveness outside of 

sensorimotor cortex (i.e., auditory and visual cortex, although the relationship with visual 

distinctiveness approached significance). Similarly, sensorimotor neural distinctiveness was 

not correlated with network segregation outside of sensorimotor cortex (i.e., auditory and 

visual cortex). Furthermore, given that sensorimotor segregation is highly correlated with 

mean segregation (r=.62, p<.001), it is not surprising that sensorimotor distinctiveness is 

associated with both sensorimotor and mean network segregation.

Network segregation (but not neural distinctiveness) is associated with sensorimotor 
performance

The present results demonstrate that sensorimotor network segregation (but not sensorimotor 

neural distinctiveness) is associated with sensorimotor performance, and that this 

relationship is particularly strong in older adults. Specifically, older individuals with less 

segregated networks exhibited worse sensorimotor performance (both gross and fine) than 

older adults with more segregated networks. Importantly, this relationship remained 

significant even after controlling for neural distinctiveness. In contrast, although there was a 
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trend toward a positive relationship between neural distinctiveness and fine motor 

performance across all participants, this relationship was not observed within either age 

group separately. These findings suggest that network segregation may be a more sensitive 

predictor of age-related declines in sensorimotor performance than neural distinctiveness.

A natural question is why would segregation be a better predictor of sensorimotor behavior 

relative to distinctiveness? Although this study did not attempt to address that question 

specifically, we can rule out a few potential confounds. One potential confound is 

differences in data reliability; perhaps neural distinctiveness is a noisier measure than 

network segregation. To investigate that possibility, we analyzed resting state and task-based 

fMRI data from 47 participants who performed the fMRI tasks described here in two 

separate sessions, once on placebo and once after taking a benzodiazepine (Lorazepam) (see 

Gagnon et al., 2019, for details). And despite the pharmacological manipulation, the test-

retest reliability of the neural distinctiveness measure was quite strong (intraclass correlation 

of 0.72) and actually higher than the reliability of the segregation measure (0.51). Another 

possibility is that the neural distinctiveness measure takes on a more restricted range of 

values and is therefore more difficult to relate to other measures (a restriction of range 

problem). However, variability in distinctiveness across participants was actually much 

higher than variability in segregation (across the entire sample and in both age groups 

separately). Thus, the finding that segregation is significantly related to behavior while 

distinctiveness is not cannot be attributed to differences in either reliability or in variability.

We also performed follow-up regional-mean activation analyses to rule out overall activation 

effects. In particular, if average activation is lower in the older group, then that could 

potentially reduce within-condition similarity because the signal is harder to distinguish 

from the noise. However, we found that for both the left vs. fixation and the right vs. fixation 

contrast, the older adult group actually exhibited slightly more activation than the young. If 

stronger responses lead to greater within-condition similarity and therefore greater 

distinctiveness, then distinctiveness should have increased with age in our sample. However, 

we observed the opposite. Thus, we do not think the observed results were driven by overall 

activation effects.

We hypothesize that one reason segregation may be a better predictor of sensorimotor 

performance than neural distinctiveness is that the segregation measure reflects the 

interaction of multiple large-scale distributed brain networks. In contrast, neural 

distinctiveness is based on task-based activation patterns in localized regions of interest. 

Given that most sensorimotor functions require the interaction of multiple brain areas, it is 

likely that regions outside of these localized ROIs are contributing to the associated declines 

in behavior. This may be one reason why segregation is a better predictor of sensorimotor 

performance compared to neural distinctiveness.

Another possibility is that resting state measures of fMRI provide a more stable, “trait-like” 

measure of brain function compared to task-based measures, which are less stable and more 

“state-like”. Because of the relative stability of resting state functional connectivity, many 

studies use it as a trait measure. In contrast, functional activity inherently provides a 

transient, state-dependent measure of brain characteristics. For instance, Cole and colleagues 
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demonstrated that functional connectivity between brain regions at rest is more informative 

for predicting individual differences in fluid intelligence compared to task-evoked activity of 

functional regions in isolation (Cole et al., 2012). However, it could be the case that the task 

used to calculate neural distinctiveness in the present study was too specific or irrelevant to 

the sensorimotor (outside of the scanner) behavioral factors. It would be interesting for 

future studies to explore this question using similar in-scanner and out-of-scanner tasks, both 

to calculate neural distinctiveness and sensorimotor behavior. Overall, our findings suggest 

that trait-based measures such as resting state functional connectivity may be more sensitive 

in predicting individual differences in behavior compared to task-based state measures such 

as neural distinctiveness.

Limitations

One obvious limitation of this study is that our sample was cross sectional. We can therefore 

we can only make inferences about age differences rather than longitudinal changes that 

occur with age. Future longitudinal designs could examine age-related changes in neural and 

behavioral measures as well as the relationship between them over time.

Furthermore, the present study employed a simple unimanual thumb tapping task. We were 

therefore unable to examine the effects of aging on the neural representations of more 

realistic, complex movements or of different individual movements. Relatedly, previous 

research has found that, compared to younger adults, older adults are more likely to have 

“mirror movements”, i.e., unintended movements that occur in homologous muscles 

contralateral to the voluntarily active ones (Koerte et al., 2010). Thus, it could be that older 

participants have less differentiated right/left motor brain responses because their physical 

movements are less differentiated. However, the causality might actually go in the other 

direction: less differentiated left/right brain responses lead to less differentiated physical 

movements rather than the other way around. Regardless, we do not have a way to evaluate 

mirror movements in the current study. Future studies that use more complex sensorimotor 

tasks and that collect electromyography data to measure all bilateral movements rather than 

only recording button presses could add additional insight into the mechanisms of age-

related neural dedifferentiation of sensorimotor representations.

Conclusions

The present study examined the relationship between sensorimotor network segregation, 

neural distinctiveness of sensorimotor representations, and sensorimotor behavior in young 

and older adults. Consistent with previous studies, we found that sensorimotor networks are 

less segregated and sensorimotor representations are less distinct in older relative to young 

adults. We also discovered that less segregated networks are associated with less distinct 

representations. Finally, we found that less segregated networks predict worse sensorimotor 

performance, particularly within older adults, whereas neural distinctiveness is not 

associated with performance. These findings link network segregation to neural 

distinctiveness and suggest that segregation is a more sensitive predictor of age-related 

declines in sensorimotor behavior.
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Figure 1. 
Functional mask (size = 1000 vertices in each hemisphere) from a representative older adult 

participant used for calculating neural distinctiveness of sensorimotor representations 

evoked from right vs. left hand finger tapping.
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Figure 2. 
Significant age differences were observed in A) a summary measure of gross motor 

performance (t=2.69, p=.009); B) fine motor performance (t=5.01, p<.001); C) sensorimotor 

network segregation (t=2.55, p=.013); and D) neural distinctiveness of sensorimotor 

representations (t=2.29, p=.027) between young (blue) and older (red) adults.
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Figure 3. 
Neural distinctiveness as a function of ROI size in young (blue) and older (red) adults. 

Sensorimotor cortical activation patterns for right vs. left hand movement were more 

distinctive at smaller ROI sizes and less distinctiveness at larger ROI sizes across all 

participants. However, the effect of ROI size did not significantly influence the observed age 

differences in neural distinctiveness (F=.70, p=.48). Error bars denote the standard error of 

the mean.
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Figure 4. 
A) Relationship between sensorimotor network segregation and neural distinctiveness of 

sensorimotor representations using the functional ROI and B) using the Power sensorimotor 

network ROI across all participants after controlling for the effects of age, GM volume, 

motion and univariate activation.
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Figure 5. 
A) Relationship between gross motor performance and A) network segregation and B) 

neural distinctiveness. Relationship between fine motor performance and C) network 

segregation and D) neural distinctiveness. Plots are illustrated as partial correlations, 

controlling for the effects of age, GM volume, motion and univariate activation.
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Table 1.

Mean and standard error of demographics and behavioral measures across all participants, and just in the older 

and younger adult groups.

All participants Old adults Young adults

Age 53.4 ± 2.8 70.4 ± 0.6 22.9 ± 0.6

MoCA 27.6 ± 0.2 27.3 ± 0.3 28.2 ± 0.3

Dexterity 102.1 ± 1.1 98.4 ± 1.2 109 ± 1.1

GS 99 ± 1.4 97.2 ± 1.7 102.4 ± 2.5

Endurance 90.6 ± 1.5 86 ± 1.7 99.3 ± 2

GS = Grip strength.
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Table 2.

Model coefficients from factor analysis across all participants.

Behavioral measure Factor 1 Factor 2

Dexterity dominant −0.04 0.63

Dexterity non-dominant −0.11 1.03

GS dominant 1.03 −0.1

GS non-dominant 0.96 −0.08

Endurance 0.52 0.35

GS = Grip strength.
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