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A B S T R A C T   

Background: Major depressive disorder (MDD) is heterogeneous disorder associated with aberrant functional 
connectivity within the default mode network (DMN). This study focused on data-driven identification and 
validation of potential DMN-pattern-based MDD subtypes to parse heterogeneity of the disorder. 
Methods: The sample comprised 1397 participants including 690 patients with MDD and 707 healthy controls 
(HC) registered from multiple sites based on the REST-meta-MDD Project in China. Baseline resting-state func
tional magnetic resonance imaging (rs-fMRI) data was recorded for each participant. Discriminative features 
were selected from DMN between patients and HC. Patient subgroups were defined by K-means and principle 
component analysis in the multi-site datasets and validated in an independent single-site dataset. Statistical 
significance of resultant clustering were confirmed. Demographic and clinical variables were compared between 
identified patient subgroups. 
Results: Two MDD subgroups with differing functional connectivity profiles of DMN were identified in the multi- 
site datasets, and relatively stable in different validation samples. The predominant dysfunctional connectivity 
profiles were detected among superior frontal cortex, ventral medial prefrontal cortex, posterior cingulate cortex 
and precuneus, whereas one subgroup exhibited increases of connectivity (hyperDMN MDD) and another sub
group showed decreases of connectivity (hypoDMN MDD). The hyperDMN subgroup in the discovery dataset had 
age-related severity of depressive symptoms. Patient subgroups had comparable demographic and clinical 
symptom variables. 
Conclusions: Findings suggest the existence of two neural subtypes of MDD associated with different dysfunc
tional DMN connectivity patterns, which may provide useful evidence for parsing heterogeneity of depression 
and be valuable to inform the search for personalized treatment strategies.   

1. Introduction 

Major depressive disorder (MDD) is one of the most common mental 
disorders and is a heterogeneous entity characterized by depressed 
mood, loss of pleasurable feelings or interest, and anhedonia (Goldberg, 
2011). Mounting studies suggest that patients with MDD are associated 
with altered functional connectivity (FC) within the default mode 
network (DMN) (Goya-Maldonado et al., 2016; Kaiser et al., 2015). In 
patients with depression, hyperconnectivity of DMN is closely related to 
the disordered self-referential thought and maladaptive rumination 
(Berman et al., 2011; Sheline et al., 2009; Yan et al., 2019). Persistent 
increased FC within the anterior subnetwork of the DMN may increase 
risk for relapse in recovered MDD patients (Li et al., 2013). In addition, 
baseline centrality of posterior DMN may predict early improvement 
following short-term antidepressant therapy for patients with MDD 
(Shen et al., 2015). By contrast, reduced FC of the DMN is associated 
with symptom severity as reported in patients with recurrent MDD (Yan 
et al., 2019). Inconsistencies among previous reports of DMN alterations 
for patients with MDD may potentially reflect the heterogeneity of this 
disorder (Williams, 2016). Elucidation of the relationships of specific 
patterns of aberrant connectivity of DMN to MDD may contribute to our 
understanding of the neuropathophysiological mechanisms underlying 
heterogeneity of symptoms in this complex disorder (Berman et al., 
2011; Kaiser et al., 2015). 

As focal element of the NIMH research domain criteria (RDoC), dif
ferentiation of brain functional dysconnectivity patterns to clinical 
diagnosis may enable further relevant description and refinement of 
subtypes of MDD (Beijers et al., 2019; Insel et al., 2010). It is established 
that clinical symptomatology and putative biological substrates for the 
diagnosis of depression are variable and inconsistent at the individual 
patient level (Drysdale et al., 2017). Preclinical experimental studies 
suggest that brain connectivity-based subtypes of depression correlate 
with an atypical connectivity pattern which may be masked by central 
tendency measures in traditional group-based analysis (Price et al., 
2017a). Encouraging findings have been reported for connectivity-based 

depression biotypes in the study of Drysdale and colleagues, as four 
subtypes of depression associated with differing patterns of aberrant 
brain connectivity, and one subtype effectively responded to targeted 
neurostimulation therapies (Drysdale et al., 2017). The putative sub
types of neural circuit dysfunction travel across conventional diagnostic 
categories, and may track with clinically relevant phenotypes of 
depression (Price et al., 2017a, 2017b). The ability to parse the het
erogeneity of MDD may yield biologically based subgroups that will 
increase our ability to predict clinical outcomes and elucidate underly
ing disease mechanisms (Williams, 2016). This promising approach to 
heterogeneity at the neuroimaging level is hampered by small sample 
size of currently available reports. Studies using large sample sizes and 
exploring biotypes of MDD with differing DMN patterns are limited but 
much needed. 

Application of multivariate modeling and machine learning algo
rithms to neuroimaging, provides unprecedented opportunities for 
large-scale imaging studies of pooled data across multiple sites, to 
identify brain phenotypes that more closely map for MDD the likely 
underpinnings of neuropsychopathology (Smith and Nichols, 2018; Woo 
et al., 2017). By increasing the numbers of participants across sites, data 
pooling may boost statistical power and probably accelerate progress in 
brain mapping (Costafreda, 2009). Although aggregating data across 
multiple sites with different scanners and acquisition protocols can in
crease sample heterogeneity, multi-site data could delineate a more 
comprehensive aberrant pattern of the disease with a more representa
tive sample of participants (Ma et al., 2018; Suckling et al., 2010). The 
present study was initiated from the REST-meta-MDD Project in China 
(Yan et al., 2019). 

We conducted a data-driven, brain-based categorization approach to 
resting-state FC within the DMN in patients with MDD from multi-site 
datasets, to parse the neural circuit dysfunctions that distinct typed of 
depression within traditional diagnostic boundaries. An independent 
single-site (unseen) dataset was used to validate the DMN-pattern-based 
MDD subtypes identified in multi-site discovery (training) dataset. 
Reproducible MDD subgroups with differing patterns of DMN were 
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validated across different sites and diverse populations. In this way, we 
have applied machine learning to elucidate the depression biotypes with 
dysconnectivity patterns of DMN, which may eventually guide more 
effective personalized treatment. 

2. Material and methods 

2.1. Participants 

This study was based on the REST-meta-MDD Project of resting-state 
fMRI initiated in China. Patients diagnosed with first-episode or recur
rent MDD were recruited. Symptom severity was evaluated using the 
Hamilton Depression Rating Scale (HAMD). All participants provided 
informed consent in accordance with requirement of the ethics com
mittee of the local Institutional Review Boards. In this study, the overall 
dataset comprised 1397 participants including 690 patients with MDD 
and 707 HC registered from thirteen clinical sites. Steps for data 
cleansing and quality control are listed in Fig. S1. Subject demographics 
are displayed in Table 1. The discovery (training) dataset included 492 
patients with MDD and 523 HC from twelve clinical sites to select fea
tures and identify subgroups in relation to DMN patterns in patients with 
MDD. The replication (unseen) dataset had 198 patients from an inde
pendent single site to further validate the MDD subtypes with differing 
DMN patterns. 

2.2. Image acquisition & data preprocessing 

fMRI data were preprocessed according to a standardized pre
processing protocol on Data Processing Assistant for Resting Resting- 

State fMRI (DPARSF) (Yan and Zang, 2010). Preprocessing steps 
mainly included: discard the first 10 volumes, slice-timing correction, 
realignment, coregistration, normalization and nuisance regression. 
Data preprocessing code are available on the https://github. 
com/Chaogan-Yan/DPARSF. Here, we used the default preprocessing 
parameters. Nuisance signals including the Friston-24 head motion pa
rameters, white matter, cerebrospinal fluid and whole brain global 
signal were regressed out for each individual (Friston et al., 1996). To 
minimize head motion effects, subjects with mean framewise displace
ment larger than 0.3 mm were excluded from the analysis (Power et al., 
2012). 

2.3. Atlas-based analysis 

For each participant, rs-fMRI data, brain regions of DMN were 
defined as 5-mm radius spheres placed at coordinates based on the 
Dosenbach 160 atlas (Dosenbach et al., 2010). The time series of thirty- 
four brain regions were extracted for the DMN, and temporal correlation 
coefficients of the network were converted to z-values by using Fisher’s 
r-to-z transformation. Multiple linear regression was used to control for 
age-, sex- and site-related effects on FC (34*35/2 = 595 connections) by 
regressing the z-values on the subjects’ ages and dummy variables for 
sex and sites (Drysdale et al., 2017). We also computed the FC of fifty- 
eight nodes within the DMN (58*59/2 = 1711 connections) based on 
the Power atlas (Power et al., 2011). Fig. 1 illustrates the flowchart for 
the data analysis strategy. Analyses were computed in Python. 

Table 1 
Demographic characteristics of participants.  

Sites Total MDD 
(F) 

HC (F) Age MDD Age HC EDL MDD EDL HC Illness duration 
(months) 

HAMD total 
scores 

FED/non-FED/ 
unknown 

Medication (Y/ 
N) 

Discovery 
Site A 318 149 

(92) 
169 
(103) 

28.05 
(8.87) 

24.99 
(4.92) 

13.80 
(3.20) 

15.66 
(2.66)  

7.00 22.34 (4.43) 90 / 54 / 0 41 / 108 

Site B 104 39 (32) 65 (39) 31.36 
(10.07) 

29.37 
(10.42) 

11.11 
(2.89) 

13.05 
(2.39)  

8.00 26.15 (6.22) 36 / 1 / 2 11 / 28 

Site C 95 63 (42) 32 (17) 30.49 
(7.14) 

29.59 
(5.00) 

13.70 
(3.37) 

14.59 
(2.82)  

6.00 21.29 (3.45) 63 / 0 / 0 0 / 63 

Site D 93 31 (18) 62 (35) 31.03 
(9.79) 

34.95 
(11.85) 

12.06 
(2.63) 

13.13 
(2.05)  

32.04 20.94 (4.96) 2 / 29 / 0 NA 

Site E 138 71 (40) 67 (39) 31.42 
(8.09) 

30.76 
(7.89) 

13.90 
(2.91) 

15.16 
(2.27)  

3.00 24.82 (4.85) NA NA 

Site F 40 20 (17) 20 (13) 38.60 
(10.51) 

44.25 
(11.58) 

11.75 
(3.88) 

10.80 
(4.83)  

11.50 23.25 (2.59) 11 / 9 / 0 19 / 1 

Site G 47 23 (12) 24 (12) 32.26 
(7.57) 

28.75 
(4.58) 

14.22 
(3.79) 

14.79 
(2.75)  

4.00 21.91 (3.03) 23 / 0 / 0 NA 

Site H 26 11 (7) 15 (9) 27.18 
(8.50) 

28.47 
(10.89) 

12.91 
(4.11) 

14.67 
(3.54)  

36.00 23.27 (6.54) 6 / 5 / 0 0 / 11 

Site I 65 28 (15) 37 (22) 37.68 
(8.97) 

35.81 
(9.52) 

11.63 
(4.01) 

16.09 
(3.25)  

18.00 22.82 (4.16) 22 / 6 / 0 22 / 6 

Site J 12 6 (4) 6 (2) 28.83 
(13.21) 

26.83 
(2.86) 

12.50 
(2.43) 

17.00 
(1.55)  

25.00 22.50 (3.62) 2 / 4 / 0 0 / 6 

Site K 35 29 (24) 6 (1) 34.21 
(9.35) 

31.33 
(2.25) 

12.72 
(2.83) 

13.67 
(0.82)  

12.00 24.28 (4.71) 19 / 10 / 0 0 / 29 

Site L 42 22 (12) 20 (8) 35.18 
(10.30) 

24.35 
(7.07) 

11.68 
(2.82) 

13.30 
(2.13)  

25.50 23.45 (5.60) NA 20 / 2 

Replication 
Site 

M 
382 198 

(132) 
184 
(121) 

35.70 
(10.11) 

32.40 
(11.99) 

11.29 
(3.18) 

13.95 
(3.61)  

24.00 21.90 (4.49) 163 / 35 / 0 82 / 116 

Total 1397 690 
(479) 

707 
(421) 

32.45 
(9.76) 

30.43 
(10.22) 

12.54 
(3.38) 

14.41 
(3.20)  

– – – – 

MDD, patients with major depressive disorder. HC, healthy controls. F, female. EDL, years of educational level. FED, first-episode depression. Median duration of 
illness. Mean (Standard Deviation). NA, not available. The thirteen sites were respectively located in: A, the West China Hospital of Sichuan University, Chengdu. B, the 
First Affiliated Hospital of China Medical University, Shenyang. C, the Second Xiangya Hospital of the Central South University, Changsha. D, the Beijing Anding 
Hospital of Capital Medical University, Beijing. E, the Peking University Sixth Hospital, Beijing. F, the Affiliated Guangji Hospital of Soochow University, Suzhou. G, 
the Second Xiangya Hospital of Central South University, Changsha. H, the Shanghai Mental Health Center, Shanghai Jiao Tong University, Shanghai. I, the Sir Run 
Run Shaw Hospital, Zhejiang University, Hangzhou. J, the First Affiliated Hospital of Chongqing Medical University, Chongqing. K, the First Affiliated Hospital of 
Chongqing Medical University, Chongqing. L, the Second Xiangya Hospital of Central South University, Changsha. M, the Southwest University, Chongqing. 

S. Liang et al.                                                                                                                                                                                                                                    

https://github.com/Chaogan-Yan/DPARSF
https://github.com/Chaogan-Yan/DPARSF


NeuroImage: Clinical 28 (2020) 102514

4

2.4. Data analyses for biotypes 

2.4.1. Feature selection 
In the discovery dataset, FC with low variance were considered as 

irrelevant features. VarianceThreshold (as a baseline dimensionality 
reduction algorithm) was used to remove low-variance FC (here 
threshold = 0.01), and then SelectFdr (f_classif) was applied to identify 
significant FC to differentiate patients with MDD from HC with false 
discovery rate (FDR) correction (PFDR < 0.05). Based on the Dosenbach 
atlas, twenty-eight FC within the DMN were selected as brain features. 
The selected FC are shown in Table S1 & Fig. S2.A-B. 

2.4.2. Cluster analysis and cluster validation 
Using the identified FC of DMN, K-means clustering was conducted 

for class formation in patients with MDD. To evaluate clustering val
idity, Calinski-Harabasz (CH) score and silhouette score were used to 
determine the optimal cluster number with the largest numerical values. 
Finally, principal component analysis (PCA) was applied to visualize the 
clustering of patient subgroups. See details in the Supplementary 
material. 

2.4.3. Independent replication dataset validation 
To validate DMN-pattern-based MDD subtypes defined in the dis

covery dataset, the selected FC within the DMN were extracted from the 
replication dataset - an independent cohort. Cluster analysis and cluster 
validation, as described above, were then applied to the replication 
dataset to explore DMN-pattern-based patient subgroups. Using the 
mean FC (averaged across the selected connections), Pearson correlation 
and multiple comparisons were applied between patient subgroups in 
the discovery and replication datasets. 

2.4.4. Subset dataset validation 
Here we conducted further analysis in subsets of the discovery 

dataset, to confirm the patient subgroups based on the dataset of site A 
and a subset dataset comprising the remaining discovery sites. Patients 
with MDD in site A were either first-episode drug-naive, or exhibited 
recurrent episodes but had not taken antidepressants for at least three 
months. 

2.4.5. Statistical significance of clustering 
To assess significance of clustering, a SigClust approach was con

ducted to test whether a cluster followed a single Gaussian distribution 
(Liu et al., 2008). Here, an R package SigClust was used. We also tested 
the significance of clustering with bootstrapping method. The average of 
CH scores with the optimal cluster based on the original dataset was 
plotted in the bootstrapping distribution. See details in the Supple
mentary material. 

2.4.6. Statistical analysis 
Demographic characteristics (age and education level) and severity 

of clinical symptoms (HAMD total score and subscale scores) were 

compared between patient subgroups using two-sample t tests. Cate
gorical variables were compared between patient subgroups using χ2 

test. Illness durations were compared using Mann–Whitney U tests. 
Pearson correlation was used to measure the association between HAMD 
total score, illness duration, age and the selected FC, and effect size (ES) 
was calculated between patient subgroups. All statistical test results 
were considered significant with PFDR < 0.05. 

3. Results 

3.1. MDD subgroups with differing DMN patterns identified in the 
discovery dataset 

In the discovery dataset, based on the selected FC within the DMN, 
the cluster result achieved the maximum for the CH score and silhouette 
score, when the cluster number was equal to two (see Fig. S3.A & Fig. S4. 
A). Results of the SigClust and bootstrapping also suggested that two 
clusters best represented the underlying data structure (see Fig. S5.A & 
Fig. S6). Clustering subgroups were visualized by PCA (see Fig. 2.A). 
Subsequent analyses mainly focused on these two patient subgroups 
with differing DMN patterns. In the discovery dataset, subgroup 1 had 
288 patients (58.54%), and subgroup 2 had 204 patients (41.46%). 
Relative to HC, subgroup 1 was characterized by decreased FC in the 
DMN (hypoDMN), while for subgroup 2 hyperconnectivity was pre
dominant (hyperDMN). Compared to the hypoDMN, the hyperDMN 
subgroup showed relatively increased FC within the DMN, especially 
between the left superior frontal cortex (sFC) and left precuneus cortex 
(PrC), left sFC and left posterior cingulate cortex (PCC), and left sFC and 
right ventral medial prefrontal cortex (vmPFC) (see Fig. 2.C & Table S2). 

In the correlation analysis, age was positively correlated with HAMD 
total score (r = 0.21, PFDR = 0.02) in the hyperDMN subgroup, but not in 
the hypoDMN (see Fig. 3. A&B). However, there was no significant 
linear relationship between the FC and clinical variables in each patient 
subgroup. No statistically significant differences were found between 
patient subgroups in age, sex, years of educational level, illness dura
tion, and first-episode or not, medicated or not, HAMD total scores or 
subscale scores (see Table S3). 

3.2. DMN-pattern-based MDD subtypes validated in the replication 
dataset 

In the replication dataset, using the selected FC of the DMN based on 
the Dosenbach atlas, a cluster number of two achieved the maximum for 
the CH score and silhouette score (see Fig. S3.B & Fig. S4.B). Results of 
the SigClust and bootstrapping also suggested that two clusters were the 
best fit for the data structure (see Fig. S5.B & Fig. S7). The DMN-pattern- 
based patient subgroups were also visualized by PCA (see Fig. 2.D). In 
the replication dataset, 127 patients (64.14%) were placed in the 
hypoDMN subgroup and 71 patients (35.86%) were placed in the 
hyperDMN subgroup. Using the FC within the DMN identified in the 
discovery dataset, patient subgroups were validated in the replication 

Fig. 1. Data analysis flowchart.  
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dataset – the hypoDMN characterized with hypoconnectivity, the 
hyperDMN marked by increased FC (see Fig. 2.E & Table S4). 

In the correlation analysis, age was positively correlated with illness 
duration in the hypoDMN subgroup (r = 0.29, PFDR = 0.01), but not in 
the hyperDMN. However, no significant linear correlation was found 
between age and other variables in each patient subgroup (see Fig. 3 
C&D). There were no significant differences between these patient 
subgroups with respect to demographic and clinical symptom variables 
in the replication dataset (see Table S5). 

3.3. Patient subgroups between discovery and replication datasets 

Based on the mean of selected twenty-eight connections, significant 
differences were observed between the two subgroups in the discovery 
dataset (ES = 0.82, PFDR = 0.01) and the replication dataset (ES = 0.65, 
PFDR = 0.03), respectively. Compared to the hypoDMN subgroup in the 
discovery dataset: there were no differences in the mean FC between the 
hypoDMN subgroup in the replication dataset (ES = 0.20, PFDR = 0.55), 
but significant differences between the hyperDMN in the replication 
dataset (ES = 0.84, PFDR = 0.01). Relative to hyperDMN subgroup in the 
discovery dataset, no significant differences in the mean FC were 
detected in the hyperDMN subgroup in the replication dataset (ES =
0.01, PFDR = 0.99), but there were differences in the mean FC between 
the hypoDMN subgroup in the replication dataset (ES = 0.64, PFDR =

0.03). The mean FC for each respective subgroup is displayed using a 
violin plot in Fig. 4.A. 

In relation to the mean FC, the hypoDMN patient subgroups in the 
discovery and replication datasets were highly correlated (r = 0.93, 
PFDR < 0.001). The hyperDMN subgroup in the discovery dataset was 
highly correlated with the hyperDMN subgroup in the replication 
dataset (r = 0.93, PFDR < 0.001). See Fig. 4.B & D. 

3.4. Repeatability of DMN-pattern-based MDD subtypes in subset analysis 

Based on the selected FC, an optimal cluster number of two best 
represented the data structure for the dataset of site A - a subset of 
discovery dataset (see Fig. S3.C & Fig. S4.C). The DMN-pattern-based 
patient subgroups were also validated in the dataset of site A (see 
Fig. S8.A-C & Table S6). A violin plot was used to display the distribution 
for patient subgroups of site A and first-episode MDD subset of repli
cation dataset (See Fig. 4C). In the dataset of site A, patients of 
hypoDMN tended to have higher anxiety scores in the HAMD subscale 
than those of hyperDMN subgroup (ES = 0.39, PFDR = 0.07). However, 
no statistically significant differences in demographic and clinical var
iables were detected between patient subgroups (see Table S7). 

3.5. Repeatability of DMN-pattern-based MDD subtypes based on power 
atlas 

Based on the DMN of the Power atlas, thirty-seven FC within the 
DMN were selected as features for subtyping patients with MDD. The 
selected FC are shown in Fig. S2.C-D. The cluster analysis for the CH 
score and silhouette score are displayed in Fig. S3.D-F & Fig. S4.D-F. 
Results of the SigClust and bootstrapping also suggested that two clus
ters were optimal to represent the data structure both in the discovery 
and replication datasets (see Fig. S5.C-D, Fig. S9 & Fig. S10). Results of 
subtyping based on the Power atlas were further validated the existence 
of DMN-pattern-based patient subgroups (see Fig. S11-12). 

4. Discussion 

In the present study, we applied data-driven machine learning and 
multivariable statistics to multi-site datasets and identified two MDD 
subtypes with distinct connectivity patterns of DMN at rest. Patient 

Fig. 2. DMN-Pattern-Based MDD subtypes in discovery and replication datasets. (A). Clusters are plotted using PCA in discovery dataset. Two-dimensional principal 
subspace for patient subgroups. The X axis represents the value of first principal component that accounts for the largest possible variance in the dataset. The Y axis 
represents the value of second principal component. (B). Patient subgroups in the discovery dataset. hypoDMN, subgroup with hypoconnectivity within the DMN. 
hyperDMN, subgroup with hyperconnectivity within the DMN. (C). FDR-corrected FC between each pair of groups (hypoDMN, hyperDMN and HC) in the discovery 
dataset. Blue bar, hypoDMN. Red bar, hyperDMN. Yellow bar, HC. (D). Clusters are plotted using PCA in the replication dataset. (E). Patient subgroups in the 
replication dataset. (F). FDR-corrected FC between each pair of groups (hypoDMN, hyperDMN and HC) in the replication dataset. In (B) & (E), red dots represent 
frontal regions. Grey dots represent temporal regions. Green dots represent PCC and PrC. Blue dots represent occipital and parietal regions. In (C) & (F), sFC, superior 
frontal cortex. PCC, posterior cingulate cortex. PrC, precuneus. vmPFC, ventral medial prefrontal cortex. L, left. R, right. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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subgroups with differing DMN patterns were validated in an indepen
dent single-site replication dataset across different brain atlases. 
Compared to HC, one patient subgroup was characterized by hyper
connectivity within the DMN, especially the connectivity between the 
prefrontal areas and PCC/PrC, and one subgroup had decreased con
nectivity. The hyperDMN subgroup had age-related severity of depres
sive symptoms in the discovery dataset, but lacking of the correlation in 
the replication dataset. In the subset analysis of site A – almost included 
first-episode drug-naive MDD patients, the hypoDMN subgroup tended 
to have more severe anxiety symptoms than the hyperDMN subgroup. 
However, in this study, there was no significant diverse regarding de
mographic and clinical variables between patient subgroups. 

In the current study, the DMN-pattern-based patient subgroups dis
played distinguished connectivity between prefrontal regions and PCC/ 
PrC. The prefrontal areas and PCC/PrC are critical element regions of the 
DMN, which are involved in monitoring one’s own internal state and 
emotions, self-referential processing and memory consolidation (Buck
ner et al., 2008). Additionally, altered structural connectivity between 
these nodes of the DMN are also considered as the prominent neural 

features related to MDD (Korgaonkar et al., 2014). Furthermore, prior 
studies have suggested that antidepressants could selectively normalize 
hyperconnectivity of the posterior rather than anterior DMN, which 
suggests the DMN may be a potential therapeutic target and predictive 
biomarker in patients with MDD (Brakowski et al., 2017; Li et al., 2013). 
Patients with MDD could have increased connectivity within the DMN at 
the group level both at rest and during task performance (Berman et al., 
2011; Goya-Maldonado et al., 2016; Kaiser et al., 2015; Sheline et al., 
2009). Hyperconnectivity within the DMN could be a significant issue in 
the pathophysiology of both acute and chronic clinical manifestations of 
depression (Posner et al., 2013). Moreover, patients with MDD charac
terized by hyperconnectivity of the DMN at baseline were likely to 
benefit from short-term antidepressant treatment and achieve acute 
remission (Korgaonkar et al., 2019). By contrast, hypoconnectivity of 
the DMN was associated with severity of clinical symptoms and non- 
response to first-line antidepressants in patients with MDD (Korgaon
kar et al., 2019; Price et al., 2017a, 2017b; Yan et al., 2019). Prior 
research may provide a hint that subgroup of MDD with DMN hyper
connectivity are more likely to benefit acutely from antidepressant 

Fig. 3. Correlation between age and HAMD total score for each patient subgroup. (A). hypoDMN subgroup in the discovery dataset (B). hyperDMN in the discovery 
dataset (C). hypoDMN in the replication dataset (D). hyperDMN in the replication dataset. r, correlation coefficient. FDR, false discovery rate. HAMD, Hamilton 
Depression Rating Scale. 
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treatments than those with DMN hypoconnectivity. Future longitudinal 
studies are needed to examine this hypothesis and determine whether 
non-remitters of MDD would be clustered to the subtype with hypo
connectivity of the DMN. Parsing heterogeneity of the disorder and 
identifying treatments capable of addressing the subtypes of MDD with 
differing brain patterns may be particularly clinically impactful. Future 
longitudinal studies could accelerate the pace of biotypes guided treat
ment in depression. 

Mounting studies attempt to parse the heterogeneity of depression 
and categorize subtypes to predict external measures of functioning, 
clinical outcomes and neurobiological underpinnings (Drysdale et al., 
2017; Feder et al., 2017; Price et al., 2017a, 2017b; Williams, 2016). 
Two subtypes of MDD with differing profiles of brain circuits were 
identified in a prior study, and the subgroup characterized by lacking 
DMN connectivity and increased dorsal anterior cingulate connectivity 
was associated with high rates of comorbid anxiety and recurrence 
(Price et al., 2017a). Subgroup of MDD with hyperconnectivity of brain 
pattern defined during the positive mood had decreased resting-state 
connectivity of the DMN and experienced higher self-reported symp
toms (Price et al., 2017b). Two potential subgroups of MDD with distinct 
connectivity of depression-related brain regions were differed in 
symptom severity and disease duration (Feder et al., 2017). Results of 
the present study also suggest that patients with MDD mainly exhibit 
two subtypes with dysfunctional connectivity of the DMN, which are 
identified in a large multi-site sample and replicated in an independent 
single-site dataset. Our prior study also reported that subtype of MDD 
with widespread white-matter abnormalities had more neurocognitive 
deficit (Liang et al., 2019). Findings of subtypes with distinct profiles of 

brain abnormalities may reveal the potential neurobiological substrates 
of key sources of heterogeneity in depression (Price et al., 2017a; Wil
liams, 2016). Additionally, inflammation and oxidative stress could also 
be implicated in differentiating the distinct subtypes of depression 
(Gonda et al., 2019). Moreover, subgroups of individuals with MDD 
characterized by differing brain abnormalities may reflect qualitatively 
distinct genetic factors influence in the illness trajectory. The latent 
genetic subtype of MDD defined by the whole-exome genotyping data 
had increased common genetic substrates associated with the disorder, 
and affected by paranoid symptoms and more anxiety (Yu et al., 2017). 

Results of this study found that the hyperDMN subgroup had age- 
related severity of depressive symptoms in the discovery dataset, but 
not in the replication dataset. Previous studies have reported that 
hypoconnectivity within the DMN is correlated with age-related struc
tural and cognitive changes in healthy individuals (Geerligs et al., 2015; 
Vidal-Piñeiro et al., 2014). Age and taking medications can be used to 
predict severity of depressive symptoms in midlife and older women 
with depression (Gathuru et al., 2015). Youth with posttraumatic stress 
disorder exhibited age-related increased connectivity within the DMN, 
which probably indicated that trauma exposure during childhood could 
have effects on the DMN (Patriat et al., 2016). Whether the childhood 
trauma or life events could mediate the relationship between age and 
depressive symptom severity in the hyperDMN subgroup would clearly 
require further testing in future studies. In this study, relative to the 
hyperDMN, subgroup of hypoDMN was likely to have more severe 
anxiety symptoms. Consistent with previous studies, decreased func
tioning of the DMN was associated with anxiety disorders and high trait 
anxiety (Price et al., 2017a; Sylvester et al., 2012). However, no 

Fig. 4. Comparisons of mean FC within the DMN for patient subgroups (based on Dosenbach atlas). A. The violin plot for patient subgroups in the discovery and 
replication datasets. The X axis represents subgroups in these two datasets. D_hypoDMN and D_hyperDMN for subgroups in the discovery dataset. R_hypoDMN and 
R_hyperDMN for subgroups in the replication dataset. The Y axis represents mean FC values. B. correlation of mean FC between patient subgroups with hypo
connectivity of the DMN (hypoDMN) in the discovery and replication datasets. C. correlation of mean FC between patient subgroups with hyperconnectivity of the 
DMN (hyperDMN) in these two datasets. D. The violin plot for patient subgroups in the site A and first-episode MDD subset of replication dataset. The X axis 
represents subgroups in these two datasets. A_hypoDMN and A_hyperDMN for subgroups in the dataset of site A. R_fe_hypoDMN and R_fe_hyperDMN for subgroups in 
the first-episode MDD subset of replication dataset. The Y axis represents the mean FC. 
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statistical significances were detected in demographic and clinical var
iables between patient subgroups in the discovery and replication 
datasets. Given limited information, subgroups of MDD with differing 
DMN patterns appeared to have comparable demographic and clinical 
features. This might coincide with the prior perspective that biotypes 
with distinct brain-circuit-based patterns could be independent of spe
cific clinical features, and not be clinically deterministic (Price et al., 
2017b). Future studies could focus on a more fine-grained set of clinical 
features and neurocognitive assessments to better characterize the dif
ferences between the subgroups of MDD with differing DMN profiles. 

Certain limitations should be addressed. First, the clinical informa
tion, such as comorbid conditions (disturbances in chronobiologic 
rhythms, obsessional traits and psychotic symptoms), early life stress, 
treatment details and the number of prior depressive episodes, was not 
fully recorded for each patient due to variations in data management 
practices across different research sites. This issue limited our power to 
analyze the effects of clinical variables on DMN-pattern-based MDD 
subtypes. We were unable to account for potential moderators such as 
medication. Second, the current study is based on cross-sectional anal
ysis. It will be fruitful to conduct the longitudinal follow-up study that 
may help to develop reliable biomarkers for predicting treatment effects 
and enable prediction of prognosis of the subgroups. Third, the present 
study is based on the analyses of FC within the DMN. Whether the FC of 
other resting-state networks, or a consideration of inter-network anal
ysis could be used to define the subtypes of MDD is unclear, but worthy 
of examination. 

5. Conclusions 

Using a data-driven approach with multi-site datasets, the present 
study provides robust evidence for MDD biotypes with distinct DMN 
patterns. The current results represent strong evidence for the identifi
cation and validation of two MDD subtypes with dysfunctional con
nectivity patterns of DMN, supporting a robust sub-categorization of 
depression. It is significant that the biotype classification is reproducible 
using data from different clinical recruitment sites and different MRI 
scanners. Taken together, our findings highlight the accelerating 
promise of parsing biological heterogeneity in major neuropsychiatric 
illnesses such as MDD based on neurological biomarkers. Our data- 
driven approach has the capacity to reveal heterogeneity within large- 
scale brain networks in depression that is overlooked in conventional 
group comparisons and eventually could inform the development of 
more tailored diagnoses and treatments. 

6. Author statement 

Chao-Gan Yan, Tao Li and Sugai Liang conceived of the presented 
idea. Sugai Liang and Chao-Gan Yan performed the computations. Tao Li 
and Deng Wei verified the analytical methods. Sugai Liang and Chao- 
Gan Yan designed the figures. Sugai Liang wrote the draft. Andrew J. 
Greenshaw, Qiang Wang and Xi-Nian Zuo reviewed and revised the 
manuscript. The REST-meta-MDD Project has been done at multiple 
research sites in China. Each author has contributed significantly to the 
manuscript, and the submitted work has been reviewed and approved by 
all of the authors. None of the authors have conflicts of interest to report 
regarding this manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors would like to thank all those who assisted with this 

project. The authors also recognize, with great appreciation, all the 
study participants who contributed to this project. 

Role of Funding Source 

This work was supported by the National Natural Science Foundation 
of China (81801326 to S.G.L., 81630030 to T.L., 81671774 to C.G.Y., 
81630031 to C.G.Y., 81461168029 to T.L., and 81471740 to X.N.Z.), the 
National Key R&D Program of China (2017YFC1309902 to C.G.Y. & 
2016YFC0904300 to T.L.), the National High-tech R&D Program of 
China (863 Program) (2015AA020513 to M.H.X.), the Hundred Talents 
Program and the 13th Five-year Informatization Plan (XXH13505) of 
Chinese Academy of Sciences, Beijing Municipal Science & Technology 
Commission (Z161100000216152 to C.G.Y. and Z171100000117016 to 
T.M.S.), Science and Technology Program of Zhejiang Province 
(2015C03037 to Y.F.Z.), Brain Research Special Program of Guangdong 
Science and Technology Department (2018B030334001 to T.L.), and 
1.3.5 Project for disciplines of excellence, West China Hospital, Sichuan 
University (ZY2016103 and ZY2016203 to T.L. and X.H.M.). Dr. Xi-Nian 
Zuo was partly supported by the National R&D Infrastructure and Fa
cility Development Program of China, “Fundamental Science Data 
Sharing Platform” (DKA2019-12-02-21), and the Guangdong Key Area 
R&D Program (2019B030335001). Funders of the study had no role in 
study design, data collection, data analysis, data interpretation. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.nicl.2020.102514. 

References 

Beijers, L., Wardenaar, K.J., van Loo, H.M., Schoevers, R.A., 2019. Data-driven biological 
subtypes of depression: systematic review of biological approaches to depression 
subtyping. Mol. Psychiatry 24, 888–900. https://doi.org/10.1038/s41380-019- 
0385-5. 

Berman, M.G., Peltier, S., Nee, D.E., Kross, E., Deldin, P.J., Jonides, J., 2011. Depression, 
rumination and the default network. Soc. Cogn. Affect. Neurosci. 6, 548–555. 
https://doi.org/10.1093/scan/nsq080. 

Brakowski, J., Spinelli, S., Dorig, N., Bosch, O.G., Manoliu, A., Holtforth, M.G., 
Seifritz, E., 2017. Resting state brain network function in major depression – 
depression symptomatology, antidepressant treatment effects, future research. 
J. Psychiatr. Res. 92, 147–159. https://doi.org/10.1016/j.jpsychires.2017.04.007. 

Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L., 2008. The brain’s default network: 
anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 1124, 1–38. 
https://doi.org/10.1196/annals.1440.011. 

Costafreda, S.G., 2009. Pooling FMRI data: meta-analysis, mega-analysis and multi- 
center studies. Front. Neuroinform. 3, 33. https://doi.org/10.3389/ 
neuro.11.033.2009. 

Dosenbach, N.U., Nardos, B., Cohen, A.L., Fair, D.A., Power, J.D., Church, J.A., Nelson, S. 
M., Wig, G.S., Vogel, A.C., Lessov-Schlaggar, C.N., Barnes, K.A., Dubis, J.W., 
Feczko, E., Coalson, R.S., Pruett Jr., J.R., Barch, D.M., Petersen, S.E., Schlaggar, B.L., 
2010. Prediction of individual brain maturity using fMRI. Science 329, 1358–1361. 
https://doi.org/10.1126/science.1194144. 

Drysdale, A.T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., Fetcho, R. 
N., Zebley, B., Oathes, D.J., Etkin, A., Schatzberg, A.F., Sudheimer, K., Keller, J., 
Mayberg, H.S., Gunning, F.M., Alexopoulos, G.S., Fox, M.D., Pascual-Leone, A., 
Voss, H.U., Casey, B.J., Dubin, M.J., Liston, C., 2017. Erratum: Resting-state 
connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 
23, 264. https://doi.org/10.1038/nm.4246. 

Feder, S., Sundermann, B., Wersching, H., Teuber, A., Kugel, H., Teismann, H., 
Heindel, W., Berger, K., Pfleiderer, B., 2017. Sample heterogeneity in unipolar 
depression as assessed by functional connectivity analyses is dominated by general 
disease effects. J. Affect. Disord. 222, 79–87. https://doi.org/10.1016/j. 
jad.2017.06.055. 

Friston, K.J., Williams, S., Howard, R., Frackowiak, R.S., Turner, R., 1996. Movement- 
related effects in fMRI time-series. Magn. Reson. Med. 35, 346–355. https://doi.org/ 
10.1002/mrm.1910350312. 

Gathuru, I.M., Odukoya, O.K., Thorpe, J.M., 2015. Under treatment of depression among 
midlife and older adults in the United States. Soc Pharm J. 1 (1), e2343 https://doi. 
org/10.17795/spj-2343. 

Geerligs, L., Renken, R.J., Saliasi, E., Maurits, N.M., Lorist, M.M., 2015. A brain-wide 
study of age-related changes in functional connectivity. Cereb. Cortex 25, 
1987–1999. https://doi.org/10.1093/cercor/bhu012. 

Goldberg, D., 2011. The heterogeneity of “major depression”. World Psychiatry 10, 
226–228. https://doi.org/10.1002/j.2051-5545.2011.tb00061.x. 

S. Liang et al.                                                                                                                                                                                                                                    

https://doi.org/10.1016/j.nicl.2020.102514
https://doi.org/10.1016/j.nicl.2020.102514
https://doi.org/10.1038/s41380-019-0385-5
https://doi.org/10.1038/s41380-019-0385-5
https://doi.org/10.1093/scan/nsq080
https://doi.org/10.1016/j.jpsychires.2017.04.007
https://doi.org/10.1196/annals.1440.011
https://doi.org/10.3389/neuro.11.033.2009
https://doi.org/10.3389/neuro.11.033.2009
https://doi.org/10.1126/science.1194144
https://doi.org/10.1038/nm.4246
https://doi.org/10.1016/j.jad.2017.06.055
https://doi.org/10.1016/j.jad.2017.06.055
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.1002/mrm.1910350312
https://doi.org/10.17795/spj-2343
https://doi.org/10.17795/spj-2343
https://doi.org/10.1093/cercor/bhu012
https://doi.org/10.1002/j.2051-5545.2011.tb00061.x


NeuroImage: Clinical 28 (2020) 102514

9

Gonda, X., Petschner, P., Eszlari, N., Baksa, D., Edes, A., Antal, P., Juhasz, G., Bagdy, G., 
2019. Genetic variants in major depressive disorder: from pathophysiology to 
therapy. Pharmacol. Ther. 194, 22–43. https://doi.org/10.1016/j. 
pharmthera.2018.09.002. 

Goya-Maldonado, R., Brodmann, K., Keil, M., Trost, S., Dechent, P., Gruber, O., 2016. 
Differentiating unipolar and bipolar depression by alterations in large-scale brain 
networks. Hum. Brain Mapp. 37, 808–818. https://doi.org/10.1002/hbm.23070. 

Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K., Sanislow, C., 
Wang, P., 2010. Research domain criteria (RDoC): toward a new classification 
framework for research on mental disorders. Am. J. Psychiatry 167, 748–751. 
https://doi.org/10.1176/appi.ajp.2010.09091379. 

Kaiser, R.H., Andrews-Hanna, J.R., Wager, T.D., Pizzagalli, D.A., 2015. Large-scale 
network dysfunction in major depressive disorder: a meta-analysis of resting-state 
functional connectivity. JAMA Psychiatry 72, 603–611. https://doi.org/10.1001/ 
jamapsychiatry.2015.0071. 

Korgaonkar, M.S., Fornito, A., Williams, L.M., Grieve, S.M., 2014. Abnormal structural 
networks characterize major depressive disorder: a connectome analysis. Biol. 
Psychiatry 76, 567–574. https://doi.org/10.1016/j.biopsych.2014.02.018. 

Korgaonkar, M.S., Goldstein-Piekarski, A.N., Fornito, A., Williams, L.M., 2019. Intrinsic 
connectomes are a predictive biomarker of remission in major depressive disorder. 
Mol. Psychiatry 25 (7), 1537–1549. https://doi.org/10.1038/s41380-019-0574-2. 

Li, B., Liu, L., Friston, K.J., Shen, H., Wang, L., Zeng, L.L., Hu, D., 2013. A treatment- 
resistant default mode subnetwork in major depression. Biol. Psychiatry 74, 48–54. 
https://doi.org/10.1016/j.biopsych.2012.11.007. 

Liang, S., Wang, Q., Kong, X., Deng, W., Yang, X., Li, X., Zhang, Z., Zhang, J., Zhang, C., 
Li, X.M., Ma, X., Shao, J., Greenshaw, A.J., Li, T., 2019. White matter abnormalities 
in major depression biotypes identified by diffusion tensor imaging. Neurosci. Bull. 
35, 867–876. https://doi.org/10.1007/s12264-019-00381-w. 

Liu, Y., Hayes, D.N., Nobel, A., Marron, J.S., 2008. Statistical significance of clustering 
for high-dimension, low–sample size data. J. Am. Stat. Assoc. 103, 1281–1293. 
https://doi.org/10.1198/016214508000000454. 

Ma, Q., Zhang, T., Zanetti, M.V., Shen, H., Satterthwaite, T.D., Wolf, D.H., Gur, R.E., 
Fan, Y., Hu, D., Busatto, G.F., Davatzikos, C., 2018. Classification of multi-site MR 
images in the presence of heterogeneity using multi-task learning. Neuroimage Clin. 
19, 476–486. https://doi.org/10.1016/j.nicl.2018.04.037. 

Patriat, R., Birn, R.M., Keding, T.J., Herringa, R.J., 2016. Default-mode network 
abnormalities in pediatric posttraumatic stress disorder. J. Am. Acad. Child Adolesc. 
Psychiatry 55, 319–327. https://doi.org/10.1016/j.jaac.2016.01.010. 

Posner, J., Hellerstein, D.J., Gat, I., Mechling, A., Klahr, K., Wang, Z., McGrath, P.J., 
Stewart, J.W., Peterson, B.S., 2013. Antidepressants normalize the default mode 
network in patients with dysthymia. JAMA Psychiatry 70, 373–382. https://doi.org/ 
10.1001/jamapsychiatry.2013.455. 

Power, J.D., Barnes, K.A., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E., 2012. Spurious 
but systematic correlations in functional connectivity MRI networks arise from 
subject motion. Neuroimage 59, 2142–2154. https://doi.org/10.1016/j. 
neuroimage.2011.10.018. 

Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., 
Laumann, T.O., Miezin, F.M., Schlaggar, B.L., Petersen, S.E., 2011. Functional 
network organization of the human brain. Neuron 72, 665–678. https://doi.org/ 
10.1016/j.neuron.2011.09.006. 

Price, R.B., Gates, K., Kraynak, T.E., Thase, M.E., Siegle, G.J., 2017a. Data-driven 
subgroups in depression derived from directed functional connectivity paths at rest. 
Neuropsychopharmacology 42, 2623–2632. https://doi.org/10.1038/npp.2017.97. 

Price, R.B., Lane, S., Gates, K., Kraynak, T.E., Horner, M.S., Thase, M.E., Siegle, G.J., 
2017b. Parsing heterogeneity in the brain connectivity of depressed and healthy 
adults during positive mood. Biol. Psychiatry 81, 347–357. https://doi.org/10.1016/ 
j.biopsych.2016.06.023. 

Sheline, Y.I., Barch, D.M., Price, J.L., Rundle, M.M., Vaishnavi, S.N., Snyder, A.Z., 
Mintun, M.A., Wang, S., Coalson, R.S., Raichle, M.E., 2009. The default mode 
network and self-referential processes in depression. Proc. Natl. Acad .Sci. U.S.A. 
106, 1942–1947. https://doi.org/10.1073/pnas.0812686106. 

Shen, Y., Yao, J., Jiang, X., Zhang, L., Xu, L., Feng, R., Cai, L., Liu, J., Wang, J., Chen, W., 
2015. Sub-hubs of baseline functional brain networks are related to early 
improvement following two-week pharmacological therapy for major depressive 
disorder. Hum. Brain Mapp. 36, 2915–2927. https://doi.org/10.1002/hbm.22817. 

Smith, S.M., Nichols, T.E., 2018. Statistical challenges in “big data” human 
neuroimaging. Neuron 97, 263–268. https://doi.org/10.1016/j. 
neuron.2017.12.018. 

Suckling, J., Barnes, A., Job, D., Brenan, D., Lymer, K., Dazzan, P., Marques, T.R., 
MacKay, C., McKie, S., Williams, S.R., Williams, S.C., Lawrie, S., Deakin, B., 2010. 
Power calculations for multicenter imaging studies controlled by the false discovery 
rate. Hum. Brain Mapp. 31, 1183–1195. https://doi.org/10.1002/hbm.20927. 

Sylvester, C.M., Corbetta, M., Raichle, M.E., Rodebaugh, T.L., Schlaggar, B.L., Sheline, Y. 
I., Zorumski, C.F., Lenze, E.J., 2012. Functional network dysfunction in anxiety and 
anxiety disorders. Trends Neurosci. 35, 527–535. https://doi.org/10.1016/j. 
tins.2012.04.012. 
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