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Abstract
Machine-learning algorithms hold promise for revolutionizing how educators and
clinicians make decisions. However, researchers in behavior analysis have been slow
to adopt this methodology to further develop their understanding of human behavior
and improve the application of the science to problems of applied significance. One
potential explanation for the scarcity of research is that machine learning is not typically
taught as part of training programs in behavior analysis. This tutorial aims to address
this barrier by promoting increased research using machine learning in behavior
analysis. We present how to apply the random forest, support vector machine, stochas-
tic gradient descent, and k-nearest neighbors algorithms on a small dataset to better
identify parents of children with autism who would benefit from a behavior analytic
interactive web training. These step-by-step applications should allow researchers to
implement machine-learning algorithms with novel research questions and datasets.
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Machine learning is a subfield of artificial intelligence that specializes in using data to
make predictions or support decision making (Raschka & Mirjalili, 2019). One specific
use of machine learning is solving classification problems. A classification problem
occurs when trying to predict a categorical outcome (Bishop, 2006). Examples in
behavior analysis include what is the function of a behavior (attention, escape, nonso-
cial, or tangible), whether a behavior is occurring at a given moment, whether an
independent variable is changing a behavior or whether a treatment is likely to be
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effective for a given individual. Supervised machine learning is well suited to provide
solutions to these types of classification problems and support decision making.

In supervised machine learning, an algorithm (i.e., computerized instructions) trains
a model using past observations to predict outcomes on new samples. In recent years,
supervised machine-learning algorithms have been studied as useful aids to support
decision making in multiple fields such as medicine, pharmacology, education, and
health care (Coelho and Silveira, 2017; Miotto, Wang, Wang, Jiang, and Dudley,
2018). Some examples include identifying breast cancer (Rajaguru & Chakravarthy,
2019), diagnosing autism (Sadiq et al., 2019), predicting school dropout (Chung & Lee,
2019), and detecting unsafe workplace behavior (Ding et al., 2018).

In behavior analysis, both researchers and practitioners rely on data to make
decisions on a regular basis. These decisions may involve determining whether an
independent variable produced an effect on a behavior, selecting an assessment,
identifying the function of behavior, or predicting whether an intervention will produce
meaningful behavior changes in a specific individual. However, researchers and
practitioners may make unreliable decisions, especially when using their professional
judgment (Ninci, Vannest, Willson, & Zhang, 2015; Slocum et al., 2014). In conse-
quence, relying on subjectivity for decision making may result in differences from one
behavior analyst to another. One potential solution to this issue is to increase the use of
machine learning in behavior analysis (Lanovaz, Giannakakos, & Destras, 2020).

Machine learning also has direct applications for the experimental analysis of
behavior and translational research. For example, researchers could use machine
learning to develop new models that aim to predict engagement in multiple competing
responses (akin to the matching law) under varying experimental conditions. Further-
more, some algorithms may facilitate the identification of variables associated with
certain behaviors that may be difficult to isolate experimentally (e.g., suicidal behavior,
risky sexual behavior). Machine learning may even simulate responding to test hy-
potheses that may be difficult to assess with living organisms (see Burgos, 2003, 2007,
for examples).

Despite the growing number of studies on the topic in the fields of health care
and education, applications of machine learning in behavior analysis remain limited
(Burgos, 2003, 2007; Lanovaz et al., 2020; Linstead et al., 2015, 2017). In exper-
imental work, Burgos (2003, 2007) used machine learning to simulate latent
inhibition, automaintenance, and autoshaping. The results indicated that it may be
possible to simulate behavioral phenomena using artificial neural networks (i.e., a
type of machine learning algorithm). In an applied example, Linstead et al. (2015,
2017) developed a machine-learning model to identify predictors of learning prog-
ress in children with autism spectrum disorder receiving behavior analytic services.
Their results indicated that treatment intensity positively predicted children’s prog-
ress, but what is most interesting is that machine learning explained almost twice as
much variance of this relationship than linear regression. Lanovaz et al. (2020)
showed that machine-learning algorithms outperformed a structured visual aid to
analyze simulated data from single-case AB graphs. Their study indicated that
machine learning produced smaller Type I error rates and larger power than the
dual-criteria method.

One potential explanation for the scarcity of research is that machine learning is not
taught as part of training programs in behavior analysis. This lack of knowledge on
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machine learning and the absence of training for its application may result in re-
searchers overlooking this tool to contribute to the development of the science. This
tutorial aims to address this barrier by applying machine learning to a problem
involving decision making in behavior analysis.

Machine Learning Procedures and Algorithms

One of the hallmarks of behavior analysis is the pervasive use of single-case designs,
which require a small sample size. Given that machine learning is typically applied to
large datasets (Raschka & Mirjalili, 2019), some researchers may believe that behavior
analytic data are unsuitable for this type of analysis. As will be shown in the current
tutorial, datasets with as few as 25 participants or 25 sessions may produce meaningful
results using machine learning. With the growing use of consecutive case series designs
in behavior analysis (e.g., Hagopian, 2020; Jessel, Metras, Hanley, Jessel, and
Ingvarsson, 2020; Lomas Mevers, Muething, Call, Scheithauer, & Hewett, 2018;
Rooker, Jessel, Kurtz, & Hagopian, 2013), several researchers and practitioners may
already have sufficiently large datasets to apply such algorithms. Moreover, experi-
mental researchers studying human and nonhuman organisms often use automated
apparatus to monitor behavior, which provides sufficiently large datasets to potentially
uncover novel relationships between variables. In the following sections, we present a
step-by-step application of machine learning using data from a behavioral study
published by Turgeon, Lanovaz, and Dufour (2020). As relevant, our article also
includes instructions on how to apply the algorithms to other datasets. A repository
containing our datasets and code is freely available on the Open Science Framework at
https://osf.io/yhk2p/.

On Terms

Table 1 draws a parallel between behavioral terms and supervised machine learning. In
supervised machine learning, an algorithm trains a model using samples, which is
similar to using a specific teaching method when training a learner using exemplars.
Thus, the algorithm, the model and the samples represent the teaching method, the
learner, and the exemplars, respectively. Each algorithm has its own specific

Table 1. Parallels between Machine Learning and Behavior Analytic Terms

Machine Learning Behavior Analysis

Algorithm Teaching method

Model Learner

Sample Exemplar

Features Discriminative stimuli

Class label Correct response

Prediction Learner’s response

Hyperparameter Teaching parameter
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hyperparameters, which are functions or values provided to the algorithm that can be
modified by the experimenter prior to training. These hyperparameters are equivalent to
the teaching parameters for a teaching method (e.g., number of trials in discrete trial
instruction, prompting procedure in direct instruction).

In the application of machine learning in behavior analysis, a sample would typically
involve the data from one participant or from one session. Supervised machine learning
further divides samples into two components: features and class labels. The features
involve the input data that are used by the algorithms. Features in machine learning are
akin to discriminative stimuli in behavior analysis. The class labels represent the
responses provided and predicted by the algorithm (i.e., the output variables). In
sum, machine learning algorithms use features from samples to train models to predict
class labels in a similar manner that teaching methods focus on using discriminative
stimuli from exemplars to train learners to provide correct responses.

Our Dataset

To illustrate the application of machine learning, we used a previously published
dataset involving behavior analytic procedures (Turgeon et al., 2020). Turgeon et al.
assessed the effects of an interactive web training to teach parents behavior analytic
procedures to reduce challenging behaviors in children with autism spectrum disorder.
The results of the study showed that, on average, parents who completed the training
reported larger reductions in child challenging behaviors than those who did not.
However, eight children showed no improvement in challenging behaviors even
though their parents had completed the training. As the behavior of individuals is
central to research and practice in behavior analysis, one important question is “How
can we predict which parent–child dyad are unlikely to benefit from the interactive web
training?” Hence, a behavior analyst could recommend alternatives (e.g., in-person
training) to families unlikely to benefit from web training.

Preparing the Data

Our dataset includes 26 samples, four features, and one class label. Table 2 presents the
characteristics of our dataset. The samples involved 26 parents of children with autism
spectrum disorder who completed the interactive web training.We provided four features to
our machine learning algorithms: household income, most advanced degree of the parent,
the child’s social functioning, and the baseline scores on parental use of behavioral
interventions at home (prior to training). Parents initially rated their household income and
most advanced degree on an ordinal scale. Because data were highly skewed and our sample
was small, data for these features were dichotomized to createmore balanced categories (i.e.,
categories with similar sample sizes).1 It should be noted that dichotomizing data entails
many limitations when analyzing large datasets (e.g., loss of power, decreased effect size,
and limited generalization of findings). You should avoid using this procedure with
continuous and ordinal variables containing a large number of samples (see Dawson &
Weiss, 2012; MacCallum, Zhang, Preacher, & Rucker, 2002; Irwin & McClelland, 2003;
Sankey & Weissfeld, 1998). We chose the four features because three of them (i.e., most

1 These data are available at https://osf.io/yhk2p/.

700 Perspectives on Behavior Science (2020) 43:697–723

https://osf.io/yhk2p/


advanced degree, social functioning, and parental use of behavioral interventions) had the
highest correlation with our class label values and the fourth feature (i.e., household income)
had been previously shown to predict challenging behaviors (Leijten, Raaijmakers, de
Castro, & Matthys, 2013; Shelleby & Shaw, 2014). Furthermore, our variables did not
showmulticollinearity.2Our class label waswhether the frequency of the child’s challenging
behavior decreased from baseline to the 4-week posttest (i.e., 0 = no improvement, 1 =
improvement) based on the Behavior Problem Inventory-01 (Rojahn, Matson, Lott,
Esbensen, & Smalls, 2001). Table 3 contains our complete dataset, which is also available
as a comma-separated values (.csv) file in the repository (see TurgeonetalData.csv).

We arranged the data of our dataset into five columns in our .csv file (i.e., four features
and one class label). The first row of each column contains the name of the variable whereas
subsequent rows contain the data from one sample. As such, the number of lines for each
column equals the number of samples plus one. In our tutorial, we used 26 samples to train
ourmachine learningmodels, which produced a total of 27 rows (including the header). You
should save this file in yourworking directory (see below). If youwant to organize your own
data for analysis with machine learning, you may enter them in a spreadsheet in a .csv
compatible program (e.g., Microsoft Excel, Google Sheets, Apple Numbers) and save your
file as a .csv. Each row should include a single sample and each column a feature or class
label (keep the class label in the rightmost column). To use the code in the current tutorial,

2 There was no significant linear association between the features.

Table 2. Description of the Variables in the Dataset

Variable Questionnaire Type Values

Feature 1

Household income Binary 0 = Less than
$90,000

1 = $90,000 or
higher

Feature 2

Highest diploma Binary 0 = College or lower
1 = University and

higher

Feature 3

Social functioning ABAS-II - Social
domain

Continuous z score

Feature 4

Parental use of behavioral interventions at
baseline

Ad hoc
questionnaire

(see Turgeon et al.,
2020)

Continuous z score

Class Label

Improvement in the frequency of child
challenging behaviors

BPI Binary 0 = No improvement
1 = Improvement

Note. BPI: Behavior Problem Inventory (Rojahn et al., 2001); ABAS-II: Adaptive Behavior Assessment
System (2nd ed.) (Harrison & Oakland, 2011)
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your class label should remain a binary variable (see “Alternatives to Single Binary
Classification,” below, for other options).

The Basics

Installing software and packages To train our models, we used Python because it is
free, offers many open access algorithms, functions the same across operating systems,
and has a large network of community support (see Python tutorials in Appendix). The
first step to training a machine-learning model is downloading a Python distribution.
We strongly recommend that you download and install the Anaconda distribution of
Python. This distribution facilitates package management and installation, and ensures

Table 3. Complete Dataset with Feature and Class Label Values

Household
Income

Most Advanced
Degree

Social
Functioning

Parental Use of
Behavioral Interventions

Improvement in the Frequency
of Child Challenging Behaviors

0.5* 0 70 17 1

0 0 75 14 1

1 1 70 18 1

0 1 68 15 0

0 0 55 18 1

0 0 68 15 0

0 0 58 12 0

1 1 77 18 1

0 1 87 16 0

0 0 90 17 1

0 0 55 15 1

0 0 68 18 1

1 1 70 18 1

1 0 87 18 1

1 1 71 19 1

1 1 75 14 1

0 0 58 17 1

0 1 95 16 0

0 1 89 18 1

1 0 70 14 1

1 1 93 15 0

1 1 66 15 1

1 1 61 15 0

0 1 80 17 1

1 1 114 13 0

0 1 87 17 1

*Missing value
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that you have the same environment as ours to replicate the procedures presented in this
tutorial. You may download and install Anaconda from https://www.anaconda.com.
Once Anaconda has been installed, you should create a new virtual environment by
opening Anaconda Prompt (in Windows) or Terminal (in macOS or Linux) and
entering the following commands in a sequential order:

conda create -n myenv python=3.7
conda activate myenv

From now on, make sure you run “conda activate myenv” whenever you close and
open Anaconda Prompt or Terminal.3 If not, your code may be unable to locate the
packages to run the algorithms. Next, we must download and install three packages in
this virtual environment: spyder, pandas, and scikit-learn. Spyder is an easy-to-use
integrated development environment, pandas facilitates the loading of data in Python,
and scikit-learn contains the machine-learning algorithms. To install the packages, run
the following commands sequentially (i.e., one at a time) in myenv of Anaconda
prompt (in Windows) or Terminal (in macOS or Linux):

conda install spyder
conda install pandas
conda install scikit-learn

Whenever you receive a prompt, choose “y” to install the packages and their
dependencies.

Initializing the integrated development environment Once you have downloaded and
installed the necessary programs and packages, open the spyder integrated development
environment that you will use to write and run your code. To open spyder, run the
following command in Anaconda Prompt or Terminal:

spyder

Figure 1 presents a screenshot of the integrated development environment. The
integrated development environment is separated in three main work areas: the editor,
the iPython console, and the variable explorer. You should write all your code in the
editor (box on the left of your screen). To run a block of code from the editor, select the
code by highlighting it with your cursor and press F9 (or click on “run selection” in the
menu bar). When you run your code, any warnings, errors, or results that you print will
appear in the iPython console (box on the lower right of your screen). If you assign a
variable or load data, you can view it by clicking on the variable explorer tab of the
upper right box.

The first lines of code involve setting the working directory. That is, you need to
instruct your environment where to find the path to access the folder in which you

3 The last line of your Anaconda Prompt or Terminal screen should begin with <myenv>. If it begins with
<base>, you have not activated your environment correctly.
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saved the TurgeonetalData.csv data file. To do so, write the following lines in your
editor and run the selection4:

1 import os
2 os.chdir("PATH")

In the above command, you should replace PATH by your working directory5 where
the .csv file is located. You should select these lines of code and press F9 to run the
selection (or click on “run selection” in the menu bar above the editor).

Loading and preparing the data Next, the lines of code below import the packages that
include the functions that we need to load and organize the data:

1 import numpy as np
2 import pandas as pd

Once both packages have been imported, load the .csv data file into the environment
with the following code:

1 data = pd.read_csv("TurgeonetalData.csv")
2 data_matrix = data.values

Fig. 1 Screenshot for the Spyder Integrated Development Environment

4 Do not copy the line numbers (on the left). These numbers are meant to guide the reader through each code
block. A line with no number indicates that the line is a continuation of the line above. It should also be noted
that Python code is case sensitive.
5 For example: C:/Users/Bob/Documents/. If you copy the file location from the property menu of Windows
Explorer, you need to replace the backslashes with forward slashes.
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The first line loads our dataset and names it “data” whereas the second line
transforms this data to a matrix, thus facilitating the manipulation of the data. When
loading your own data, you should replace TurgeonetalData.csv by the filename of
your own .csv file.

Prior to conducting machine learning, you must standardize the data of all
nonnormally distributed continuous features. Nonstandardized data may render the
machine-learning model unable to correctly use the features to predict the class labels
(Raschka & Mirjalili, 2019). Therefore, we transformed the social functioning scores
and the parental use of behavioral interventions scores to z scores. A z score is a
standardized score that is obtained by subtracting the mean score from the raw score
then dividing this value by the standard deviation. To transform the raw scores to z
scores, we need to write and run the following instructions in the editor:

1 from sklearn import preprocessing
2 standard_scaler = preprocessing.StandardScaler()
3 data_matrix[:,2:4] =

standard_scaler.fit_transform(data_matrix[:,2:4])

The first and second lines of code import a function to rapidly transform the raw
scores to z scores. The third line instructs the program to apply this standardization only
to columns that include the social functioning and parental use of behavioral interven-
tions scores.6 If you are using your own data, you should apply the standardization to
all continuous variables that are not already standardized. The final step to preparing
the data is separating the features from the class labels:

1 x = data_matrix[:,0:4]
2 y = data_matrix[:,4]

Matrix “x” now contains the four features whereas vector “y” contains the true class
labels. When using your own data, you should replace number 4 in the code block by
the number of features in your dataset.

Outcome Measures

The most common outcome measure for binary classifications is accuracy. Accuracy
involves dividing the number of agreements between the true class label values and the
predictions of the models by the total number of predictions (Lee, 2019). One drawback
of accuracy is that it does not consider that some values may be correct as a result of
chance, which may skew the results in favor of correct predictions. Kappa is a more
stringent measure of performance than accuracy as it takes into consideration correct
classifications due to chance (we refer the reader to McHugh [2012] for a

6 For those unfamiliar with matrices, we can call and manipulate specific locations in the matrix using a
bracket [i, j], where i is the row number and j the column number. Python begins indexing (numbering of rows
and columns) at 0 and the last value is excluded from ranges. Therefore, data_matrix[0, 1] refers to the first
row (index = 0) and second column (i.e., index = 1). In the current example, data_matrix[:, 2:4] refers to all
rows for the third and fourth columns of the .csv file (indices = 2 and 3).
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demonstration on how to compute the Kappa statistic). The following lines import the
functions to calculate these values for you:

1 from sklearn.metrics import accuracy_score, cohen_kappa_score

For kappa, any value above .20 typically indicates that the model reliably predicts
some of the class label values in the dataset, regardless of chance (McHugh, 2012). In
contrast, benchmarks for accuracy do not exist as the measure is dependent on the
distribution of the data.

Comparison Measures
Given that there is no fixed criterion to determine whether an accuracy value is

adequate, we must compute comparison measures for accuracy. One potential measure
represents the accuracy if predictions were randomly selected. The following lines of
code use a Monte Carlo method to determine this accuracy value:

1 np.random.seed(48151)
2 y_random = []
3 for i in range(100000):
4 y_random_values = np.random.choice(data_matrix[:,4], 26,

replace = False)
5 y_random.append(accuracy_score(y, y_random_values))

The first line sets the random seed for numpy at 48151. Although not necessary in
practice, we recommend that you implement this line of code so that your environment
produces the same results as the ones reported in the tutorial. The next line (i.e., 2)
creates an empty list in which the accuracy values are stored for each iteration. The
third line is a loop instructing Python to repeat the procedures 100,000 times7 (Monte
Carlo simulations). During each loop, the program first randomly permutates the values
for the 26 samples, which produces a vector named random_values (line 4). The fifth
line of code computes the accuracy score for these random_values and appends it to the
list. Finally, to compute the accuracy of a random selection measure, we take the mean
of these 100,000 iterations by running the following code:

1 print(np.mean(y_random))

The print function displays the value in the iPython console. In our example, the
iPython console should show that random selection produced an accuracy of .574
(i.e., it correctly guessed the class labels 57.4% of the time).

A second more stringent comparison measure involves reporting the class value with
the highest probability response. That is, what is the best accuracy we could produce if
we always guessed the same value? In our case, the most frequently observed class
label value is improvement (n = 18), which would lead to an accuracy of .692 (18
divided by 26) if we simply predicted that all class label values were the same.

7 Lines that are part of a loop (i.e., indented lines of code) must be preceded by a tab. In our code block, the
spaces at the beginning of the lines (i.e., following the numbers) represent this tab. If you struggle with
indentation or running the code, we recommend that you consult and use our ML_step-by-step.py file
available freely in the online repository.
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A third candidate for comparison is the logistic regression. Although sometimes
categorized as a machine learning algorithm, logistic regression is a traditional statis-
tical approach (i.e., a generalized linear model) that uses a linear boundary to separate
data into classes (Stefanski, Carroll, & Ruppert, 1986). In a systematic review,
Christodoulou et al. (2019) reported that machine learning does not systematically
outperform logistic regression, which makes it a good comparison measure. It should
be noted that the purpose of the tutorial is not to show that machine learning is always
superior to the logistic regression, but how to apply machine learning in order to
determine which provides the best predictions based on your data’s distribution.
Presenting how to perform logistic regression using Python goes beyond the scope of
this article. We have made the code accessible as a supplement document and invite the
reader to consult Lee (2019) for more information on logistic regression and on how to
apply this algorithm. The logistic regression yielded an accuracy of .731 and a kappa
value of .428 when applied to our dataset.

Leave-One-Out Cross-Validation

Prior to training our machine learning models, we need to specify how to test them.
One issue with machine learning is that using the same data to train and test a model
may lead to overfitting. Overfitting carries the risk of fitting “the noise in the data by
memorizing various peculiarities of the training data rather than finding a general
predictive rule” (Dietterich, 1995, p. 327). In behavior analytic terms, the model would
fail to generalize responding to novel, untrained exemplars. To address this issue,
researchers use cross-validation methodology to assess their models. In cross-valida-
tion, the researcher removes part of the data during training. This removed data is then
used to test for the generalization of the model. Therefore, researchers do not report the
outcome for the training data, but rather for the test data, which were removed and not
used during the development of the model.

For small datasets, researchers recommend the leave-one-out cross-validation meth-
odology (Wong, 2015). The leave-one-out cross-validation methodology separates the
dataset into two sets of data. The first set, the training set, contains the data of all
samples except for one (hence the name leave-one-out). The machine learning model
uses the features and true class labels of the training set to learn how to predict the class
label values. The second dataset, the test set, contains the remaining sample (i.e., a
single sample). The latter tests the model’s generalization to a novel, untrained sample.
As such, the sample of the test set is not used during training. The leave-one-out cross-
validation methodology is repeated N times (i.e., number of samples in the dataset) so
that each sample is used as the test set once. In our tutorial, the leave-one-out cross-
validation methodology was repeated 26 times as our dataset contained 26 samples. To
import the leave-one-out cross-validation methodology, you should run the following
code from the scikit-learn package:

1 from sklearn.model_selection import LeaveOneOut
2 loo = LeaveOneOut()

The first line imports the function whereas the second line defines the parameters of
the function. In the example above, we kept the default parameters.
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Some Algorithms

Many machine learning algorithms exist. In this tutorial, we selected four algorithms
useful for classification problems with small datasets: random forest, support vector,
stochastic gradient descent, and k-nearest neighbors classifiers. We targeted these four
algorithms because they have been widely used and apply different underlying math-
ematical approaches (i.e., use the features differently to create a machine learning
model; Lee, 2019; Raschka & Mirjalili, 2019).8 The purpose of the subsequent section
is not to compare the machine-learning algorithms together, which would require a
large number of datasets from other studies, but to show how to apply them.

Random forests Random forests are machine-learning algorithms that use an ensemble
of decision trees (called a forest) to predict an outcome (Breiman, 2001). These
decision trees are a collection of nodes that describe conditions that can be true or
false for a given dataset (see Figure 2). The algorithm follows different paths in the tree
depending on whether the value of each condition in the tree is true or false. In brief, the
algorithm creates individual decision trees by (1) randomly selecting a subset of the
training set, (2) randomly selecting a subset of features at each split (i.e., node), and (3)
keeping the feature that decreases entropy (or uncertainty of the decision) the most to
create each decision node. The algorithm then repeats this process several times (100
by default with scikit-learn) to create a forest with many different trees. For classifica-
tion problems, the predictions of all independent trees are aggregated and the most
popular prediction is selected as the predicted class label. As an example, Figure 2
presents the first of the 100 trees in the random forest that we produced as part of the
current tutorial. The algorithm used 16 samples to produce a tree with three features and
four decision nodes. The model has 100 trees similar to the one depicted in Figure 2
that vote on the outcome. The most likely outcome becomes the prediction of the
algorithm.

To apply the random forest algorithm, we must first import the random forest
classifier function:

1 from sklearn.ensemble import RandomForestClassifier
2 rf = RandomForestClassifier(class_weight = 'balanced',
random_state = 48151)

The second line of the code above provides the hyperparameters for the algorithm.
The random_state variable is optional in practice, but it guarantees the production of a
consistent output. Because there is a random component to the algorithm, setting the
random_state will ensure that you obtain the same results as the ones presented in this
tutorial every time you run the code in Python. Setting the class_weight as balanced
ensures that both values of our class label carry the same weight, which is necessary
because the number of samples with the class label value improvement (n = 18) was
much larger than that of the no improvement (n = 8) class label value. Hence, balancing

8 We did not include artificial neural networks because they require larger datasets than our current sample
size.
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the weights of the class label values prevents the model from overclassifying predic-
tions in the class label value with the largest number of samples.

Now, we need to run the code to train and test our models:

1 rf_pred = []
2 for train_index, test_index in loo.split(data_matrix):
3 x_train, y_train, x_test, y_test = x[train_index, :],

y[train_index], x[test_index, :], y[test_index]
4 rf.fit(x_train, y_train)
5 prediction = rf.predict(x_test)
6 rf_pred.append(prediction)

The first line of code creates an empty list to store the prediction made by the
random forest model after each iteration. The second line instructs Python to use the
leave-one-out cross-validation methodology to train and test the random forest algo-
rithm. The loop runs 26 iterations during which it trains and tests 26 models, which are
each computed using a different sample as the test set. The code of the third line creates
the training and test sets for the features (x) and the class labels (y) for each iteration.
The next step (line 4) involves using the fit function to train the random forest machine
learning model to solve your classification problem using the features (x_train) and
class labels (y_train) of your training set. Finally, the fifth line predicts the class label of
the test set using the test features (x_test) and the last line appends the results to the list.

Once Spyder has run the 26 iterations, we can write the following code to compute
the accuracy and kappa scores:

1 print(accuracy_score(rf_pred, y))
2 print(cohen_kappa_score(rf_pred, y))

Fig. 2 Visual Representation of the First Tree in the Random Forest
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The rf_pred list contains the predictions whereas the y vector includes the true
values. At this point, we remind the reader that these predictions were made on data not
included in the set used to train the models (out-of-sample prediction) to prevent
overfitting. In our example, the model trained using the random forest classifier
produced an accuracy of .769. Put differently, using the models developed by the
algorithms led to correctly predicting whether a child would benefit from their parent
following the web training in 77% of the sample. The random forest algorithm
outperforms all three comparison measures for this classification task (see left side of
Table 4 for comparisons). In addition, the model produced a kappa value of .458, which
represents a moderate agreement of the models with the actual observations (McHugh,
2012). The main advantage of random forests over the other proposed algorithms is that
we can visualize the individual trees (see Figure 2), which may lead to the development
of novel hypotheses on the contribution of each feature. For example, a researcher
could print all the trees and examine how each feature influences categorization to
develop hypotheses about the underlying decision-making process.

Support vector classifier Support vector classifiers separate opposing class labels
(i.e., in our example improvement and no improvement) using decision bound-
aries (called hyperplanes). In support vector classifiers, only extreme data points
(i.e., those that are closest to the opposing class label) contribute to the develop-
ment of the prediction model. Maximizing the margin (i.e., the space between the
decision boundary and the nearest samples for each class) increases the model’s
ability to correctly predict the class labels of untrained data (Bishop, 2006).
Support vector classifier relies on linearity (i.e., a directly proportional relationship
between the feature and the class label) to classify data into class labels. When the
relation between the features and the class labels are nonlinear or use multiple features
(i.e., more than two), a function is applied (called a kernel) to transform the data into a
higher dimension (e.g., two-dimensions into three dimensions) so that data can be
linearly separated with a hyperplane (Qian, Zhou, Yan, Li, & Han, 2015). Figure 3
presents an example of data that could not be separated linearly in a two-dimensional
space, but that could be separated by a plane when a third dimension was added. The

Table 4. Comparison of Accuracy and Kappa Scores without and with Hyperparameter Tuning for Each
Algorithm

Algorithm No Tuning Hyperparameter Tuning

Accuracy Kappa Accuracy Kappa

Random Selection .574 .000

Highest Probability Response .692 .000

Logistic Regression .731 .428

Random Forest .769 .458 .846 .639

Support Vector Classifier .654 .264 .808 .532

Stochastic Gradient Descent .692 .325 .731 .492

K-nearest Neighbors .615 -.048 .808 .591
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space (i.e., the area in the graph in relation to the plane or hyperplane) where a sample is
located predicts the class label value.

To apply the support vector classified algorithm, we start by importing the function
from the scikit-learn package:

1 from sklearn import svm
2 svc = svm.SVC(class_weight = 'balanced')

We only specified one hyperparameter for this machine learning algorithm: the class
weight. As per random forest, we balanced the class weights. The remaining code is
identical to the one we have developed for the random forest algorithm, except that we
replaced rf by svc:

Fig. 3 Example of a Dataset Separated by a Support Vector Classifier. Note. The upper panel shows a two-
dimensional graph representing two features: x1 and x2. Closed points represent one category and opened
points a different category. The lower panel depicts the addition of a higher dimension (z) and a linear plane
that separates the two categories. Reprinted with permission from “Machine Learning to Analyze Single-Case
Data: A Proof of Concept” by M. J. Lanovaz, A. R. Giannakakos, and O. Destras, 2020, Perspectives on
Behavior Science (doi:1.1007/s40614-020-00244-0). CC BY 4.0
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1 svc_pred = []
2 for train_index, test_index in loo.split(data_matrix):
3 x_train, y_train, x_test, y_test = x[train_index, :],

y[train_index],x[test_index, :], y[test_index]
4 svc.fit(x_train, y_train)
5 prediction = svc.predict(x_test)
6 svc_pred.append(prediction)
7 print(accuracy_score(svc_pred, y))
8 print(cohen_kappa_score(svc_pred, y))

The output should show an accuracy of .654 and a kappa of .264, which is
marginally better than the random selection but not as accurate as the highest proba-
bility response and logistic regression comparison measures. When compared to other
algorithms, the support vector classifier has the benefit of being deterministic, which
makes the results easier to replicate. In other words, the algorithm does not contain a
random component: it will thus always produce the same results given the same
features. The kernel function also makes is suitable for nonlinear data.

Stochastic gradient descent Stochastic gradient descent is an optimization algorithm
designed to reduce the error produced by a function (Raschka & Mirjalili, 2019). As
part of the tutorial, we focus on the logistic function as it is a common method to
separate data into classes (Peng, Lee, & Ingersoll, 2002). The main difference with
traditional logistic regression is that the response is optimized within an iterative
process that produces a nonlinear transformation. During stochastic gradient descent,
the features are multiplied by a matrix of weights and the algorithm calculates the
prediction error using the logistic function. Based on this error, the algorithm applies a
correction to adjust the weights decreasing the prediction error for each successive
iteration, which are referred to as epochs. In other words, the process is akin to shaping
in behavior analysis where the algorithm selects (reinforces) successively closer ap-
proximations (i.e., less error). That said, researchers must remain wary of running too
many epochs as it may overfit the training data and fail to generalize to novel samples
(faulty discriminative control). Compared to random forests that use multiple indepen-
dent trees to make a prediction, stochastic gradient descent keeps a single model.

The first step to applying stochastic gradient descent is to import the function from
scikit-learn and define the hyperparameters:

1 from sklearn.linear_model import SGDClassifier
2 sgd = SGDClassifier(class_weight = 'balanced', loss = "log",

penalty="elasticnet", random_state = 48151)

In our example, we specified four hyperparameters: class weight, loss, penalty,
and random state (see line 2). Given that the weight matrix is initialized using a
random function, the random_state variable ensures that the results remain consis-
tent. We balanced the class weights to prevent the model from always predicting the
most probable response. The loss implements the logistic function. Finally, we
added a penalty term to minimize overfitting. Elasticnet adds some variability when
the algorithm updates the weights, which improves generalization to untrained
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samples. Once again, the code is the same as for the rf function except that we
replace rf by sgd:

1 sgd_pred = []
2 for train_index, test_index in loo.split(data_matrix):
3 x_train, y_train, x_test, y_test = x[train_index, :],

y[train_index],x[test_index, :], y[test_index]
4 sgd.fit(x_train, y_train)
5 prediction = sgd.predict(x_test)
6 sgd_pred.append(prediction)
7 print(accuracy_score(sgd_pred, y))
8 print(cohen_kappa_score(sgd_pred, y))

The iPython console shows that our stochastic gradient descent model produced an
accuracy of .692 and a kappa of .325, outperforming the random selection comparison
measure but not the highest probability response and the logistic regression. In the
current study, we limited the application of the stochastic gradient descent to a logistic
function. One of the advantages of the stochastic gradient descent is that its flexibility
allows its application to other functions.

K-nearest neighbors The k-nearest neighbors algorithm uses feature similarity between
samples to predict a class label (Raschka & Mirjalili, 2019). In brief, the algorithm
identifies samples that are most similar to a new sample (i.e., nearest neighbors). Using
a predetermined number of nearest neighbors (i.e., k), the model makes a prediction
based on the most popular class label. In the k-nearest neighbors algorithm, nearest
neighbors are often identified by calculating the linear distance between two points.
Selecting an appropriate k is essential because different numbers of nearest
neighbors can result in different predictions (i.e., class labels).

As for the other algorithms, we must first import the k-nearest neighbors function
and set its hyperparameters:

1 from sklearn.neighbors import KNeighborsClassifier
2 knn = KNeighborsClassifier()

In this example, the function uses the default hyperparameters, which involve the
five closest neighbors (i.e., k = 5). Again, we then run the same code as for the random
forest algorithm, replacing rf by knn:

1 knn_pred = []
2 for train_index, test_index in loo.split(data_matrix):
3 x_train, y_train, x_test, y_test = x[train_index, :],

y[train_index],x[test_index, :], y[test_index]
4 knn.fit(x_train, y_train)
5 prediction = knn.predict(x_test)
6 knn_pred.append(prediction)
7 print(accuracy_score(knn_pred, y))
8 print(cohen_kappa_score(knn_pred, y))
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The k-nearest neighbors algorithm produced the worst accuracy (i.e., .615) and
kappa (i.e., -.048). This algorithm performed slightly better than the random selection
comparison measure, but produced measures lower than those of the highest probability
response and the logistic regression. Nonetheless, the k-nearest neighbors algorithm has
the following advantages: it is deterministic, easy and fast to implement, and it can
readily detect nonlinear patterns.

Hyperparameter Tuning

Three of the four machine-learning algorithms did not perform any better than the logistic
regression. In all our applications, we generally used the default hyperparameters of the
algorithms to train our models, which explains why the performance was not optimal. To
improve accuracy, researchers should use a procedure referred to as “hyperparameter
tuning” to set optimal values (Raschka & Mirjalili, 2019). In hyperparameter tuning, the
experimenter (1) tests the accuracy (or error) of different combinations and values of
hyperparameters, and (2) selects the one that produces the best outcome measure. This
selection of the best outcome cannot rely on the test set because it may lead to overfitting and
failures of the results to generalize to novel datasets. Therefore, wemust create a new set, the
validation set, on which to assess the outcome of hyperparameter tuning. The upper panel of
Figure 4 shows how our code generated a validation set for the current dataset.

In most cases, researchers are unaware of the best hyperparameter settings for each of
their algorithms because these values vary across datasets. Therefore, we strongly recom-
mend the use of hyperparameter tuning if no prior values are available for similar datasets in
the research literature. These hyperparameters to tune vary across algorithms. Examples of
hyperparameters are the number of trees in the random forest, the number of epochs (loops)
in stochastic gradient descent, and the number of neighbors in the k-nearest neighbors
algorithm. Given that the hyperparameters vary considerably across algorithms, we cannot
provide a comprehensive list here. When unsure which hyperparameters to manipulate, we
strongly recommend that researchers examine prior studies using the same algorithm. As an
alternative, researchers may use grid search or random search procedures to conduct
comprehensive tuning (see Appendix for a link on instructions on how to proceed).

Because the k-nearest neighbors algorithm performed worst in our prior analyses,
we use it as an example to explain how to implement hyperparameter tuning. To
facilitate hyperparameter tuning using leave-one-out cross-validation, we must program
a function to conduct the tuning at each iteration. The first step is importing the joblib
package, which allows us to save the best model:

1 import joblib

Then, wemust write a function that keeps the best model (i.e., the highest accuracy on the
validation set) following each iteration of the leave-one-out cross-validation loop:

1 def knn_train(x_train, y_train, x_valid, y_valid):
2 k_values = np.arange(1, 11, 1)
3 best_acc = 0
4 for k in k_values:
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5 knn = KNeighborsClassifier(k)
6 knn.fit(x_train, y_train)
7 prediction = knn.predict(x_valid)
8 current_acc = accuracy_score(prediction, y_valid)
9 if current_acc > best_acc:
10 best_acc = current_acc
11 filename = 'best_knn.sav'
12 joblib.dump(knn, filename)
13 best_knn = joblib.load('best_knn.sav')
14 return best_knn

The first line informs Python that the subsequent indented lines define a function that
takes our training data (x_train, y_train) and our validation data (x_valid, y_valid) as input.
The second line provides the range of k values to test (1–10 neighbors) whereas the third line
initializes the best accuracy value at 0. The code runs in a loop wherein each loop tests a
different value of k (see line 4). Lines 5 and 6 train the model using the training set with k
neighbors. The seventh and eight lines assess accuracy on the validation data. Line 9
contains a conditional formula that runs lines 10–12 only if the accuracy computed for this
value of k on the validation set is higher than for any previous k value. The instructions
involve three steps: replacing the best accuracy value by the current accuracy value (line 10),
providing a name of the file where to save the model (line 11), and saving this model. The

Fig. 4 Visual Representations of Different Sets in the Leave-One-Out Cross-Validation and the Holdout
Cross-Validation
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last two lines return themodel (i.e., themodel with the number of k neighbors) that produced
the best accuracy on the validation set.

The next step is to run this function with each loop of the leave-one-out cross-
validation to examine the effects of the model on the test set:

1 from sklearn.model_selection import train_test_split
2 best_knn_pred = []
3 for train_index, test_index in loo.split(data_matrix):
4 x_train, y_train, x_test, y_test = x[train_index, :],

y[train_index],x[test_index, :], y[test_index]
5 x_train, x_valid,y_train, y_valid = train_test_split(x_train,

y_train, test_size = 0.20, random_state = 48151)
6 best_knn = knn_train(x_train, y_train, x_valid, y_valid)
7 prediction = best_knn.predict(x_test)
8 best_knn_pred.append(prediction)
9 print(accuracy_score(best_knn_pred, y))
10print(cohen_kappa_score(best_knn_pred, y))

The reader should already be familiar with some of the code in the previous block
because it is similar to the code used during training with the default hyperparameters. We
will focus on the lines that differ. The first line imports a function that splits the training set
into two subsets: the training set and the validation set (see line 5). The test_size parameter
indicates that 20% of the data should be moved to the validation set and 80% should remain
in the training set. Thus, the validation set contains 5 samples and the training set 20 samples.
In line 6, we replace the knn.fit formula by our new function, which returns the tuned model
that produces the best accuracy on the validation set. The output shows that the tuned model
outperforms the model with the default hyperparameters. The accuracy on the test set
increased from .615 to .808 whereas the kappa score increased from -.048 to .591.

In a similar manner, we could conduct hyperparameter tuning for the other machine-
learning algorithms, but we leave it up to the reader to try it out on their own. The code
is available in the ML_step-by-step.py file of the repository starting on line 162.
Table 4 compares the results obtained by each algorithm without and with
hyperparameter tuning so that the readers can compare their results. It is clear that
conducting hyperparameter tuning leads to more accurate models. Except for the
stochastic gradient descent, which produced similar results, all hypertuned models
outperformed the simple logistic regression as well as the other comparison measures.

Practical Considerations

Selecting Features

The selection of features merits further discussion because careful selectionmay lead to better
models and minimize overfitting (and the opposite is true for inadequate selection). First,
researchers should avoid cherry-picking their features by selecting those that produce themost
accurate model on the test set. This cherry-picking may lead to models that produce
overfitting on novel, untrained exemplars. Instead, feature selection should involve a rigorous
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approach. In general, researchers categorize feature selection methods in three broad catego-
ries: filter, wrapper, and embedded (Cai, Luo, Wang, & Yang, 2018; Visalakshi & Radha,
2014). Filter methods typically involve keeping features with specific statistical properties
(e.g., significant relationship with the outcome variable, correlation threshold). Wrapper
methods consist of systematically searching different combinations of features to identify
the one that produces the best outcome. Finally, embeddedmethods integrate feature selection
within themachine learning algorithmby identifying or emphasizing features that produce the
best predictions. Describing the advantages and disadvantages of these methods goes beyond
the scope of this tutorial. We suggest that the reader consult Cai et al. (2018) and Visalakshi
and Radha (2014) for a review of different feature selection methods.

In the tutorial, we selected three of our features because they had been shown to be
correlated with the class label and displayed no multicollinearity, which is similar to a filter-
based approach. As an alternative, our procedures could have involved hyperparameter
tuning for feature selection (i.e., a wrapper method). In this alternative, the features included
in the model would represent the hyperparameter. As indicated earlier, this approach is only
viable if the selection of features relies on a validation set. We feel that it is important to
repeat here that the selection of features should never rely on the results of the test set.
Another consideration when selecting features is the measurement scale (e.g., nominal,
ordinal, continuous). For the tutorial, we dichotomized two features. The dichotomization of
the features was done to better balance the samples as the data were highly skewed.
Although this procedure may lower chances of overfitting, the reader should bear in mind
that decreasing the number of degrees of freedom may result in a loss of power.

Selecting an Algorithm

We reviewed four different types of algorithms as part of the current tutorial. One
important question remains: When to select one algorithm over another? Unfortunately,
the research literature does not provide a straightforward answer to this question and the
results from this tutorial should not be used as performance indicators as we examined a
single specific dataset. One solution is to compare the results across algorithms (as we
have done with hyperparameter tuning) and to select the algorithm that produces the
best outcome. The advantages of each algorithm may also guide the selection. The
random forest and the k-nearest neighbors algorithms are easy to explain, intuitive, and
allow an analysis of why the samples are categorized the way they are. In contrast,
stochastic gradient descent models are like black boxes; even when accurate, we cannot
clearly identify the underlying mechanisms that produced the outcomes. The k-nearest
neighbors and support vector classifiers produce deterministic results, which renders
them more stable than those that have a random component. Finally, the random forest
may require little to no tuning to produce accurate predictions with small sets.

About Samples

Earlier in the tutorial, we suggested that the models could be trained with datasets with
as few as 25 samples: a series of features and class labels for 25 exemplars on which
you can make predictions. This rule-of-thumb is a lower limit. When everything else is
kept equal, algorithms with more data will train more accurate models and reduce
overfitting. The only dataset that we had at hand for the tutorial contained 26 samples,
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but we strongly recommend that you aim for more. Samples may take on many forms.
For example, a sample may represent a participant and their responding to a treatment
(as in our tutorial). In experimental research, a sample could involve the rate of lever
presses by a rat within 1 min; each minute of the session would thus be a different
sample. As an alternative, a sample could be a complete session if the models were
designed to predict the percentage of behavior over longer periods of time. In this case,
each session could count as a sample. Nevertheless, you would still want many
different subjects (e.g., 10 subjects with 10 sessions) in order to measure and to validate
the generalizability of the models within and across subjects.

Alternatives to Single Binary Classification

Our tutorial focused on one type of problem: binary classification. We can readily
apply the same algorithms to multi label classification problems. Assume that we want
to predict the function of a challenging behavior. The output would involve four class
labels (columns), one per challenging behavior function. Each class label would remain
binary: 1 = positive, 0 = negative.

Another type of problem that can be solved using machine learning is predicting
specific values. For example, a researcher may aim to predict the percentage of
behavior during a session based on some other variables. In this case, we recommend
using a regressor rather than a classifier. It is fortunate that the packages that we have
used for classification all have regressor equivalents: RandomForestClassifier be-
comes RandomForestRegressor, svm.SVC becomes svm.SVR, SGDClassifier be-
come SGDRegressor, and KNeighborsClassifier becomes KNeighborsRegressor.
The kappa and accuracy measures are not appropriate for regressors. Alternatives
include the mean_squared_error and mean_absolute_error functions from the scikit-
learn package.

Cross-Validation

In the tutorial, we reviewed only one type of cross-validation: the leave-one-out
method. A second type of cross-validation is the holdout method, which divides
datasets into a single training set and a single test set. The test set remains consistent
across all analyses and is never used during training. Thus, we do not need to program a
loop. To split the dataset, we run the following code:

1 from sklearn.model_selection import train_test_split
2 x_train, x_test, y_train, y_test = train_test_split(x, y,

test_size = 0.20, random_state = 48151)

The random_state parameter ensures that the results remain consistent across repli-
cations whereas the test_size parameter indicates the proportion of samples in the
dataset that should be placed in the test set. Figure 4 (bottom panel) shows an example
of holdout cross-validation with a hypothetical dataset containing 100 samples. In this
case, a value of .20 produces a test set with 20 samples and a training set with 80
samples. Although generally applied when datasets are larger, Vabalas, Gowen,
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Poliakoff, and Casson (2019) found that a such approach to building and testing a
machine learning model produced the least biased outcomes.

A third method relevant to behavioral researchers is the k-fold cross-validation
method (Wong, 2015). The k-fold method is a hybrid between the leave-one-out and
holdout methods. In the k-fold method, the k represents the number of times the cross-
validation is repeated. For example, a k of 5 involves running the cross-validation five
times. Each iteration, the algorithm uses four-fifths (80%) of the data for training and
one-fifth (20%) of the data for testing. The data in testing differs across each iteration so
that all samples are included in the test set exactly once. To implement k-fold cross-
validation, we need to import the algorithm using:

1 from sklearn.model_selection import KFold
2 kf = KFold(k)

In the example above, k represents the number of folds, which should be an integer.
Then, we replace the loo.split(data_matrix) loop by the following code:

1 for train_index, test_index in kf.split(data_matrix):

The k-fold method is a strong alternative to the holdout method when the number of
samples is limited as it rotates all the samples in the test set (see “Cross Validation” in
Appendix).

Conclusion

As part of the current tutorial, we demonstrated how to apply four different machine
learning algorithms to train models to predict whether specific parents of children with
autism would benefit from an interactive web training. We developed this tutorial to
raise awareness of the potential use of machine learning to support decision making in
the field of behavior analysis. The purpose of our tutorial was to demonstrate how
machine learning can aid researchers in analyzing small datasets and not to prove that
machine learning always performs better than traditional statistics (which is not the
case). Machine learning has the advantage of conducting nonlinear discrimination
beyond the logistic regression and of analyzing small datasets that do not respect
assumptions typically found in parametric tests. Thus, this article presents an approach,
which behavioral researchers may add to their toolbox to address questions important to
our understanding of human behavior.

In our tutorial, we showed that models developed with machine learning may predict
which parents could benefit from an interactive web training. Until independent
researchers replicate our procedures with more data and carefully examine its social
validity, we do not recommend the adoption of these models in practice. If these
models are further validated, they could lead to better decision-making. At present,
behavior analysts rely on their professional judgment to decide whether a parent could
benefit from a specific type of training. The machine-learning models may support
behavior analysts in making more consistent and more accurate decisions. The litmus
test for such an approach will be comparing the decisions of the models with the
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decisions taken by trained behavior analysts, which goes beyond the scope of a tutorial
on how to apply these machine-learning algorithms.

The application of machine learning in behavior analysis is still in its infancy. If the rapid
adoption of machine learning by other fields is any indication, we expect that behavior
analysts will increasingly use this approach in their experimental work, applied research, and
practice. Examples of uses wherein machine learning could support behavior analysts
include the identification of novel variables that play a role in the development and
maintenance of behavior, the prediction of intervention effects or rates of behavior within
experimental settings, the measurement of behavior, the analysis of functional assessment
data, and the inspection of single-case designs. The benefits may range from a better
understanding of the causes behavior to practitioners making more reliable and accurate
clinical and educational decisions. This tutorial may thus serve as a starting point for
behavioral researchers looking for an introduction to machine learning and its applications.
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Appendix

Free Online Resources

Learn More About Python

Learn Python—https://www.learnpython.org/
Google's Python Class—https://developers.google.com/edu/python
Python for Beginners—https://www.python.org/about/gettingstarted/

Learn More About Machine Learning

An Introduction to Machine Learning—https://www.digitalocean.com/community/
tutorials/an-introduction-to-machine-learning
Google’s Introduction to Machine Learning—https://developers.google.com/
machine-learning/crash-course/ml-intro
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Introduction to Machine Learning for Beginners—https://towardsdatascience.com/
introduction-to-machine-learning-for-beginners-eed6024fdb08

Learn More About Machine Learning in Python

Cross Validation in Python: Everything You Need to Know About—https://www.
upgrad.com/blog/cross-validation-in-python/
An Implementation and Explanation of the Random Forest in Python—https://
towardsdatascience.com/an-implementation-and-explanation-of-the-random-forest-
in-python-77bf308a9b76
Implementing SVM and Kernel SVM with Python's Scikit-Learn—https://
stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/
How To Implement Logistic Regression From Scratch in Python—https://
machinelearningmastery.com/implement-logistic-regression-stochastic-gradient-
descent-scratch-python/
Develop k-Neares t Neighbors in Python From Scra tch—ht tps : / /
machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-
from-scratch/
Hyperparameter Tuning—https://towardsdatascience.com/hyperparameter-tuning-
c5619e7e6624
Sci-Kit Learn: 3.2. Tuning the Hyper-Parameters of an Estimator—https://scikit-
learn.org/stable/modules/grid_search.html
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