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Abstract

Purpose of the Review—This review summarizes sex-related changes in the heart and 

vasculature that occur with aging, both in the presence and absence of cardiovascular disease 

(CVD).

Recent Findings—In the presence of CVD risk factors and/or overt CVD, sex-specific changes 

in the number of cardiomyocytes, extent of the myocardial extracellular matrix, and myocellular 

hypertrophy promote unique patterns of LV remodeling in men and women. In addition, age- and 

sex-specific vascular stiffening is also well established, driven by changes in endothelial 

dysfunction, elastin–collagen content, microvascular dysfunction, and neurohormonal signaling. 

Together, these changes in LV chamber geometry and morphology, coupled with heightened 

vascular stiffness, appear to drive both age-related increases in systolic function and declines in 

diastolic function, particularly in postmenopausal women. Accordingly, estrogen has been 

implicated as a key mediator, given its direct vasodilating properties, association with nitric oxide 

excretion, and involvement in myocellular Ca2+ handling, mitochondrial energy production, and 

oxidative stress.

Summary—The culmination of the abovementioned sex-specific cardiac and vascular changes 

across the lifespan provides important insight into heart failure development, particularly of the 

preserved ejection fraction variety, while offering promise for future preventive strategies and 

therapeutic approaches.
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Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide, accounting for 31% 

of all reported deaths in 2016 [1]. Moreover, nearly 81% of all CVD-attributable deaths were 

among individuals ≥ 65 years old [2], reinforcing the notion that CVD is predominantly a 

disease of senescence. While this general pattern is true for both men and women, important 

sex-specific differences exist. For example, according to the National Health and Nutrition 

Examination Survey, collected from 2013 to 2016, the prevalence of CVD was lower in 

premenopausal women compared with age-matched men, yet surpassed that of men after 

menopause [2]. Despite near universal recognition of this sex-by-age interaction, however, 

the exact mechanism(s) by which age and sex influence CVD development and progression 

remains elusive. This review summarizes sex-related changes in the heart and vasculature 

that occur with aging, both in the presence and absence of cardiovascular disease.

Age–Sex Interaction and the Heart

Left Ventricular Structural Remodeling

Both sex and age are known to impact cardiac morphology (Fig. 1). Data from both the 

Framingham Heart Study and Multi-Ethnic study of Atherosclerosis (MESA) demonstrate 

that left ventricular (LV) mass and volume are significantly greater in men than women, 

even after adjusting for height and body surface area (BSA) [3, 4]. Across the lifespan, 

absolute LV mass and LVEDV tend to decrease with healthy aging, with LVEDV declining 

more steeply with age, resulting in a progressive rise in LV concentricity over time [4–8].

In contrast to healthy aging, however, in the presence of CVD risk factors and/or overt CVD, 

LV mass increases with age and is associated with sex-specific cardiac remodeling, such that 

women experience greater concentric hypertrophy, while men tend to develop an eccentric 

pattern of hypertrophy [9, 10]. Indeed, studies of chronic pressure overload by aortic 

stenosis have found that women demonstrate more concentric remodeling and less eccentric 

hypertrophy than men [11–16]. Likewise, in a large dataset of 3,745 women and men 

undergoing both cMRI and invasive coronary angiography, women presented with greater 

concentric remodeling and less eccentric hypertrophy [17•]. Extrapolating these sex-specific 

patterns of remodeling may provide insight into disease risk and pathology, where women 

are two times more likely to develop heart failure with preserved ejection fraction (HFpEF) 

than men, a condition associated with a clustering of CVD risk factors, and adverse left 

ventricular remodeling [18, 19]. While LV concentric remodeling is only present in a 

fraction of the HFpEF population [20], it is overrepresented in women compared with men 

with HFpEF [21].

At the cellular level, these patterns may be explained by cardiomyocyte loss, an increase in 

extracellular matrix, and myocellular hypertrophy [22–25]. Indeed, aging is associated with 

progressive neurohumoral dysfunction that contributes to cardiomyocyte death [26–31] in a 

sex-specific manner [32]. Among autopsies of 53 men and 53 women, cardiomyocyte death 

with healthy aging occurs to a greater extent in men than women [33]. This sex difference 

likely arises from (A) a larger pool of cardiac stem cells in women that allow for greater 

myocyte turnover compared with men [34] and (B) sex-specific rates of apoptosis. 
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Regarding the latter, men experience greater rates of apoptosis than women when free of any 

cardiovascular disease [35], after acute myocardial infarction [36], and in heart failure [37].

Collagen content in the human heart nearly doubles over the lifespan (from ~ 3.9 to ~5.9%), 

independent of pathology [38]. This results in progressive reductions in LV compliance [39, 

40] and is regarded as a primary mechanism of age-related diastolic dysfunction [22], 

discussed in more detail in the following section, “Left Ventricular Diastolic Function.” 

Whether an age-by-sex interaction exists with collagen content in the heart, however, 

remains unclear. LV systolic and diastolic stiffness is indeed greater in women than men 

across the lifespan, with an apparent acceleration of LV systolic and diastolic elastance in 

women beyond 50 years of age [41–43]. In the presence of CVD risk factors, the MESA 

demonstrated that LV extracellular volume (ECV), measured by gadolinium-enhanced MRI, 

is greater in women than men until ~ 84 years of age [44]. Likewise, ECV is elevated to a 

greater extent in women than men with mild aortic stenosis, despite women having fewer 

comorbidities [45]. To what extent these imaging-based observations reflect expansion of 

extracellular proteins, however, remains incompletely understood, as biopsy studies have 

reported opposite results among patients with aortic stenosis [11, 12]. In line with this later 

observation, a recent imaging study found greater ECV in healthy young women compared 

with age- and health-matched men, together with greater myocardial blood volume and 

myocardial resting and peak perfusion, suggesting that women may have greater capillary 

density, rather than a more developed extracellular matrix per se [46•]. More work is 

therefore needed to better define the age-by-sex interaction of extracellular proteins like 

collagen and specific mechanisms driving morphological changes over the lifespan and in 

the presence of CVD.

Left Ventricular Systolic Function

Clinically, LV ejection fraction (LVEF) is the most widely used measure to assess systolic 

function, despite its well-recognized shortcomings. Consistent with the age- and sex-related 

LV structural changes described previously, LVEF tends to be higher in women than men 

[47, 48], with studies reporting both increases [49–51] and decreases [52–57] in LVEF with 

advancing age; the latter of which affecting men more than women. As summarized in Table 

1, similar observations have also been made with more advanced measures of LV 

contractility [41, 60, 61], regional tissue deformation indices [62, 63], and twist mechanics 

[64–66].

Sex hormones seem to be an unlikely source of this age-related rise in systolic function, 

given that both estrogen and testosterone decline with age. This is not to suggest that 

estrogen and testosterone are not involved in the mechanical and protein function of 

ventricular myocytes, which they undoubtedly are [67–77], just that their role in the age-

associated rise in systolic function seems improbable. Indeed, ovarian hormone deficiency 

decreases (not increases) myocellular contractile function, and while this function is often 

restored with estrogen replacement [68–77], this fails to explain the rise in systolic function 

often observed in postmenopausal women. Likewise, while testosterone is strongly 

implicated in the density of L-type Ca2+ channels, sarcoplasmic reticulum Ca2+ availability, 

the magnitude of the Ca2+ transient, and the maximal myofilament responsiveness [67], it 
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seems unlikely to explain the heightened systolic function observed with age, especially 

considering that testosterone levels decline with age, in both men and women [78–80]. In 

fact, given that the age-associated rise in systolic function is attenuated in men compared 

with women, for whom testosterone plays a much more dominant role across the lifespan, 

argues against testosterone being a contributory mechanism.

In contrast to the sex hormone hypothesis, many believe that this “heightened” contractility 

is reflective of a necessary adaptation to maintain optimal output in the face of higher 

resistance. Indeed, it is now well established that large-artery stiffness increases with age 

[41, 81–83] and is higher in women [41, 81, 84–86], independent of vascular disease or risk 

factors [41, 81, 82, 87]. To maintain optimal output, the left ventricle must therefore develop 

greater systolic stiffness [88–92]. That end-systolic elastance is elevated in women, 

particularly in older women, supports this interpretation [41, 59]. The exact mechanism for 

this augmented systolic performance, however, remains incompletely understood. To date, 

there is no clear evidence for heightened inotropy (e.g. circulating catecholamines, calcium 

affinity, etc.). Instead, alterations in chamber geometry with age and sex is likely to play the 

most dominant role. In accordance with the left ventricle’s unique helical muscle fiber 

orientation, contraction of the endocardial fibers contributes to longitudinal shortening, 

while contraction of the epicardial fibers contributes to circumferential shortening and left 

ventricular twist [93]. Age, along with presence of cardiovascular risk factors with/without 

overt structural remodeling, is associated with impaired subendocardial function [94], giving 

rise to reduced global longitudinal shortening [95, 96], for which arterial stiffness is a likely 

contributor [97], particularly in women [98]. At the same time, subepicardial function 

remains relatively unaffected, allowing for the longer lever arm of the epicardial fibers to 

dominate, resulting in increased circumferential shortening and increased left ventricular 

twist, together of which help to maintain (and even augment) left ventricular ejection 

fraction [99, 100] (Fig. 2). Accordingly, given the structural changes that occur with age (i.e. 

concentric remodeling, subendocardial dysfunction, sphericity), especially in women, and in 

the presence of cardiovascular disease/risk factors [4, 41, 64, 94, 101, 102], mechanical 

factors seem to play the most influential role.

Left Ventricular Diastolic Function

Both age and female sex are associated with increased LV stiffness, related to concentric 

remodeling, increased collagen deposition, and loss of estrogen. As a result, the LV end-

diastolic pressure–volume relationship is shifted leftward with healthy aging [39, 40], a 

result which is augmented in elderly females [103]. Moreover, age and female sex appear to 

affect other components of diastole, including early and late diastolic filling patterns [58, 59, 

104, 105], as summarized in Table 2.

The majority of results to date suggest that postmenopausal status is strongly related to 

impaired LV relaxation, with most population-based studies showing accelerated age-related 

impairments in LV relaxation in women after 50 years of age (the average onset of natural 

menopause). While the exact mechanism for this age-by-sex interaction remains 

incompletely understood, estrogen is likely a key mediator for age-related diastolic 

dysfunction in women. Indeed, estrogen is a direct vasodilator [106, 107]; it promotes nitric 
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oxide excretion [108, 109] and directly impacts myocellular calcium (Ca2+) handling; all of 

which could impact diastolic performance.

Myocardial relaxation is inherently dependent on the removal of Ca2+ from the cytosol, 

primarily through sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a) uptake into 

the sarcoplasmic reticulum and sodium/calcium exchanger (NCX) extrusion from the cell 

[110, 111]. Although the effect of sex hormones on NCX remains inconclusive, SERCA2a’s 

response to hormonal changes has been well documented, at least in preclinical models of 

human aging. For example, ovariectomy (OVX) in middle and old age normotensive rats 

reduces phosphorylated phospholamban (PLB), responsible for facilitating SERCA2a 

activity, resulting in decreased lusitropy and increased cardiac filling pressures, with the 

older OVX rats experiencing the worst diastolic dysfunction. That G protein–coupled 

estrogen receptor (GPER) activation significantly improves LV lusitropy in this model—

resulting in greater SERCA2a expression and reduced interstitial collagen content—strongly 

supports estrogen as a principle determinant of age-by-sex-related diastolic dysfunction 

[112]. Similar results have also been reported across different strains of OVX rats and 

experimental models, including direct GPER knockout in transgenic mice [70, 71, 113]. 

Furthermore, estrogen treatment in a well-established translational nonhuman primate model 

of menopause preserved diastolic function, in part, by modulating calcium homeostasis 

[114]. Although not always consistent, the beneficial effect of estrogen on diastolic function 

has also been demonstrated by hormone replacement therapy trials in women, as reviewed 

by Maslov and colleagues [115]. Less work has been performed evaluating the influence of 

male gonads and associated sex hormones, on diastolic (dys)function. In male mice, 

following bilateral removal of the testes (GDX), evidence of diastolic dysfunction has 

indeed been observed in both isolated myocyte preparations and in vivo [116]. It remains 

unclear, however, whether this effect is directly related to testosterone itself or the reduction 

in estradiol via aromatization of testosterone. While direct cardiomyocyte treatment with 

testosterone influences Ca2+-related gene expression [117], more work in this area is 

needed.

Diastole is a highly energy-dependent process [118]. Under normal conditions, the majority 

of ATP is produced from oxidative phosphorylation in the mitochondria. Impairments in 

ATP generation, whether from impaired oxygen delivery or oxidative phosphorylation, could 

therefore have direct effects on diastolic function. We and others have described clear sex 

differences in the presentation of myocardial ischemia, which often develops in the presence 

of age and/or cardiovascular risk factors. For a more detailed review of sex-specific patterns 

of myocardial ischemia, the reader is directed to the following comprehensive reviews: [119, 

120]. While we have observed some evidence to support a role for myocardial ischemia in 

the development of diastolic dysfunction in women with signs and symptoms of ischemia 

with no obstructive coronary artery disease [121–123], investigations are currently underway 

to evaluate both the direct and indirect effect of myocardial ischemia on diastolic function in 

this bourgeoning clinical population.

Abnormalities in mitochondrial energy production can also contribute to impaired diastolic 

function via oxidative stress, as is increasingly recognized in the pathogenesis of heart 

failure [124, 125]. Upon ischemia/reperfusion, female Sprague Dawley rat hearts express 

Oneglia et al. Page 5

Curr Heart Fail Rep. Author manuscript; available in PMC 2020 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lower rates of ROS production compared with age-matched male hearts via posttranslational 

modification of mitochondrial proteins [126], with estrogen being strongly implicated as the 

principle cardioprotective agent. Indeed, preclinical ischemia/reperfusion studies 

incorporating OVX with and without exogenous estradiol treatment suggest that estrogen 

promotes electron transport chain activity and ATP production [127], upregulates 

mitochondrial antioxidants [128], and downregulates mitochondrial apoptotic pathways 

[129]. With regard to cardiac pathology, estradiol treatment in an OVX mouse model of 

hypertrophic cardiomyopathy prevents energy dysregulation, reduces ROS formation, and 

improves diastolic function [130]. ROS production also serves as a scavenger to nitric oxide, 

a key regulator of normal diastolic function [131–136]. Indeed, cardiomyocytes possess both 

the “endothelial” and “neuronal” isoforms of nitric oxide synthase (NOS), with neuronal 

NOS most strongly implicated in cardiac relaxation, via effects on phospholamban 

phosphorylation [132–136]. Uncoupling of NOS often occurs during oxidative depletion of 

its co-factor tetrahydrobiopterin (BH4), leading to production of superoxide instead of NO. 

Estrogen is known to modulate BH4, and therefore may represent a key source of diastolic 

dysfunction in aged postmenopausal women. For example, OVX rats demonstrate reduced 

cardiac BH4 concentration, and BH4 treatment after OVX improves lusitropy and reduces 

cardiac filling pressures, collagen content, and ROS production [137].

As mentioned, estrogen is also a direct vasodilator of the arterial system [106, 107]. While 

this may explain at least part of the female-dominant pattern of nonobstructive coronary 

artery disease we and others have observed in middle-aged women [138–140], it may also 

provide insight into the accelerated impairment in early diastolic function seen in older 

women. For example, ventricular-arterial coupling is an important contributor to cardiac 

mechanics and hemodynamic control. Alterations in the stiffness of the central vascular 

system elevate cardiac afterload and compromise cardiac efficiency [141–143], with the 

added potential of decreasing coronary perfusion [144, 145]. While this mechanism of 

diastolic dysfunction has been implicated in hypertension, diabetes, and heart failure [146–

148], the age-by-sex interaction of this proposed mechanism has not been well described, 

warranting further investigation.

Age–Sex Interaction and the Vasculature

The vascular system is commonly divided into two levels: the macro vasculature and 

microvasculature. The macrovasculature is composed of large elastic arteries that buffer 

intermittent increases in pulsatility following left ventricular ejection and muscular arteries 

that serve as conduit vessels to supply blood to the microvasculature (< 300 μm in diameter), 

for subsequent tissue perfusion and oxygenation. The microvasculature is therefore 

composed of arterioles, capillaries, and venules. As mentioned, vascular stiffness increases 

with age [81–83], independent of vascular disease or risk factors [81, 82, 87], and is higher 

in women [81, 84–86]. Multiple mechanisms have been proposed to explain age- and sex-

dependent vascular stiffening, including endothelial dysfunction, changes in vascular protein 

composition (i.e. elastin–collagen content), microvascular dysfunction, and neurohormonal 

signaling, each of which is discussed in more detail herein.
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Endothelial (Dys)function

The vascular endothelium, a single-cell layer lining the inner lumen of all blood vessels, 

plays a pivotal role in blood flow regulation by synthesizing and secreting vasoactive 

molecules, principally nitric oxide (vasodilator) and endothelin-1 (vasoconstrictor).

Endothelium-dependent vasodilation may be invoked by either chemical (acetylcholine) or 

mechanical (increase in blood flow and shear stress) stimuli, the latter of which is the 

principle of flow-mediated dilation (FMD), an index of coronary endothelial health/function 

[149] along with overall endothelial function. Both acetylcholine-mediated vasodilation and 

flow-mediated dilation (FMD) decrease with age in men, but remain preserved in women 

typically until the onset of menopause, after which endothelial dependent vasodilation 

markedly declines [150, 151]. In accordance with the biological timeline of these results, the 

majority of work strongly implicates estrogen and testosterone as primary mediators of 

endothelial-dependent vasodilation. Indeed, both estrogen and testosterone increase NO 

production via receptor-mediated activation of endothelial NO synthase. Accordingly, 

endothelial-dependent vasodilation declines with age in both men and women [150–153] 

and is attenuated in premenopausal women treated with a gonadotropin-releasing hormone 

antagonist (GnRH-ant) [154] and young men treated with an aromatase inhibitor, which 

blocks endogenous production of estrogen [155], and restored by estradiol treatment [154, 

156–159]. Less clear is the role of testosterone in the regulation of endothelial function, as 

results from several cross-sectional studies evaluating FMD in men with low serum 

testosterone remain equivocal [160–164]. Both testosterone and estrogen possess antioxidant 

and anti-inflammatory properties that are lost in hormone-deficient states, regarded as the 

principle mechanism linking sex hormones with endothelial-dependent vasodilation [165–

168].

Less established, but increasingly recognized, is the role of endothelin-1 on endothelial 

function both with aging and between sexes. Endothelin-1 is a potent vasoconstrictor 

produced and released by endothelial cells that acts on two receptor subtypes, ETA and ETB, 

located on the vascular smooth muscle [169]. In addition, ETB receptors are also located on 

the endothelium and mediate vasodilation [169, 170]. Emerging evidence suggests that 

endothelin-1 receptors may be sexually dimorphic [171•] [172], with endothelin-1 

preferentially binding to ETB receptors in women [173]. Moreover, endothelin-1-mediated 

vasoconstriction appears to be augmented with age [174, 175], with ETB-mediated 

vasodilation potentially lost in postmenopausal women [176]. Whether targeting endothelin 

receptors can improve cardiovascular disease outcomes, quality of life, and overall survival 

remains largely unknown, but with the advent of endothelin receptor antagonists, has great 

potential of being addressed within the next decade.

Elastin–Collagen Content

Large blood vessels like the aorta are inherently “elastic,” facilitating blood vessel distension 

with each heartbeat (i.e. stroke volume), dampening velocity and pressure fluctuations, and 

maintaining consistent unidirectional blood flow. Vascular elasticity is predominantly 

mediated by the balance between collagen—a stiff scaffolding protein—and elastin—an 

elastic protein designed to facilitate the repetitive distention of the vessel. In male rodents, 
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aging is associated with a progressive shift in the collagen–elastin ratio, whereby elastin is 

degraded with age and collagen expression is increased [177–179]. To our knowledge, 

however, this work has not been replicated in female rodents, rendering our understanding of 

sex-by-age-related differences in vascular protein composition incomplete. In nonhuman 

primates, aortic stiffness increases with age to a greater extent in male versus female 

monkeys, attributable to preserved collagen but decreased elastin among old male monkeys 

that was larger in magnitude than that observed in old female monkeys [180]. Notably, 

several cross-species differences in specific collagen isoform changes with aging appear to 

exist, at least between mice and monkeys, highlighting the need to extend these observations 

to humans (of both sexes). Unfortunately, aside from a limited number of autopsy studies 

completed more than three decades ago [181–185], our clinical understanding remains 

limited. Nevertheless, despite several challenges with interpreting these early data, including 

issues surrounding differences in both the location of dissection (abdominal aorta vs 

thoracic) and prior health status of the individuals included, it does appear that human aging 

is indeed associated with a similar shift in collagen–elastin ratio. While the exact mechanism 

driving age (and potentially sex) related changes in the balance between collagen and elastin 

remains incompletely understood, reactive oxygen species and inflammation—which could 

degrade elastin and increase the deposition of collagen—are thought to play a major role 

[168]. More work is needed, however, to truly address this question.

Microvascular (Dys)function

We and others have shown that coronary microvascular dysfunction (CMD) is more 

prevalent in women than men [186–188], and several reports of “microvascular dysfunction” 

in HFpEF have also recently emerged, touting microvascular dysfunction as a promising 

therapeutic target in this burgeoning condition that predominantly impacts older women 

[189, 190]. This has led to the hypothesis that risk factor conditions (age, obesity, 

dysglycemia, hyperlipidemia), including loss of estrogen, promote a pro-inflammatory, 

prooxidative state, rending the microvasculature vulnerable [191, 192]. Thus, while 

“microvascular dysfunction” may present itself in specific end-organs like the 

myocardium(i.e. coronary microvascular dysfunction, and associated ischemia, structural 

remodeling, systolic/diastolic dysfunction), this conceptual framework suggests that 

microvascular dysfunction is likely systemic in nature.

The assessment of “microvascular function” has therefore taken a broad approach in recent 

years, ranging from circulating biomarkers (sICAM-1 [soluble intercellular adhesion 

molecule-1], sVCAM-1 [soluble vascular adhesion molecule-1], sE-selectin [soluble E-

selectin], and vWF [von Willebrand factor]), structural imaging approaches like optical 

coherence tomography [193], and darkfield microscopy [194–196] to limb reperfusion 

measurements following a brief period of tissue ischemia (i.e. reactive hyperemia) [197, 

198]. While each of these endpoints have been studied in the context of specific 

cardiovascular and/or metabolic diseases, unlike studies evaluating macrovascular 

endothelial function, population studies exploring sex and the influence of healthy aging on 

microvascular endpoints remain limited. More work is therefore needed to fully elucidate the 

impact of age and sex on microvascular dysfunction, along with specific mechanisms 

contributing to its prevalence.
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Neurovascular Control

Accumulating evidence suggests that both sex and age influence autonomic neural control of 

vascular tone. For example, the incidence of orthostatic intolerance is much higher in young 

women than young men, related to an apparent attenuation of peripheral vasoconstrictor 

responsiveness to sympathetic activity [199–201]. Where a significant relationship exists 

between sympathetic nerve activity and total peripheral resistance in young men, this 

relationship is absent in young women [202], attributable to greater β-adrenergic-mediated 

vasodilation in young women [203, 204]. Indeed, the relationship between sympathetic 

nerve activity and total peripheral resistance is restored in young women via systemic β-

adrenoreceptor blockade [204]. After ~ 40 years of age, however, the autonomic nervous 

system plays a much more dominant role in the control of blood pressure [205], a response 

largely attributable to a reduction in β2-adrenergic receptor (β2AR)–mediated vasodilation 

[203, 206, 207]. While the exact mechanism for this finding remains incompletely 

understood, reduced NO bioavailability has been implicated [207]. Moreover, aged 

postmenopausal women have greater vasoconstrictor responses to norepinephrine [203], 

which may be related to greater sympathetic transduction of sympathetic nerve activity 

[208]. It is interesting to consider these findings in the context of popular cardiovascular 

therapeutics, particularly beta- and alpha-blockers. Caution may therefore be warranted as 

we promote certain classes of drugs that have worked well in male-dominated conditions 

like heart failure with reduced ejection fraction (HFrEF) to more female-dominant 

conditions like HFpEF.

Conclusions

Taken together, there is clear evidence that both age and sex influence the cardiovascular 

system. Sex-specific cardiomyocyte loss, an increase in extracellular matrix, and 

myocellular hypertrophy work in tandem in the presence of CVD risk factors and/or overt 

CVD to promote unique patterns of LV remodeling in women and men. In addition, age- and 

sex-specific vascular stiffening is also well established, driven by changes in endothelial 

dysfunction, elastin–collagen content, microvascular function, and neurohormonal signaling. 

Together, these changes in LV chamber geometry and morphology, coupled with heightened 

vascular stiffness, appear to drive both age-related increases in systolic function and declines 

in diastolic function, particularly in postmenopausal women. Estrogen is indeed implicated 

as an important mediator of the aforementioned changes, given that it is a direct vasodilator, 

promotes nitric oxide excretion, and impacts myocellular Ca2+ handling, mitochondrial 

energy production, and oxidative stress. The culmination of these sex-specific cardiac and 

vascular changes across the lifespan may provide key insight into heart failure development, 

particularly of the preserved ejection fraction variety. While knowledge gaps remain, as 

outlined herein, the collective insight currently available offers great promise for future 

preventive strategies and therapeutic approaches.
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Fig. 1. 
Influence of age, sex, and cardiovascular disease on left ventricular structure. Conceptual 

left ventricular cross-sectional image, at the level of the papillary muscles, showing the most 

common structural adaptations of the left ventricle (LV) in men and women across the 

lifespan and in the presence of cardiovascular disease (CVD) or CVD risk factors. 

Beginning with early adulthood, LV mass and volume are greater in men than women. With 

healthy aging, mass and volume decline, with LVEDV declining to a greater extent than LV 

mass, resulting in more concentric hypertrophy. In the presence of CVD risk factors and/or 

CVD, women tend to develop an eccentric pattern of hypertrophy, while men tend to 

develop a concentric pattern of hypertrophy
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Fig. 2. 
Twist mechanics and altered strain contributions to left ventricular ejection fraction with age, 

sex, and cardiovascular disease. a Left ventricular myofiber architecture, changing from a 

left-handed helix in the subepicardium to a right-handed helix in the subendocardium. 

Contraction of these two opposing myofiber layers gives rise to circumferential and 

longitudinal shortening about the long axis of the cylinder. Note the longer lever arm of the 

subepicardial fibers compared with the subendocardial fibers. When both layers contract 

simultaneously, the epicardial fibers have a mechanical advantage, dominating the overall 

direction and magnitude of rotation. This mechanical advantage is augmented in conditions 

with impaired subendocardial function and/or a greater subepicardial radius (i.e. concentric 

hypertrophy). b Conceptual model illustrating patterns of change in left ventricular tissue 

deformation, twist mechanics, and ejection fraction through the onset of early mechanical 

dysfunction (associated with age, sex, and cardiovascular comorbidities), heart failure with 

preserved ejection fraction (HFpEF), and heart failure with reduced ejection fraction 

(HFrEF)
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