
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Environmental Research 194 (2021) 110596

Available online 9 December 2020
0013-9351/© 2020 Elsevier Inc. All rights reserved.

Meteorological factors, governmental responses and COVID-19: Evidence 
from four European countries 

Shihua Fu a,1, Bo Wang a,1, Ji Zhou b,1, Xiaocheng Xu a, Jiangtao Liu a, Yueling Ma a, Lanyu Li a, 
Xiaotao He a, Sheng Li c, Jingping Niu a, Bin Luo a,b,d,*, Kai Zhang e,f,g 

a Institute of Occupational Health and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China 
b Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Bureau, Shanghai, 200030, People’s Republic of China 
c The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China 
d Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, 200030, China 
e Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, 
TX, 77030, USA 
f Southwest Center for Occupational and Environmental Health, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, 77030, 
USA 
g Department of Environmental Health Sciences School of Public Health University at Albany, State University of New York One University Place Rensselaer, NY, 12144, 
USA   

A R T I C L E  I N F O   

Keywords: 
COVID-19 
Meteorological factor 
Government response index 
DLNM 

A B S T R A C T   

With the global lockdown, meteorological factors are highly discussed for COVID-19 transmission. In this study, 
national-specific and region-specific data sets from Germany, Italy, Spain and the United Kingdom were used to 
explore the effect of temperature, absolute humidity and diurnal temperature range (DTR) on COVID-19 
transmission. From February 1st to November 1st, a 7-day COVID-19 case doubling time (Td), meteorological 
factors with cumulative 14-day-lagged, government response index and other factors were fitted in the 
distributed lag nonlinear models. The overall relative risk (RR) of the 10th and the 25th percentiles temperature 
compared to the median were 0.0074 (95% CI: 0.0023, 0.0237) and 0.1220 (95% CI: 0.0667, 0.2232), respec-
tively. The pooled RR of lower (10th, 25th) and extremely high (90th) absolute humidity were 0.3266 (95% CI: 
0.1379, 0.7734), 0.6018 (95% CI: 0.4693, 0.7718) and 0.3438 (95% CI: 0.2254, 0.5242), respectively. While the 
DTR did not have a significant effect on Td. The total cumulative effect of temperature (10th) and absolute 
humidity (10th, 90th) on Td increased with the change of lag days. Similarly, a decline in temperature and 
absolute humidity at cumulative 14-day-lagged corresponded to the lower RR on Td in pooled region-specific 
effects. In summary, the government responses are important factors in alleviating the spread of COVID-19. 
After controlling that, our results indicate that both the cold and the dry environment also likely facilitate the 
COVID-19 transmission.   

1. Introduction 

Corona Virus Disease 2019, abbreviated as “COVID-19′′, named by 
the World Health Organization (Wu and McGoogan, 2020; Zu et al., 
2020), has been confirmed as an acute respiratory infectious disease 
caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SAR-
S-CoV-2) infection (WHO, 2020a; Huang et al., 2020; Yu et al., 2020). 
Due to its fast and wide transmission world-widely, it has been 

recognized as a global pandemic (WHO, 2020b), which has infected 47, 
930,397 confirmed cases, including 1,221,781 deaths as of 5:00 pm 
CEST, November 5, 2020 (WHO, 2020c). Whether this global pandemic 
is partially influenced by the change of ambient environment is still a 
hot topic, which needs to be discussed continuously. 

Although there is no final conclusion on the meteorological impact 
over the continuously growing of COVID-19 cases worldwide, it usually 
indicates that SARS-CoV-2 may be particularly sensitive to weather 
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(Bashir et al., 2020; Kumar et al., 2020c; Liu et al., 2020; Tosepu et al., 
2020). A preliminary laboratory test found that the survival time of new 
coronaviruses decreased with increasing temperature and humidity (van 
Doremalen et al., 2020). Besides, airborne-based virus transmission 
depends on the respiratory droplet size (Altamimi and Ahmed, 2020; 
Kumar et al., 2020b). The cold and dry weather may cause droplets drift 
and evaporation, which promote the dynamics of the infection trans-
mission. In statistical analysis, a lot of studies reported that meteoro-
logical factors were closely related to the confirmed cases of COVID-19 
(Chien and Chen, 2020; Halaji et al., 2020; Hon et al., 2020; Kumar 
et al., 2020a; Liu et al., 2020; Rabaan et al., 2020; Şahin, 2020). How-
ever, many analyses only obtained the conclusion in a simple regression 
model without controlling social factors and in a limited studying time 
period, which may lead to missed opportunities in understanding how 
the epidemic began and resolved. It is well acknowledged that many 
countries have implemented varying degrees of public health measures, 
including restricted assembly, traffic restrictions, family isolation and 
contact tracking, in order to prevent the spread of COVID-19 since its 
outbreak. Studies have shown that the wide spread of COVID-19 is 
related to the lack of intervention policy control (Briz-Redón and 
Serrano-Aroca, 2020; Ma et al., 2020; Prata et al., 2020; Khursheed 
et al., 2020). We believe that these factors such as government responses 
may conceal the role of meteorological factors in the COVID-19 spread. 
Therefore, it is necessary to adjust these factors like government re-
sponses before concluding the effects of meteorological factors on 
COVID-19 transmission. 

So far, most researchers have used the number of daily confirmed 
COVID-19 as an indicator, which may be not as accurate in exploring the 
impact of meteorological factors on the spread of COVID-19. Muniz- 
Rodriguez et al. calculated the COVID-19 case doubling time (Td) to 
indicate the COVID-19 transmission trend, which refers to the time it 
takes for the total number of COVID-19 cases to double (Muniz-Ro-
driguez et al., 2020). Their results indicated that Td was a more sensitive 
indicator for the spread rate COVID-19. In addition, many indicators 
have been explored to indicate the role of government intervention in 
controlling COVID-19, such as the Baidu migration index (Hu et al., 
2020), management vulnerability index (Acharya and Porwal, 2020), 
Google Mobility Data (Wang and Yamamoto, 2020), government 
response index (GRI) (Tran et al., 2020), etc. Among them, the GRI may 
be a better one, because it integrates 14 indicators in terms of contain-
ment and closure policies, economic policies, and health system policies 
(including School Closures, Workplace closing, Cancel Public Events, 
Restrictions on gatherings, Public Transportation, Stay at Home Order, 
Restrictions on Internal Movement, International Travel Controls, In-
come Support, Debt/contract Relief for Households, Public Information 
Campaigns, Testing Policy and Contact Tracing). Concerning the above 
issues, as many European countries are experiencing the second 
increasing wave of COVID-19, we hope to estimate the true impact of 
meteorological factors on the COVID-19 and provide scientific evidence 
for COVID-19 controlling. Therefore, in this study, we analyzed the ef-
fect of governmental responses on COVID-19 transmission, and used the 
distributed lag nonlinear model (DLNM) to study the impact of meteo-
rological factors on COVID-19 case Td in four European countries 
(Germany, Italy, Spain and the United Kingdom) by controlling con-
founding factors like government responses, population density, air 
pollutants, etc. 

2. Method 

2.1. Data collection 

2.1.1. COVID-19 data and transmission index 
From February 1st through November 1st, 2020, we collected in-

formation on confirmed cases in 42 provincial regions. The above data 
was taken from the websites of national health departments (https 
://github.com/topics/covid-19). In this study, an exponential model 

involving the number and time of confirmed cases was considered: 
doubling time (Td). The Td is defined as the time it takes for the total 
number of COVID-19 cases to double, which is an index to evaluate the 
spread rate of the epidemic (Muniz-Rodriguez et al., 2020; Zhou et al., 
2020). Considering that the average incubation period of COVID-19 is 7 
days (Muniz-Rodriguez et al., 2020; Zhou et al., 2020), we choose 7 days 
as the interval of the exponential model. Then the equation of Td given 
by: 

Td= 7∗
log 2

log
(

day7N
day0N

) (eq1)  

Where day0N represents the cumulative number of diagnosed on the day 
of the study, and day7Nrepresents the cumulative number of diagnosed 
after an interval of 7 days. 

2.1.2. Meteorological data 
The daily meteorological data came from the “Wheat-A′′ data system 

(http://www.xiaomaiya.cc/). Based on longitude and latitude, the 
meteorological data of 326 weather stations were matched with regions. 
Daily meteorological data included average/minimum/maximum tem-
perature, dew-point temperature and average wind velocity. Absolute 
humidity was calculated indirectly through vapor pressure, using the 
Clausius–Clapeyron relation (Shaman and Kohn, 2009). Briefly, we first 
calculated the actual vapor pressure using daily dew-point temperature. 
Then, absolute humidity (AH) is derived by vapor pressure (Davis et al., 
2016), which is described as equations (2) and (3): 

e= es∗exp
[

L
Rq

(
1
T0

−
1

Dew point

)]

(eq2)  

AH 
(
g
/

m3)=
e

Rq*Tem
*105 (eq3)  

Where e denote the actual vapor pressure; es refers to the saturated water 
vapor pressure (6.112 hPa) at temperature T0 (0 ◦C); L represents the 
latent heat of water evaporation (2257 kJ/kg); Rq is the gas constant of 
water vapor [287 J/(kg⋅◦C)]; Tem means daily ambient temperature 
(◦C); Dew point means daily dew-point temperature (◦C). 

2.1.3. Fine particles, population density and GRI 
Environmental fine particles (PM2.5), population density and GRI 

data were collected simultaneously. Daily PM2.5 data were downloaded 
from the “Air Matters” (https://air-matters.com/zh-Hans/index.html). 
The information about population density was obtained from the Eu-
ropean Statistical System (https://ec.europa.eu/eurostat/databrowser/ 
view/demo_r_d3dens/default/map?lang=en), which are available in 
the supplementary materials. The data on GRI were downloaded from 
GitHub Covid-policy-tracker (https://github.com/OxCGRT/covid-polic 
y-tracker), which integrated 14 indicators in terms of containment and 
closure policies, economic policies, and health system policies: School 
Closures, Workplace closing, Cancel Public Events, Restrictions on 
gatherings, Public Transportation, Stay at Home Order, Restrictions on 
Internal Movement, International Travel Controls, Income Support, 
Debt/contract Relief for Households, Public Information Campaigns, 
Testing Policy and Contact Tracing (Thomas Hale et al., 2020). The 
index was adjusted from 0 to 100 (100 = the strictest). 

2.2. Statistical analysis 

Firstly, we used Pearson correlation analysis to explore the rela-
tionship between meteorological factors and daily Td. Then, based on 
the published research (Runkle et al., 2020), we established DLNM 
models to evaluate the effects of meteorological factors on the daily Td. 
Meanwhile, we controlled PM2.5, population density, GRI, residual 
autocorrelation (Imai et al., 2015) and other confounding factors in the 
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models. To allow for over-dispersion of COVID-19 in transmission, a 
quasi-Poisson regression was used as the connection function of the 
model. The model used three independent research variables: temper-
ature, absolute humidity and diurnal temperature range (DTR). The 
relative risk (RR) of the Td was estimated by the 90th, 75th, 25th and 
10th percentiles values relative to the median of each meteorological 
factors. This method is suitable for assessing the intermittent changes (e. 
g., meteorological) in the risk of a rare and acute outcome (i.e., 
COVID-19 transmission) within a short period (Armstrong et al., 2019; 
Runkle et al., 2020). We conducted this research using the “dlnm” 
package in R4.0.1. The modified DLNM models are shown in equations 
(4)–(6): 

log
[
E
(
Ytj
)]

=α+ β1

∑
cb(Tem, lag)+ ns(PM2.5, df )+ ns(AH, df )

+ ns(Wind, df )+ log(Yt− 1)+ log(DOP)+GRI lag14+ dow
+ regionj

(eq4)  

log
[
E
(
Ytj
)]

=α+ β2

∑
cb(AH, lag)+ ns(PM2.5, df )+ ns(Tem, df )

+ ns(Wind, df )+ log(Yt− 1)+ log(DOP)+GRI lag14
+ dow + regionj

(eq5)  

log
[
E
(
Ytj
)]

=α+ β3

∑
cb(DTR, lag)+ ns(PM2.5, df )+ ns(AH, df )

+ ns(Wind, df )+ log(Yt− 1)+ log(DOP)+GRI lag14
+ dow + regionj

(eq6)  

Where t is the observation date; j refers to the regions; E(Yt) is the ex-
pected value of the Td observed in region j on day t; α is the intercept; β is 
the regression coefficient; 

∑
cb() represents the two-dimensional matrix 

of meteorological factors and lag days and the natural cubic spline 
function with 3 degrees of freedom was used; We defined 14 days as the 
maximum lag days; ns() denotes the smoother based on natural regres-
sion splines; Tem, PM2.5, AH and Wind are the three-day moving average 
of temperature (df = 6), PM2.5 (df = 3), absolute humidity (df = 3) and 
wind velocity (df = 3), respectively; log(Yt− 1) is the COVID-19 count of 
logarithmic conversion on t-1 to control potential sequential autocor-
relations; DOP denotes the number of people living on land per unit 
area; GRI lag14 is the GRI at single 14-day-lagged; dow means the day of 
week was controlled as a categorical variable; regionj indicates region 
fixed effects to control for any observable and unobservable character-
istics over time that could confound results, such as differences in social, 
economic and cultural activities, etc. (Amuakwa-Mensah et al., 2017). 

After establishing the DLNM model, we used the random effects 
model of meta-analysis to pool the national-specific effects of the 
meteorological factors. We examined the cumulative lag effects of 
meteorological factors at 10th and 90th percentiles on Td under 
different lag exposure (lag 03, lag 05, lag 07, lag 09, lag 011 and lag 
014). The meta-analysis was based on R software “meta” package. 

As our design of including multiple regions, we further investigated 
the region-specific effect estimates of meteorological factors on Td in 42 
regions and applied a multivariate meta-analysis to combine the overall 
effect estimates obtained from the region-specific effect estimates. In 
short, we used a two-stage analysis. Firstly, DLNM models were applied 
to each region’s data to obtain region-specific effect estimates. Secondly, 
we applied a multivariate meta-regression model to combine the overall 
effect estimates (Gasparrini and Armstrong, 2013). The multivariate 
meta-regression analysis was fitted with R software using the “mvmeta” 
package. 

Besides, we conducted a sensitivity analysis by changing the interval 
of the exponential model (eq (1)) to assess the effect of meteorological 
factors on Td at different time intervals (5 and 9 days) in the DLNM 
models (eq 4-eq (6)). 

3. Results 

In total, 1,508,094 COVID-19 confirmed cases were included in this 
study from February 1st through November 1st, 2020. The change of 
COVID-19 new cases exhibited a temporal characteristic, showing two 
increasing waves till November. The first peak observed in spring 
(March–May) in these four countries corresponded to shorter Td, while 
the second increasing wave observed much stronger since August 
compared with the first one (with a rapid increase since early July in 
Spain) (Fig. 1). With the latest data, we could find that the confirmed 
COVID-19 cases were still on the rising trend, which have not reached 
the peak so far. 

3.1. Correlation between the Td and variables 

Pearson correlation analysis of daily Td and meteorological factors 
for four countries from February 1st through November 1st, 2020 were 
shown in Table. 1, Fig.S1-S3 and Fig.S6-S8. Temperature in four coun-
tries had similar patterns, all showed positive associations with Td 
(rGermany = 0.66, rItaly = 0.64, rSpain = 0.47, rUK = 0.75, respectively), 
similar to the correlation between absolute humidity and the Td (rGer-

many = 0.55, rItaly = 0.50, rSpain = 0.25, rUK = 0.67, respectively). 
However, the correlations between diurnal temperature range (DTR) 
and Td were weak in Germany, Italy and Spain (rGermany = 0.07, rItaly =

0.10, rSpain = 0.12, respectively), while the correlation in the UK was not 
statistically significant (rUK = − 0.01, p > 0.05). There was a negative 
correlation between population density and Td in four countries, but the 
correlation was higher in the UK (Table. 1 and Fig.S4). In linear 
regression analysis, the GRI at single 14-day-lagged was highly posi-
tively correlated with Td (except for Italy) (Table. 1 and Fig.S5), indi-
cating the GRI is an important factor in controlling COVID-19. 

3.2. Effects of meteorological factors on Td 

Figs. 2 – 4 show the results of the meta-analysis about the RR of Td 
associated with different percentiles values (10th, 25th, 75th and 90th) 
of temperature, absolute humidity and DTR at cumulative 14-day- 
lagged. In the regional analysis, the most significant effect of lower 
temperature (10th) on Td was found in Italy (RR = 0.0008, 95% CI: 
0.0002, 0.0035). In the pooled analysis, compared with the median of 
each meteorological factors, lower temperatures (10th and 25th) had a 
greater impact on Td. The RR of temperature in the 10th and 25th 
percentiles were 0.0074 (95% CI: 0.0023, 0.0237) and 0.1220 (95% CI: 
0.0667, 0.2232), respectively. Similar to the temperature, the effect of 
low absolute humidity on Td was significant. There was the most sig-
nificant effect of lower humidity (10th) on Td in Germany (RR = 0.0944, 
95% CI: 0.0654, 0.1511). The RR of Td at 10th percentile and 25th 
percentile were 0.3266 (95% CI: 0.1379, 0.7734) and 0.6018 (95% CI: 
0.4693, 0.7718). Meanwhile, the significant effect of extremely high 
humidity was also observed at the 90th percentile of absolute humidity 
(RR = 0.3438, 95% CI: 0.2254, 0.5242). However, the effect estimates of 
DTR on Td were not statistically significant. 

3.3. Cumulative lag effects of meteorological factors 

Fig. 5 presents the RR for the cumulative effect of Td under different 
lag exposure (lag 03, lag 05, lag 07, lag 09, lag 011 and lag 014) at 10th 
and 90th percentiles of temperature, absolute humidity and DTR. 
Temperature with 10th percentile showed an enhanced cumulative ef-
fect on the Td as the lag days change, while temperature with 90th 
percentile showed a non-significant cumulative effect. The cumulative 
effect of absolute humidity on Td decreased in the exposure at 10th and 
90th percentiles, peaking at cumulative 14 days. The cumulative lag 
effect of DTR was not significant. 
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3.4. Multivariate meta-regression analysis and sensitivity analysis 

The overall estimates from the region-specific effects are similar to 
the country-specific effects (Fig. 6), indicating that low temperature and 
low absolute humidity may be a factor leading to shorter Td in four 
European countries, resulting in a faster spread of the virus. In the 
sensitivity analysis, the associations between meteorological factors and 
the Td of different time intervals (5 and 9 days) were robust. The low 
temperature and extreme absolute humidity have a greater impact on 
the COVID-19 Td (Table.S1-S2), indicating that they likely favor the 
COVID-19 transmission. 

4. Discussion 

COVID-19 is a widely transmitted respiratory disease, which has 
been listed as a pandemic by the World Health Organization (WHO, 
2020b). Since the outbreak of COVID-19, the arguments over whether 
the ambient environment could affect its transmission have continu-
ously been a hot topic worldwide. To date, no consistent evidence has 
been reached with varying study periods, countries/regions with vary-
ing climate and weather, and the lack of controlling confounding factors 
like population density, government intervention policies, etc. To solve 
these issues, we used the DLMN statistic model to quantitatively eval-
uate the effects of meteorological factors on COVID-19 transmission 

during a longer period and controlled the bias from government inter-
vention policies in a form of GRI. Our results indicated that government 
responses are important factors in controlling COVID-19 pandemic. 
After controlling government responses and other confounding factors, 
we found that both the lower temperature and the lower absolute hu-
midity had a greater impact on the COVID-19 case Td. 

Although there was a bit difference in the RR in analysis of the as-
sociation between meteorological factors and Td, but their associations 
were quit similar, all indicated the positive effect of lower temperature 
and lower humidity on COVID-19 transmission. This is consistent with 
those reported in other geographical locations (Bashir et al., 2020; Ma 
et al., 2020; Tosepu et al., 2020; Xie and Zhu, 2020). With the arriving of 
winter in these four European countries, the second increasing wave of 
COVID-19 confirmed cases were much more strong compared to the first 
one, which better proved that COVID-19 transmission was related to low 
temperature. An experimental study reported that the SARS-CoV-2 virus 
was highly stable at 4 ◦C, but sensitive to heat (van Doremalen et al., 
2020). At 4 ◦C, there was only around a 0.7 log-unit reduction of in-
fectious titer on day 14, but the time for virus inactivation reduced to 5 
min (Chin et al., 2020), when the incubation temperature increased to 
70 ◦C. That is, the high temperature is not conducive to the survival of 
the virus. Besides, it is known that respiratory viruses (such as influenza) 
can survive longer in a cold environment (Martinez, 2018). Similar virus 
like SARS-CoV and MERS-CoV were also reported to maintain stronger 
infectivity at low temperatures on a solid surface, whether it was droplet 
state or aerosol state (van Doremalen et al., 2013; Casanova et al., 2010; 
Kim et al., 2007). Besides, the body’s resistance become relatively weak 
under cold stress (Shaw, 2016), particularly, the phagocytosis function 
of alveolar macrophage was depressed in an environment with lower 
temperature (Luo et al., 2017), which may also explain the higher 
confirmed COVID-19 cases and the shorter Td. Therefore, combined 
with the more obvious effect of lower temperature in cumulative anal-
ysis, our results indicated that the lower temperature is significantly 
beneficial to the transmission and survival of coronavirus. 

Previous studies were usually under a linear regression framework, 
showing that there was a significant negative correlation between 

Fig. 1. The trend of total COVID-19 daily confirmed case counts and the COVID-19 case doubling time in Germany (a), Italy (b), Spain (c) and UK (d) from February 
1st through November 1st, 2020. 

Table 1 
Pearson correlations between the variables and the log (Td).  

Variables Germany Italy Spain The United Kingdom 

Temperature 0.66a 0.64a 0.47a 0.75a 

Absolute humidity 0.55a 0.50a 0.25a 0.67a 

DTR 0.07a 0.10a 0.12a − 0.01 
Population density − 0.34 − 0.30 − 0.02 − 0.97a 

GRI lag14 0.65a − 0.05a 0.68a 0.62a  

a p < 0.05. Td: the COVID-19 case doubling time; log (Td): the common log-
arithm of the Td; DTR, diurnal temperature range; GRI lag14: the government 
response index at single 14-day-lagged. 
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humidity and COVID-19 cases (Sarkodie and Owusu, 2020), which need 
to be confirmed with more precise statistic model. Islam et al. regarded 
humidity as a driver of SARS-CoV-2 transmission, and a higher 
COVID-19 transmission rate was reported in specific humidity ranged 
from 6 to 9 g/kg (Islam et al., 2020; Runkle et al., 2020b). In line with 
these studies, we found that extreme (high and low) absolute humidity 
have a greater impact on the COVID-19 Td, which were still robust in 
pooled analysis for the four European countries. When the humidity in 
the air is low, the virus forms small aerosol particles, which increases the 
risk of viral transmission and reduces immunity (Sarkodie and Owusu, 
2020). It’s reported that up to 3 h are needed for 2-μm aerosol particles 
to settle to the ground, while 10 μm aerosol particles only take about 
10-min (Marr et al., 2019), the long stay of the virus in the air increase 
the risk of infection in others. In this study, we found the cumulative 
effect of lower humidity was obviously significant on Td. This means the 
longer stable dry environment would promote the long stay of 
SARS-CoV-2 and shorten the Td, which in turn increases the trans-
mission of COVID-19. In addition, the mucociliary of the nasal cavity 
and upper respiratory tract have important interception and cleaning 
functions, but dry air can damage their epithelial structure (Arja I. 
Hälinen, 2000). To sum up, the dry environment can increase the spread 
of the virus and facilitate COVID-19 transmission. Also, studies have 
shown that a considerable number of people infected with COVID-19 

suffer from underlying diseases (such as diabetes, hypertension, coro-
nary heart disease, etc.) (Emami et al., 2020). Since extremely high 
humidity is also a risk factor for chronic diseases like cardiovascular 
disease in the elderly (Zeng et al., 2017), which may explain why it is 
also related to the shorter Td. In summary, we believe that a longer 
sustained dry environment may increase the spread of COVID-19, which 
need to be stressed in government interventions. 

However, previous findings are inconsistent due to a few possible 
reasons (Xie and Zhu, 2020; Yao et al., 2020; Briz-Redón and 
Serrano-Aroca, 2020; Jahangiri et al., 2020). Firstly, the temperature 
range varied greatly with studies due to the short study period. Sec-
ondly, many studies are cross-sectional at the national level and there is 
a large degree of heterogeneity among different countries (Tobías and 
Molina, 2020). And in some time-series studies, researchers used the 
temperature of the capital city to reflect the average exposure temper-
ature for one country, which leads to large exposure misclassification. 
Thirdly, regulations and human behaviors play a great role in the spread 
speed of COVID-19, e.g., contact tracking, quarantine strategy, the 
implementation ability of COVID-19 control policy, urbanization rate 
and the availability of medical resources (Bherwani et al., 2020; 
Jahangiri et al., 2020; Mukherjee et al., 2020; Bherwani et al., 2020; 
Jahangiri et al., 2020; Mukherjee et al., 2020). In this study, we con-
ducted the DLMN analysis for a long period (from February 1st through 

Fig. 2. A meta-analysis for the relative risk (95% confidence interval) of the COVID-19 case doubling time associated with different percentiles values (10th, 25th, 
75th and 90th) of temperature at cumulative 14-day-lagged. 
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November 1st, 2020), covering two increasing waves of COVID-19 
confirmed cases and controlling factors like population density, GRI, 
etc. GRI integrates 14 indicators in terms of containment and closure 
policies, economic policies, and health system policies (including School 
Closures, Workplace closing, Cancel Public Events, Restrictions on 
gatherings, Public Transportation, Stay at Home Order, Restrictions on 
Internal Movement, International Travel Controls, Income Support, 
Debt/contract Relief for Households, Public Information Campaigns, 
Testing Policy and Contact Tracing). Thus, our models likely provide 
better estimates of meteorological factors on the COVID-19 spread by 
filtering out the impact of regulation and behavior. 

A previous study indicated that the impact of environmental factors 
on virus transmission should be characterized using a dynamic model 
(such as the susceptible-exposed-infectious-recovered [SEIR] model), 
because infectiousness estimated from a traditional model is biased by 
confounding from environmental variables (Shi et al., 2020). However, 
the SEIR model has some limitations in its application. Firstly, the SEIR 
model needs to input the daily number of susceptible, exposed, infec-
tious and removed individuals. These detailed data reports are incom-
plete in many countries or regions. Secondly, the SEIR model may lead 
to a deviation of output results due to different input parameter esti-
mations (such as contact rate and infection rate) (He et al., 2020). For 
example, several studies used the SEIR model to evaluate the 

relationship between meteorological conditions (temperature and rela-
tive humidity) and COVID-19 in China, but the results were inconsistent 
due to the different input parameters of their models (Pan et al., 2021; 
Guo et al., 2020; Shi et al., 2020). Besides, to allow for over-dispersion of 
COVID-19 data, some studies used the generalized linear model with 
negative binomial distribution to fit the relationship between environ-
mental factors and COVID-19 based on R software with “MASS” package 
(Liu et al., 2020; J Wang et al., 2020). A limitation of the generalized 
linear model is that it can’t fit the nonlinear-lagged effects between 
environmental factors and COVID-19. And the previous study showed 
that both the quasi-Poisson distribution and negative binomial distri-
bution regression model can be used for overdispersal data, and the 
quasi-Poisson distribution is a better fit to the overall variance-mean 
relationship (Ver Hoef and Boveng, 2007). Considering the above fac-
tors, the DLNM model with quasi-Poisson distribution is the most suit-
able for this study. 

Although we have adjusted population density and GRI, there are 
still many restrictions that should not be ignored. In this study, our 
evidence is limited to modeling studies based on parameter assumptions 
with current incomplete case data. But the transmission of COVID-19 
may be affected by many factors, including governmental in-
terventions, social contact, population mobility, population vulnera-
bility and so on. Therefore, this problem should be examined in future 

Fig. 3. A meta-analysis for the relative risk (95% confidence interval) of the COVID-19 case doubling time associated with different percentiles values (10th, 25th, 
75th and 90th) of absolute humidity at cumulative 14-day-lagged. 
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research. Secondly, Td is the time needed to double the number of 
infected people. As an indicator of COVID-19 transmission, it will 
change with the degree of infection and the implementation of human 
intervention with the passage of time. Only paying attention to the Td is 
not enough to accurately reflect the real situation of COVID-19 trans-
mission. Therefore, our research results need to be further discussed. 
Thirdly, we only have analyzed the data from four countries covering 
nine months, which may not be enough to study the COVID-19 change 
trend at global level. Even so, the conclusion based on the present study 
at least provides new clues for understanding the relationship between 
the spread of COVID-19 and temperature and humidity. 

5. Conclusion 

In summary, the government responses are important factors in 
alleviating the spread of COVID-19. Our results indicate that both the 
cold and the dry environment also likely facilitate the COVID-19 
transmission after controlling the bias from population density, gov-
ernment response policies, air pollutants and other factors in long study 
periods covering two increasing waves of COVID-19 in four European 
countries. This study used data from February 1st to November 1st, 
which provide strong scientific evidence for the importance of stressing 
the cold weather effect on COVID-19 transmission with the arriving 

colder season. In particular, we observed that the confirmed case of 
COVID-19 are still madly increasing in the Northern Hemisphere, so we 
strongly suggest to provide more public health resources and govern-
mental interventions on the controlling of COVID-19 in this cold season. 
Besides, studies covering the entire earth in a longer period are urgently 
needed to quantify the combined effects of meteorological factors and 
policy interventions on the spread of COVID-19. By doing that, we hope 
to find the most effective intervention in controlling the COVID-19, 
particularly before the vaccinating of an effective vaccine against this 
tricky virus. 
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under different lag exposure periods (lag 03, lag 05, lag 07, lag 09, lag 011 and lag 014). Total: a meta-analysis of relative risk across four countries; DTR, diurnal 
temperature range. 

Fig. 6. The region-specific effect (lag 014) and the overall estimates effect under different lag exposure periods of temperature (a, d), absolute humidity (b, e) and 
diurnal temperature range (c, f). DTR, diurnal temperature range. 
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