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Summary.

Rising costs of survey data collection and declining response rates have caused researchers to turn 

to non-probability samples to make descriptive statements about populations. However, unlike 

probability samples, non-probability samples may produce severely biased descriptive estimates 

due to selection bias. The paper develops and evaluates a simple model-based index of the 

potential selection bias in estimates of population proportions due to non-ignorable selection 

mechanisms. The index depends on an inestimable parameter ranging from 0 to 1 that captures the 

amount of deviation from selection at random and is thus well suited to a sensitivity analysis. We 

describe modified maximum likelihood and Bayesian estimation approaches and provide new and 

easy-to-use R functions for their implementation. We use simulation studies to evaluate the ability 

of the proposed index to reflect selection bias in non-probability samples and show how the index 

outperforms a previously proposed index that relies on an underlying normality assumption. We 

demonstrate the use of the index in practice with real data from the National Survey of Family 

Growth.
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1. Introduction

Probability sampling and corresponding design-based approaches to inference provide a 

mathematical basis for making unbiased inferential statements about specific features of 

finite populations. Arguably the most common descriptive quantity that is used by survey 

researchers to describe finite populations is a proportion, which quantifies the fraction of 

units in a target population that has some characteristic of interest. Given the selection 

probabilities for units in a probability sample and any additional information that is 
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necessary to make population inferences (e.g. non-response adjustments, complex sample 

design features such as sampling stratum codes and replicate weights), a survey researcher 

can compute an unbiased estimate of a proportion, and an estimate of its sampling variance. 

The random selection of elements from a population of interest into a probability sample, 

where all population elements have a known non-zero probability of selection, ensures that 

the design-weighted units that are included in the sample mirror the population in 

expectation, i.e. the mechanism of selection into the sample is ignorable, following the 

theoretical framework for missing data mechanisms that was introduced by Rubin (1978).

The effectiveness of probability sampling for studies with these descriptive objectives has 

been declining in the modern survey research environment. Non-contact and non-response 

rates continue to increase in all modes of administration (face to face, telephone, etc.) (Brick 

and Williams, 2013), and the costs of collecting and maintaining probability samples are 

steadily rising (Presser and McCulloch, 2011). Consequently, there may be non-ignorable 

selection bias in survey estimates from probability samples, due to non-ignorable selection 

and non-response mechanisms.

Because of these issues and the increasing availability of other sources of data, survey 

researchers are turning to the ‘big data’ that are generated by inexpensive non-probability 

samples of population units (Wang et al., 2015; Shlomo and Goldstein, 2015; Miller et al., 
2010; Bowen et al., 2007; Brooks-Pollock et al., 2011; Braithwaite et al., 2003; Eysenbach 

and Wyatt, 2002). These ‘infodemiology’ data might be scraped from social media platforms 

such as Twitter (e.g. Myslín et al. (2013), Nascimento et al. (2014), Reavley and Pilkington 

(2014), McCormick et al. (2017) and Nwosu et al. (2015)), or collected from other sources 

such as commercial databases, on-line searches (Shlomo and Goldstein, 2015; DiGrazia, 

2015) and on-line surveys (e.g. Evans et al. (2007), Brooks-Pollock et al. (2011) and 

Heiervang and Goodman (2011)). Several researchers have used these sources of data to 

estimate the prevalence of health problems in larger populations (e.g. Zhang et al. (2013), 

Myslín et al. (2013), Evans et al. (2007) and Koh and Ross (2006)). However, these are 

ultimately non-probability samples, and inferential methods that assume ignorable sample 

selection may not be well justified (Pasek and Krosnick, 2011; Yeager et al., 2011). 

Therefore, sound measures are needed of the degree to which estimates of proportions from 

a non-probability sample are affected by non-ignorable selection bias.

The proportion of individuals in a finite target population that has some characteristic of 

interest is arguably the most commonly estimated descriptive parameter in survey research. 

This paper proposes measures of non-ignorable selection bias for estimates of population 

proportions computed from non-probability samples. Little et al. (2019) proposed and 

assessed indices of non-ignorable selection bias for means based on an underlying normal 

pattern-mixture model for the survey variables. Although these indices performed 

reasonably well for assessing selection bias in estimates of proportions, the indices had 

much better performance for means based on continuous variables, as would be expected 

given the underlying normal model. Andridge and Little (2019) have developed estimators 

of proportions based on a proxy pattern-mixture model for a binary outcome, in the context 

of non-ignorable survey non-response; we leverage these recent developments to develop 
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improved indices of potential non-ignorable selection bias for estimates of population 

proportions computed from non-probability samples.

2. Background: non-ignorable sample selection

Rubin (1976) defined joint models for the data and the missingness mechanism, and 

sufficient conditions under which the missingness mechanism can be ignored, for likelihood 

and frequentist inference. This framework can also be applied to sample selection, with the 

indicator for response being replaced by the indicator for selection into the sample (Rubin, 

1978; Little, 2003). We review the main ideas here.

Following Little et al. (2019), let Y = (y1, … , yN) be survey data for each unit i=1, … , N in 

the population, where yi could be a vector. Let Z be a set of fully observed auxiliary or 

design variables, and let the sample inclusion indicators S = (S1, … , SN) take the values Si = 

1 if the unit i is included in the sample and Si = 0 otherwise. We partition Y into (Yinc, Yexc), 

where Yinc = {yi} for units in the sample (i.e. with Si = 1) and Yexc = {yi} for units not in 

the sample (Si = 0).

Under a model-based (Bayesian) framework, we assume a model for the joint distribution of 

Y and S conditional on Z (Little, 2003). This joint distribution is factored as

fY , S(Y , S ∣ Z, θ, ϕ) = fY (Y ∣ Z, θ)fS ∣ Y (S ∣ Y , Z, ϕ), (1)

where the density for Y given Z is indexed by unknown parameters θ, and the density for S 
given Y and Z models the selection mechanism, and is indexed by unknown parameters ϕ. 

The full likelihood based on the observed data (Z and S for all units and Y for units selected 

into the sample only) is then given by

L θ, ϕ ∣ Y inc, S, Z ∝ fY , S Y inc, S ∣ Z, θ, ϕ = ∫ fY (Y ∣ Z, θ)fS ∣ Y (S ∣ Y , Z, ϕ
)dY exc .

(2)

Letting p(θ, ϕ|Z) be a prior distribution for the parameters, the corresponding posterior 

distributions for θ, ϕ and Yexc are

p θ, ϕ ∣ Y inc, S, Z ∝ p(θ, ϕ ∣ Z)L θ ∣ Y inc, S, Z ,

p Y exc ∣ Y inc, S, Z ∝ ∫ p Y exc ∣ Y inc, S, Z, θ, ϕ p θ, ϕ ∣ Y inc, S, Z dθdϕ .
(3)

Modelling the selection mechanism is challenging, and Rubin (1976) showed that it is 

unnecessary if the mechanism is ignorable. Two sufficient conditions for ignorability for 

Bayesian inference are selection at random (SAR) and Bayesian distinctness. SAR means 

that S and Yexc are independent after conditioning Yinc, Z and ϕ, i.e. fS|Y (S|Y, Z, ϕ)=fS|Y (S|

Yinc, Z, ϕ) for all Yexc. Bayesian distinctness means that θ and ϕ have independent prior 

distributions, i.e. p(θ, ϕ|Z)=p(θ|Z)p(ϕ|Z). These conditions together imply that
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p θ ∣ Y inc , Z ∝ p(θ ∣ Z)L θ ∣ Y inc , Z ,

p Y exc  ∣ Y inc , Z ∝ ∫ p Y exc  ∣ Y inc , Z, θ p θ ∣ Y inc , Z dθ .
(4)

Thus, when the ignorability assumption is correct, the model for the selection mechanism 

(the model for S) does not affect inferences about the parameters θ.

Probability sampling is a special form of SAR, where the selection mechanism is known and 

may depend on auxiliary variables Z but not on the survey outcomes Y. Thus, fS|Y (S|Y, Z, 

ϕ) reduces to fS|Y(S|Z). Probability sampling is stronger than SAR in three important 

respects. First, under complete response it is automatically valid, and not an assumption. 

Second, it implies that, conditional on Z, inclusion in the sample is independent of Y, and 

also any other unobserved variables that might be included in a model (e.g. latent variables). 

Third, it implies that S is independent of Yinc, whereas SAR requires only the weaker 

assumption that S and Yexc are independent after conditioning on Yinc and Z. Although 

these properties make probability sampling highly desirable, it is not always attainable. 

Researchers making inferences based on a non-probability sample often implicitly assume 

SAR. However, although weaker than probability sampling, SAR may not be valid for non-

probability samples. The indices of non-ignorable selection bias of Little et al. (2019) are 

designed to quantify the potential selection bias in estimated means of continuous survey 

variables. These indices use SAR as a starting point and quantify changes in estimates of the 

mean of Y if the SAR assumption does not hold (to varying degrees). Here we modify these 

indices to be specifically applicable to proportions.

3. Indices of non-ignorable selection bias for proportions

Let Y be a binary variable taking values 0 or 1, and assume that Y arises from an underlying 

normal latent variable U, with Y = 1 when U>0, and Y = 0 when U<0. Y is only available 

for cases that are selected in the non-probability sample. Let X be a proxy variable that is 

available for all units in the target population that has a reasonably strong correlation with 

the latent variable U. X may itself be a function of a vector of auxiliary variables Z, as in 

Andridge and Little (2018). In this case, Z must be available for all units in the non-

probability sample, and either sufficient statistics (means, variances and covariances) or 

microdata for Z must be available for the non-selected units. As previously defined, let S be 

an indicator of being selected for the non-probability sample. Finally, let V be a set of other 

covariates that are independent of Y and X for selected units but that may be related to 

selection (i.e. associated with S).

We assume the following proxy pattern-mixture model (Andridge and Little, 2011, 2018) for 

U and X, conditional on V and S:

(U, X ∣ V , S = j) N2
βu0 ⋅ v

(j) + βuv ⋅ v
(j) V

βx0 ⋅ v
(j) + βxv ⋅ v

(j) V
,

σuu ⋅ v
(j) σux ⋅ v

(j)

σux ⋅ v
(j) σxx ⋅ v

(j) . (5)
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Here βu0 ⋅ v
(j)  is the intercept, βuv ⋅ v

(j)  the coefficient of V and σuu ⋅ v
(j)  the residual variance in the 

regression of U on V for pattern S=j. This model implies probit regressions of Y on X for 

the selected and non-selected cases.

The parameters in model (5) are not all identified. To identify them, we assume that 

selection into the sample is an unspecified function of V and a known linear combination of 

X and U:

Pr(S = 1 ∣ U, X, V ) = g (1 − ϕ)X* + ϕU, V . (6)

Here X* = X σuu(1)/σxx(1)  is the proxy X rescaled to have the same variance as U in the 

population of selected cases, and ϕ is a sensitivity parameter, which we assume to be 

between 0 and 1 (inclusively). If we assume also that V is uncorrelated with X for non-

selected cases (S=0) and that X is the best predictor of U for non-selected cases, then model 

(5) reduces to

(U, X ∣ V , S = j) N2 μu
(j), μx

(j) , Σ(j) ,

Σ(j) =
σuu

(j) ρux
(j) (σuu

(j)σxx
(j))

ρux
(j) (σuu

(j)σxx
(j)) σxx

(j) .
(7)

For the proof, see the on-line supplementary materials. Note that this model excludes the 

covariates V that are independent of Y and X but are related to selection (S). The inclusion 

of V in model (5) makes the assumed selection mechanism (6) more general, but our 

methods do not rely on the existence of such covariates.

Without loss of generality, we set (U ∣ S = 1) = σuu(1) = 1. We note that ρux
(j), which is the 

correlation between latent U and X for selected (j=1) and non-selected (j=0) samples, is the 

biserial correlation of X and Y for pattern j (Tate, 1955). Of primary interest is the marginal 

mean of Y, which can be expressed as a function of the pattern-mixture model:

μy = Pr(Y = 1) = Pr(U > 0) = πΦ μu(1) + (1 − π)Φ μu(0)/ σuu(0) , (8)

where Φ(z) denotes the cumulative distribution function of the standard normal distribution, 

evaluated at z, and π is the proportion of selected cases in the population.

The parameters in the probit proxy pattern-mixture model (7) for the non-selected units (S 

=0), μu(0), σuu(0) and ρux(0), are just identified given the assumption about the selection 

mechanism in equation (6). Following Little et al. (2019), the parameter ϕ in the selection 

mechanism provides a measure of the degree of non-random selection after conditioning on 

X. If ϕ=0, the probability of being selected in the non-probability sample depends only on X 
and V, and thus selection is at random (SAR) since both are fully observed. In contrast, if 

ϕ=1, the probability of being selected in the non-probability sample depends on the value of 

the latent variable U (and thus the binary variable of interest, Y) and on V, and thus selection 

is not at random. As described in Andridge and Little (2011, 2018), the function g does not 

have to be specified for estimates based on this model to be valid.
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Given these restrictions, Andridge and Little (2018) showed that the unidentified parameters 

μu(0) and σuu(0) for a specific choice of ϕ are given by

μu(0) = μu(1) +
ϕ + (1 − ϕ)ρux(1)

ϕρux(1) + (1 − ϕ)
μx(0) − μx(1)

σxx(1) ,

σuu(0) = 1 +
ϕ + (1 − ϕ)ρux(1)

ϕρux(1) + (1 − ϕ)

2σxx(0) − σxx(1)

σxx(1) .
(9)

The difference of the proportion for selected cases from the overall proportion is therefore

μy(1) − μy = μy(1) − πΦ μu(1) + (1 − π)Φ μu(0)/ σuu
(0)

= μy(1) − πΦ μu(1) − (1 − π) × Φ μu(1) +
ϕ + (1 − ϕ)ρux(1)

ϕρux(1) + (1 − ϕ)

μx(0) − μx(1)

σxx(1) / 1 +
ϕ + (1 − ϕ)ρux(1)

ϕρux(1) + (1 − ϕ)

2σxx(0) − σxx(1)

σxx(1) .

For a given choice of ϕ, replacing the parameters by estimates (with the circumflex notation) 

yields a measure of the unadjusted selection bias for the proportion, MUBP(ϕ), for μy
(1):

MUBP(ϕ) = μy
(1) − μy

= μy
(1) − πΦ μu

(1) − (1 − π) × Φ μu
(1) + ϕ + (1 − ϕ)ρux

(1)

ϕρux
(1) + (1 − ϕ)

μx
(0) − μx

(1)

σxx
(1) / 1 + ϕ + (1 − ϕ)ρux

(1)

ϕρux
(1) + (1 − ϕ)

2 σxx
(0) − σxx

(1)

σxx
(1) .

(10)

Calculation of the index (10) for a given choice of ϕ therefore requires estimates of π, which 

may be close to 0 for larger populations; the estimated biserial correlation of X and Y based 

on the selected non-probability sample, ρux
(1), and sufficient statistics for the proxy variable X 

for both the selected and the non-selected portions of the target population. We note that this 

last piece is a stronger requirement than the indices for continuous Y in Little et al. (2019), 

where only the mean of X was required and not its variance. Maximum likelihood (ML) 

estimates of these sufficient statistics for the selected cases can easily be computed by using 

the selected cases in the non-probability sample.

We estimate ρux(1) by using the ‘two-step’ approach, which was originally proposed by Olsson 

et al. (1982), which outperformed ML when X is not normally distributed in simulations in 

Andridge and Little (2018). A desirable property of this approach is that, unlike ML, the 

estimated mean of the latent variable U in the selected sample is given by μu
(1) = Φ−1 μy

(1) , 

i.e. the inverse probit function of the mean of Y in the selected sample. Parameters other 

than ρux(1) are estimated by ML, so we call the resulting estimates ‘modified’ ML (MML).

Usually X is not directly available but instead computed as the linear predictor from a fitted 

probit model. In this case, steps should be taken to prevent optimistic estimation of ρux(1)

based on potential overfitting of the probit model to the data from the non-probability 

sample. In this case, we recommend computing ρux
(1) on the basis of multifold cross-

validation. To do this, the probit model would be fitted to randomly selected subsamples of 
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the non-probability sample, and the value of X for all observations calculated from each 

fitted model. Averaging the set of X-values across folds produces a single X-value for each 

observation; this cross-validated X should then be used to compute ρux
(1). The R functions that 

are provided in the on-line supplementary materials and available from https://github.com/

bradytwest/IndicesOfNISB include a function (cv.glm) implementing this cross-validation 

step, the output of which can then be passed to another function that is used for two-step 

estimation of the biserial correlation.

Estimates of the sufficient statistics for X for the non-selected sample may be less readily 

available but, assuming a negligible sampling fraction, reasonable estimates based on the 

large number of non-selected cases in the target population could be computed from a 

population census or large survey that also collects measures of X. If X is the linear 

predictor from a probit regression of Y on Z in the non-probability sample, the mean of X 
could be computed by applying the same probit model coefficients estimated from the non-

probability sample to overall population means on the auxiliary variables in the vector Z. In 

the presence of a non-negligible sampling fraction, and given an overall marginal population 

mean for X (denoted μx), the mean of X for non-selected cases could be approximated as 

μx
(0) = μx − πμx

(1) /(1 − π). The variance of X for non-selected cases could be assumed to be 

the same as the population variance (in the absence of any additional information on changes 

in the element variance depending on selection).

When ϕ=0, selection into the non-probability sample is SAR, and the selection mechanism is 

ignorable. When ϕ=1, the non-ignorable selection mechanism depends entirely on U and V, 

but not on the proxy X. Following Little et al. (2019), we recommend computing the interval 

that is defined by [MUBP(0), MUBP(1)] to assess the range of potential selection bias 

values, depending on the choice of ϕ. As a compromise between the two extreme cases 

defining this interval, we recommend MUBP(0.5) as an ‘estimate’ of the bias, as this choice 

represents equal dependence of selection on the proxy X and the underlying latent value of 

the variable of interest U.

We also note that the MUBP-index is not always monotonic in ϕ over the [0,1] range. This 

property of the MUBP-index depends on the estimated values of μu(1) and ρux(1) (i.e. the mean 

of Y and the strength of the proxy in the selected sample) and how far apart the means and 

variances of the proxy variable X are for the selected and non-selected cases. Letting the 

standardized differences in the selected and non-selected means and variances of X be 

denoted dμ = μx
(0) − μx

(1) / σxx
(1) and dσ = σxx

(0) − σxx
(1) /σxx

(1), then MUBP will be non-

monotonic over the [0,1] interval if and only if

ρux
(1) <

dμ
dσμu(1) < 1

ρux
(1) .

This condition will be satisfied when there are extreme differences between X in the selected 

and non-selected populations, there are large differences in the variance of X for selected 

and non-selected cases and/or weak correlation between U and X. If we assume that the 
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proxy variances are equal for the selected and non-selected cases, as was suggested in the 

absence of information about the variance of X for the non-selected cases, then dσ = 0, and 

MUBP is automatically monotone over the [0,1] interval.

At least a moderate biserial correlation between Y and X is important for any index to give 

an effective indication of selection bias. If this correlation is weak, [MUBP(0), MUBP(1)] 

will be very wide, sometimes even reaching the Manski (2016) bounds that are created by 

assuming that non-selected cases all have either Y = 0 or Y = 1.

We also consider a Bayesian approach to making inference about the MUBP-index, which 

enables us to account for uncertainty in the estimation of the coefficients of Z in the probit 

regression of Y on Z when forming the proxy variable X. We follow the Gibbs sampler 

approach that was outlined in section 4.2 of Andridge and Little (2018), which like the two-

step estimates that were described earlier requires the availability of sufficient statistics for Z 
for the selected and non-selected cases. Since there is no information in the data about ϕ, one 

could follow two possible approaches. One option is to fix ϕ and to proceed with the Gibbs 

sampler (see below for details) for all other parameters, assuming non-informative prior 

distributions for the identified parameters. This approach accounts for uncertainty in the 

estimate of MUBP(0) and MUBP(1); one could form 95% credible intervals for both 

MUBP(0) and MUBP(1), enabling a description of the uncertainty in each ‘limit’ of the 

interval. An alternative approach is to draw values of ϕ from a prior distribution, e.g. 

uniform(0,1), and then proceed with the Gibbs sampler.

To initiate the Gibbs sampler, we first fit the probit regression model to the data on Y and Z 
from the cases that were selected for the non-probability sample, which yields starting 

values for the regression coefficients in this model. We then create the proxy variable X as a 

function of the coefficients. An iteration of the sampler (conditional on either a random draw 

of ϕ or a fixed choice of ϕ) then starts with draws of the latent variable U from a truncated 

normal distribution conditional on X (and thus also conditional on the probit model 

coefficients). We then select posterior draws of the regression coefficients in the probit 

model given the previous augmented values for U and recreate the proxy variable X given 

the current draws of the regression coefficients. This data augmentation approach in each 

iteration then enables posterior draws of the pattern-mixture model parameters that are 

defined in equations (7) and (9), following the explicit steps and constraints that were 

outlined in Andridge and Little (2011). We then generate the corresponding posterior draw 

of MUBP(ϕ) in equation (10) on the basis of the parameter draws. The Gibbs sampler then 

proceeds to the next iteration. Given a large number of draws of MUBP(ϕ) we can then 

generate 95% credible intervals for MUBP(ϕ).

4. Simulation study

We now describe a simulation study that was designed to illustrate the ability of MUBP(ϕ) 

to detect selection bias in estimated proportions based on simulated data and to show what 

can go wrong when applying the normal model of Little et al. (2019). All simulations and 

data analysis were performed by using the R statistical computing environment (R Core 

Team, 2018), and the code is available on request.
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We generated populations of size 10000 containing a binary outcome variable Y and a single 

continuous auxiliary variable Z as follows. A single auxiliary variable zi ~N(0, 1) was 

generated for all units. Then, for each of ρux ={0.2, 0.5, 0.8}, a latent variable ui was 

generated as [ui|zi]~N(α0+α1zi, 1) with α1=ρux/√(1 − ρux
2). Then an observed binary 

variable yi was created as yi=1 if ui>0 and yi=0 otherwise. Note that, for this simulation, ρux 

is the biserial correlation between Y and the proxy X=α0 + α1Z for the entire population: 

not for the selected sample. In this simulation Z was univariate, and thus ρux≡corr(U, 

X)=corr(U, Z), but more generally Z could be a set of auxiliary variables and X the linear 

predictor from a probit regression of Y on Z for selected cases as described earlier. We set 

α0 = Φ−1 μY 1 + α1
2  so that E(Y)=μY. To assess how the indices performed for 

proportions of different magnitude, we simulated data by using μY = {0.1, 0.3, 0.5}.

The sample selection indicator Si was generated according to a logistic model,

logit Pr si = 1 ∣ zi, ui = β0 + βZzi + βUui,

and values of yi were deleted for non-selected units, i.e. when si=0. We simulated a wide 

range of selection mechanisms, from selection dependent entirely on Z to dependent entirely 

on U, by varying the values of {βZ, βU}, as shown in Table 1, with the value of β0 chosen to 

result in a 5% sampling fraction. The selection bias varied with βZ and βU, with larger 

values of βZ or βU leading to larger bias. We note that the resulting bias in the selected mean 

varied not only by selection mechanism but was also a function of ρux and μY. Once ui had 

been used for data generation and sample selection, it was discarded.

The process of generating {zi, ui, yi, si} was repeated 1000 times for each combination of 

ρux, μY and {βZ, βU}. For each simulated data set, we calculated the indices MUBP(0), 

MUBP(0.5) and MUBP(1) as defined in equation (10), using a probit model of Y on Z (for 

selected cases) to estimate the proxy X (for all cases). We used the two-step estimator to 

obtain an estimate of the biserial correlation between the selected cases without cross-

validation, since in this controlled simulation setting there was only one auxiliary variable Z. 

We also computed credible intervals by implementing the fully Bayesian approach for the 

MUBP, with draws of ϕ from a uniform(0,1) distribution, 20 burn-in draws of the Gibbs 

sampler and 1000 subsequent iterations. For comparison, we also calculated indices that 

were proposed by Little et al. (2019). Since the outcome is binary, we elected to calculate 

their measure of unadjusted bias, MUB(ϕ), instead of their standardized measure of 

unadjusted bias, SMUB(ϕ), so that it would be more directly comparable with MUBP(ϕ). 

We also calculated credible intervals for MUB(ϕ) by using a uniform prior for ϕ. For both 

MUBP- and MUB-indices, we used sufficient statistics for the auxiliary variable Z for the 

non-selected cases when calculating the indices though, with a 5% sampling fraction, results 

would probably not differ much if sufficient statistics for the entire population were used.

To assess the performance of the indices, we calculated the correlation of each index with 

the true estimated bias for each simulated data set, defined as the population mean of Y 
minus the mean of Y for the selected cases. We also assessed the ability of the ML- or 
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MML-based intervals [MUB(0), MUB(1)] and [MUBP(0), MUBP(1)] to cover the true 

estimated bias, as well as the coverage of the Bayesian intervals for MUBP(ϕ) and MUB(ϕ).

The median estimated index values across replicates for MUBP(ϕ) and MUB(ϕ) for ϕ={0, 

0.5, 1} are shown in Fig. 1, for the scenarios with E[Y]=0.3. For all selection mechanisms 

and correlations between the proxy and the outcome, both sets of indices ‘track’ with the 

estimated bias; as the estimated bias goes up, so does the index. When selection is a function 

of Z only, both MUBP(0) and MUB(0) produce unbiased estimates of bias for all proxy 

strengths (lines overlap on the plot). When selection is only a function of U, MUBP(1) is 

approximately unbiased and there is a substantial upward bias in MUB(1). More interesting, 

however, are the intermediate mechanisms, where selection is a function of both Z and U. In 

these cases, the intervals [MUBP(0), MUBP(1)] and [MUB(0), MUB(1)] cover the truth, 

with ϕ=0.5 coming closest to the truth most of the time. However, the interval widths are 

much wider for the normal model (MUB) than for the probit model (MUBP), even when the 

proxy variable is highly correlated with the outcome. Interestingly, the intervals based on the 

normal model are more exaggerated when selection depends more heavily on Z, the fully 

observed variable. Importantly, for weaker proxies (lower correlations), the normal model 

intervals have an implausible bound for ϕ=1, i.e. produce estimates of E[Y] that are outside 

the (0,1) interval, whereas the probit model intervals bound at the upper limit (i.e. E[Y]=1). 

In Fig. 1, the hitting of the upper bound can be seen by the curving of the full MUBP(1) line 

for selection based on Z and a weak proxy. Although the probit model produces plausible 

bounds in the presence of a weak proxy, these bounds may not be useful in practice as they 

may cover nearly the whole range from 0 to 1. Without auxiliary data that are moderately to 

strongly related to the binary Y-variables, we cannot estimate the bounds of potential 

selection bias with reasonable precision. In practice, we do not know the true selection 

mechanism, but using the probit model will give tighter intervals and produce index values 

that more closely reflect the bias, with both strong and weak proxies. Similar patterns are 

seen with E[Y]=0.1 and E[Y]=0.5 (on-line supplemental Figs 1 and 2).

Not surprisingly, all indices have higher correlation with the true estimated bias for stronger 

proxies than for weaker proxies, as shown in Fig. 2. Generally, the patterns of correlations 

are similar across selection mechanisms, though there is more separation between the 

models (probit versus normal) for selection mechanisms that have larger dependence on Z. 

For rare outcomes (E[Y]=0.1), the MUBP(ϕ) index has a higher correlation with the 

estimated bias than the MUB(ϕ) index does across all selection mechanisms and proxy 

strengths. Strikingly, when E[Y]=0.1 and the proxy is weak, MUB(1) has essentially zero 

correlation with the truth, whereas MUBP(ϕ) has a noticeably higher correlation. This 

dramatic difference between the two models appears to be reduced when the mean of Y 
nears 0.5; some differences are still seen for E[Y]=0.3, but there are very few differences 

when E[Y]=0.5.

Fig. 3 shows coverage of intervals based on ML or MML and 95% Bayesian credible 

intervals for a subset of the selection models; results for all models are available in the on-

line supplemental Fig. 3. Coverage of the Bayesian intervals is higher than that of the MML-

based intervals for both models. The ML-based intervals tend to be wider and to have higher 

coverage for the normal model (MUB) than the MML-based intervals for the probit model 
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(MUBP). At the two extremes of the selection models (based on Z; based on U), coverage is 

only around 50% for the probit model MML-based intervals regardless of proxy strength. 

This is not unexpected, since in these cases MUBP(0) and MUBP(1) are actually unbiased 

estimates. If the sampling distributions of MUBP(0) and MUBP(1) are roughly symmetric, 

we would expect the interval to cover the truth about only 50% of the time. The Bayesian 

credible intervals for MUBP(ϕ) show higher coverage at these extremes, with coverage at 

the nominal level (95%) for small estimated biases but decreasing as the bias increases.

Coverage of both types of probit intervals does not depend on E[Y], but coverage for the 

normal model intervals does. For stronger proxies, coverage is lower for the normal model 

(both interval types) as E[Y] moves away from 0.5; more so for mechanisms that depend 

more on Z. Conversely, for weaker proxies and non-ignorable selection mechanisms, the 

coverage is higher for smaller E[Y], reflecting the fact that in these cases the intervals are 

very wide.

Overall, the MUBP-indices perform well across a variety of selection mechanisms. These 

probit model indices provide a more precise estimate of bias compared with the MUB-

indices based on the normal model and do not return implausible estimates. As was 

suggested in Little et al. (2019) for the normal-based indices, at least a moderately strong 

predictor of Y is necessary for MUBP to be useful. In the simulation, scenarios with biserial 

correlations of 0.5 or 0.8 had stronger correlations between the estimated bias and the true 

bias than scenarios with a biserial correlation of 0.2. Note, however, that the biserial 

correlation is always greater than the Pearson correlation between X and binary Y, and how 

much larger it is depends on the mean of Y. In this simulation, the Pearson correlation 

ranged from 0.12 to 0.64, and a correlation between Y and X of 0.3 or greater appears to 

provide reasonable estimates of the selection bias.

5. Application

We now revisit an analysis of real survey data from the National Survey of Family Growth 

(NSFG) that was presented in Little et al. (2019). In this analysis, Little et al. (2019) used 

the publicly available NSFG sample as a hypothetical population and took the subsample of 

smartphone users as a hypothetical non-probability sample. They calculated their normal 

model-based selection bias indices, SMUB(ϕ), to evaluate potential selection bias in sample 

means for a variety of variables. Importantly, the SMUB(ϕ) index was applied to means 

estimated for a mixture of different types of survey variables, including binary variables. Of 

the 16 proportions that were analysed, the [SMUB(0), SMUB(1)] interval only ‘covered’ the 

actual bias in the smartphone proportions eight times. These results suggested that there was 

room for improvement in the performance of these indices for these binary variables. In the 

present application, we follow the same approach, and we seek to evaluate the improvement 

in coverage of actual bias based on the MUBP-measures that are proposed in the present 

study.

For each of the 16 binary variables in the NSFG data, we initially fitted probit regression 

models to the data from the smartphone sample, regressing the binary variable Y on the 

same covariates Z that were considered by Little et al. (2019). Values of the linear predictor 
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X for the underlying variable U were then computed for both the selected cases and the non-

selected cases, and the fivefold cross-validation approach that was described earlier was used 

for two-step estimation of the biserial correlation for each variable. We then computed the 

MUBP-indices that are defined in equation (10) and compared these with the known true 

difference between the proportion in the smartphone sample and that for the full 

‘population’.

We also implemented the fully Bayesian inference approach for the MUBP-index that was 

described earlier, with draws of ϕ from a uniform (0,1) distribution, 20 burn-in draws of the 

Gibbs sampler and 2000 subsequent iterations. We then examined whether 95% credible 

intervals for the MUBP covered the true bias, expecting that coverage may improve (relative 

to the ML- or MML-based intervals) from exploitation of the uncertainty in the estimated 

parameters enabled by the presence of sufficient statistics for Z on the non-selected NSFG 

cases.

Table 2 compares the results of applying both the normal model of Little et al. (2019) and 

our probit model to the NSFG data. Though Little et al. (2019) reported standardized 

measures of bias (SMUB), Table 2 contains the non-standardized estimates (MUB) for direct 

comparison with the MUBP-index. Notably, the selection fractions for this hypothetical 

application were quite different from 0: for variables that were measured on males, the 

selection fraction was 0.788 (6942 smartphone users out of 8809 males) and, for variables 

that were measured on females, the selection fraction was 0.817 (8981 smartphone users out 

of 10991 females). Table 2 also includes the cross-validated ‘two-step’ estimates of the 

biserial correlations of the proxy variable X with the outcome Y among the selected cases.

As was seen in the simulation study, the MUBP-intervals are significantly narrower than the 

intervals for the same proportions based on the MUB-index, reflecting the sensitivity of the 

MUBP-index to the limited range and discrete nature of the binary survey variables. 

MUBP(ϕ) therefore provides a more precise sense of the potential selection bias that is 

associated with these estimates of the proportions than the normal-based estimates, and this 

result holds regardless of the biserial correlation. Importantly, MUBP(ϕ) tracks just as well 

with the true bias as MUB(ϕ) does; the correlations of MUBP(0.5) and MUB(0.5) with the 

true bias are 0.51 and 0.52 respectively. We therefore prefer the more precise MUBP-index 

to the MUB-index for binary Y-variables.

10 of the 16 estimated bias values are either directly covered or very nearly covered by the 

proposed [MUBP(0), MUBP(1)] interval, representing a slight increase in coverage relative 

to the normal model. Thus the gain in precision does not seem to diminish coverage 

properties relative to MUB. For example, considering the binary indicator of children being 

present in the household for males, we see that accounting for the uncertainty in the input 

estimates via the Bayesian approach for the fixed choices of 0 and 1 for ϕ would result in 

coverage of the estimated bias. The results are similar when applying the fully Bayesian 

approach with uniform draws for ϕ. Furthermore, as was noted by Little et al. (2019), a 

moderate biserial correlation (say, greater than 0.3) ensures that the interval proposed does a 

good job of covering the estimated bias; this was true for nine out of 12 proportions where 

the biserial correlation was 0.3 or larger in this illustration.
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There are several cases where no approach to constructing an interval for MUBP covers the 

estimated bias, despite the fact that the biserial correlation between X and Y is relatively 

large (e.g. Age=30–44 years for males; biserial correlation 0.65). Since we had Y available 

for the entire NSFG ‘population’ in this example, we could fit a probit regression model to 

the selection indicator, regressing the indicator of owning a smartphone (‘selection’) on both 

X and Y to investigate further the ‘true’ selection mechanism. Surprisingly, we found that 

the estimated coefficient for X was positive whereas the estimated coefficient for Y was 

negative, and thus the probability of being selected into the NSFG smartphone ‘sample’ was 

a positive function of X and a negative function of Y. In our model, we assume in equation 

(6) that the selection mechanism is a function of (1−ϕ)X* + ϕU with ϕ restricted to be non-

negative, and thus a selection mechanism that depends on X and Y in opposite directions 

will not be covered by the [MUBP(0), MUBP(1)] interval or the Bayesian intervals.

Little (1994), who defined the probability of non-selection underlying the proxy pattern-

mixture in (equation 7) as Pr(S=0|U, X)=f(X+λU) with λ=ϕ/(1−ϕ), suggested that λ=−1 

was a plausible value for this mechanism; in this case, selection would depend on the 

difference between X and U. Following our approach, λ=−1 would imply that ϕ=−∞.We 

subsequently computed MUBP(−∞) for the age 30–44 years indicator for males as an 

illustration and found that the resulting value was −0.024. Taken together with the MUBP(ϕ) 

values in Table 2,we find that the interval of [MUBP(−∞), MUBP(1)] for this proportion is 

[−0.024, 0.039]which does in fact cover the small estimated bias (−0.002). So, although this 

resulting interval is relatively wide, it does allow for the unusual but not implausible 

possibility that the probability of selection has a positive relationship with the proxy variable 

X and a negative relationship with U. Analysts can easily perform this computation 

(calculating MUBP(−∞)) by using the R functions at https://github.com/bradytwest/

IndicesOfNISB to assess the implications of this plausible scenario for potential selection 

bias. We also note that this scenario is a problem only with strong proxy variables X that 

have a moderate-to-large biserial correlation with Y. With weak proxies, the interval 

proposed will basically cover the two extremes—the selection bias if all non-selected cases 

were 1s, and the selection bias if all non-selected cases were 0s.

6. Discussion

We have proposed simple model-based indices called MUBP that measure the potential 

selection bias in proportions estimated on the basis of non-probability samples, where the 

selection mechanism underlying the realized non-probability sample may be non-ignorable. 

These indices are easy to compute by using the R functions that are freely available from 

https://github.com/bradytwest/IndicesOfNISB. Via empirical simulation studies and an 

application to smartphone users in a real survey setting, we have demonstrated the ability of 

the MUBP-indices effectively to indicate potential selection bias for estimated proportions. 

Notably, the indices enable sensitivity analyses, allowing users to vary their assumptions 

about the amount of non-ignorability in the underlying selection mechanism.

The indices proposed also have a dual benefit in that the underlying methodology can be 

used to make inferences about the estimated proportions based on a non-probability sample. 

Making inference when following this approach requires means, variances and covariances 
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for the auxiliary variables Z in the non-selected sample that are used to form the auxiliary 

proxy that is key to the effectiveness of this methodology. Although these sufficient statistics 

(and specifically the variances and covariances) may be difficult to obtain for non-selected 

cases in practice, one could at least assume that the variances and covariances are similar to 

those observed for the non-probability sample. In the absence of this information, and given 

that the auxiliary proxy X has a moderately strong (cross-validated) biserial correlation with 

the binary variable of interest Y, one could still use our methodology to identify those 

estimates that are at the highest risk of selection bias.

The MUBP-indices could also be used during on-going data collection to identify estimates 

that are becoming increasingly prone to selection bias as the data collection proceeds. In this 

sense, the indices could be used to inform adaptive survey designs that prioritize subgroups 

of cases which are predicted to have unique values on the binary variable of interest that may 

be underrepresented in the responding sample. We feel that future research could focus on 

this potential utility of the proposed indices to reduce selection bias in a realtime fashion.

The MUBP-index does have limitations, most notably that the proxy for Y must be 

moderately strong for the sensitivity analysis to produce intervals that are reasonable in 

width, and that uncertainty intervals do not cover the true bias with consistently high 

probability. However, even with weak proxies the MUBP-intervals are less conservative than 

the ‘worst-case’ bounds that are obtained by assuming that all non-selected cases have Y = 0 

(lower bound) and Y = 1 (upper bound) (Manski, 2016). In the context of non-probability 

samples, the non-selected fraction is generally so large that such intervals would effectively 

range from 0 to 1. Another limitation of the MUBP-index is that, by reducing the auxiliary 

variables Z to the proxy X, we lose the ability to quantify the effect of specific Z-variables 

on the selection mechanism. The trade-off is simplicity, in the form of a single sensitivity 

parameter. Finally, as seen in the NSFG example, it is possible for the MUBP-intervals to 

‘miss’ in the opposite direction of the true selection bias, in the unusual case when the 

selection mechanism depends on the outcome Y and the proxy X in opposite directions. The 

assumption underlying the MUBP-index is that the direction of the selection bias in X is the 

same as the direction of the selection bias in Y. Assumptions are unavoidable in assessing 

selection bias, and this assumption seems reasonable. To avoid making this assumption, 

analysts could calculate MUBP(−∞) as an alternative bound, but in practice this is likely to 

produce intervals that are too wide to be useful. The exception might be if using the MUBP-

index to compare the potential bias across a set of variables; in this case the interval that 

contains MUBP(−∞) could be compared across Y-variables. We prefer the alternative of 

making the assumption that ϕ ∈ (0, 1) and acknowledging that this assumption may not hold 

(but that we have no way of validating this).

There are three key avenues for extending this work in the future. First, the pattern-mixture 

model here can be extended to estimated proportions for ordinal categorical variables (e.g. 

self-rated health) in a straightforward manner, as outlined in Andridge and Little (2018). In 

this case there would not be a single MUBP(ϕ) but a value of MUBP(ϕ) for each level of the 

outcome; future work could develop measures that combine these values into one (for each 

value of ϕ). Another important area of research is whether the MUBP(ϕ) index can be 

extended for multinomial categorical variables (e.g. political party preference). Finally, the 
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development of measures of selection bias for other estimands besides the population 

proportion, e.g. for estimated regression coefficients in logistic regression models, is also 

necessary.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
MUBP(ϕ) from the probit model and MUB(ϕ) from the normal model versus the true 

estimated bias, shown for combinations of the biserial correlation corr(U, X)=ρux (rows) and 

the selection mechanism (columns), for E[Y]=0.3 (results are medians across 1000 

simulated data sets for each scenario): ●, probit, MUBP(0); ▲, probit, MUBP(0.5); ■, 

probit, MUBP(1); ○, normal, MUBP(0); △, normal, MUBP(0.5); □, normal, MUBP(1); – – 

–, equality (index=estimated bias)
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Fig. 2. 
Correlation between MUBP(ϕ) and true estimated bias, and between MUB(ϕ) and true 

estimated bias, versus the biserial correlation corr(U, X)=ρux, for combinations of selection 

mechanism (columns), μY (rows) and ϕ (shape) (results from all estimated biases (all values 

of βZ and βU) are all plotted together; correlations are estimated from 1000 simulated data 

sets for each scenario): ●, probit, MUBP(0); ▲, probit, MUBP(0.5); ■, probit, MUBP(1); 

○, normal, MUBP(0); △, normal, MUBP(0.5); □, normal, MUBP(1)
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Fig. 3. 
Coverage of [MUBP(0), MUBP(1)] and [SMUB(0), SMUB(1)] ML or MML intervals, and 

Bayesian credible intervals, shown as a function of the true estimated bias (x-axis), selection 

mechanism and estimation method (columns), proxy strength (rows) and E[Y] (shape) 

(coverages are estimated from 1000 simulated data sets): ●, normal–ML; ●, probit–MML; 

■, normal–Bayes; ■, probit–Bayes; ●, E[Y]=0.1; ▲, E[Y]=0.3; ■, E[Y]=0.5
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Table 1.

Values of {βZ, βU} (log-odds ratios) that determine the selection mechanism for the simulation study

Selection mechanism Values of {βZ,βU}

Z {0.1,0}, {0.2,0}, {0.3,0}, {0.4,0}, {0.5,0}

3Z+U {0.075,0.025}, {0.15,0.05}, {0.225,0.075}, {0.3,0.1}, {0.375,0.125}

Z+U {0.05,0.05}, {0.1,0.1}, {0.15,0.15}, {0.2,0.2}, {0.25,0.25}

Z+3U {0.025,0.075}, {0.05,0.15}, {0.075,0.225}, {0.1,0.3}, {0.125,0.375}

U {0,0.1}, {0,0.2}, {0,0.3}, {0,0.4}, {0,0.5}
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