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Abstract

Determination of the amount of reactive nitrogen (Nr) deposition in excess of the ecosystem 

critical load (CL) requires an estimate of total deposition. Because the CL exceedance is used to 

inform policy decisions, uncertainty in both the CL and the exceedance itself must be understood. 

In this paper we review the state of the science with respect to the sources of uncertainty in total 

Nr deposition budgets used for CLs assessments in North America and put forth recommendations 

for research and monitoring to improve deposition measurements and models. In the absence of 

methods to rigorously quantify uncertainty in total Nr deposition, a simple weighted deposition 

uncertainty metric (WDUM) is introduced as a tool for scientists and decision makers to use in 

assessing CL exceedances. Maps of the WDUM applied to National Atmospheric Deposition 

Program (NADP) Total Deposition (TDep) estimates show greater uncertainty in areas of the U.S. 

where dry deposition makes a larger contribution to the deposition budget, particularly ammonia 

(NH3) in agricultural areas and oxidized nitrogen (NOx) in urban areas. Organic N deposition is 

an important source of uncertainty over much of the U.S. Our analysis illustrates how the WDUM 

can be used to assess spatial patterns of deposition uncertainty and inform actions to improve 

deposition budgets for CL assessments at the local scale.

1 Introduction

Reactive nitrogen (Nr) additions can lead to detrimental effects in terrestrial and aquatic 

ecosystems through a combination of eutrophication and acidification responses. As 

awareness of these impacts increased in the mid-to-late 20th century, the Clean Air Act and 

subsequent amendments were passed to reduce Nr emissions and their impact to human 

health and the environment in the U.S. Additionally, because Nr can be transported across 

borders, Nr deposition is included in agreements such as the International Convention on 
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Long-Range Transboundary Air Pollution and the U.S.-Canada Air Quality Agreement. 

These policies rely on accurate estimates of Nr deposition from direct measurements, 

models, and manipulation of background deposition through fertilization to understand how 

much Nr leads to an ecosystem change.

The “quantitative estimate of an exposure … below which significant harmful effects on 
specified sensitive elements of the environment do not occur according to present 
knowledge” is known as the critical load (CL) (Nilsson and Grennfelt, 1988). CLs have been 

developed in the U.S. for a range of ecosystem impacts including terrestrial and aquatic 

acidification, forest-tree health, NO3
− leaching, changes in plant community composition, 

and changes in lichen communities (Clark et al., 2018). Exceedance of the CL occurs when 

the amount of Nr deposited is greater than the threshold designated for change to occur. The 

uncertainty of both the Nr deposition estimates and ecosystem responses need to be 

understood to evaluate risk to the ecosystem. Consideration of uncertainty in determining 

whether a CL is used in a management or policy response is currently based on an 

assessment of reliability (Bobbink et al., 2003; Pardo et al., 2011). CLs are categorized as 

Reliable (highest confidence), Fairly Reliable, or Expert Judgement (lowest confidence) 

based on the number and comparability of studies in which a particular ecosystem response 

was determined. An estimate of uncertainty in the deposition amount is specifically needed 

to assess uncertainty in the CL exceedance and would also facilitate a more direct 

consideration of deposition as a component of uncertainty in the CL itself.

Estimates of Nr deposition used in North American ecosystem assessments are typically 

derived from chemical transport models (CTMs) (Ellis et al., 2013; Lee et al., 2016; Simkin 

et al., 2016; Clark et al., 2018; Makar et al., 2018) or by measurement-model fusion (MMF) 

techniques (Schwede and Lear, 2014; Nanus et al., 2017; McDonnell et al., 2018; U.S. EPA, 

2019). CTMs must accurately simulate the fundamental processes that govern the 

composition of the atmosphere, including emissions, transport, chemical transformations, 

and ultimately wet and dry deposition. Though the underlying fusion procedures and spatial 

interpolations contain some error, MMF estimates of deposition are considered more 

accurate than CTMs due to incorporation of measurement data. In addition to uncertainties 

in the deposition estimates themselves, downscaling from CTM grids to specific ecosystems 

is another important source of uncertainty in CL assessments (Paulot et al., 2018; Schwede 

et al., 2018).

While some aspects of these uncertainties have been quantified in the context of CL 

exceedances (Williams et al., 2017), estimates of the total uncertainty of CTM and MMF 

derived total deposition budgets are not yet available. These deposition budgets are often 

accepted as the best data available for predicting ecosystem risk and are subsequently 

applied without an accompanying estimate of uncertainty. However, knowledge of 

uncertainty in the deposition estimate is important because it can help to inform whether a 

policy or management action is warranted. Figure 1 uses data for the CL for a decrease in 

species richness with increasing Nr to illustrate how uncertainty in deposition estimates may 

influence whether or not a CL is exceeded (Simkin et al., 2016). In this example, 12.4% of 

all locations are within ± 2 kg ha−1 yr−1 of exceedance (red, orange, yellow, and green points 

in Figure 1) when compared to total Nr deposition estimated using the National Atmospheric 
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Deposition Program (NADP) Total Deposition (TDep) MMF approach (Schwede and Lear, 

2014). Negative values indicate “near-exceedance” sites that are not currently assumed to be 

at risk but would be if deposition is underpredicted (i.e., yellow and green points). 

Alternatively, positive values indicate sites currently deemed at risk that would not be if 

deposition were overestimated (i.e. orange and red points). The wide range of deposition (6 

−16 kg ha−1 yr−1) in which these near-exceedances occur highlights that resolving 

uncertainty is important at both high and low levels of deposition.

The potential of misunderstanding exceedances has policy and management implications 

regarding the perceived risk to ecosystems from current and future deposition. During the 

New Source Review process (U.S. Forest Service., 2011), Class I national parks and 

wilderness areas are assessed for potential adverse effects from new emissions. If deposition 

is over or under predicted, then the assessment for the Prevention of Significant 

Deterioration may be inaccurate (U.S. Forest Service., 2011). Additionally, land managers 

use exceedances to develop resource management strategies to achieve CLs. Knowledge of 

whether the uncertainty of the exceedance is considered low or high can increase the 

effectiveness of policy, planning, and permit review and inform the level of confidence with 

which actions can be taken. For example, at a location where the CL exceedance is large and 

uncertainty in the deposition estimate is considered low, a land manager may be more 

confident that implementing a strategy to meet the CL is appropriate and will be effective. 

Conversely, knowledge that deposition at a near-exceedance location is considered highly 

uncertain would be beneficial in developing research and monitoring strategies to improve 

deposition estimates and reduce uncertainties so that a policy for achieving the CL could be 

more confidently implemented in the future. Knowledge of the relative uncertainties of the 

components of the Nr deposition budget would help prioritize research and monitoring to 

address the most important and uncertain species, processes, and pathways (i.e., wet versus 

dry). Until rigorous quantitative estimates of uncertainty in total deposition are available, a 

simpler metric of uncertainty would be helpful for assessment of CL exceedances.

In this paper we briefly review the state of the science with respect to the sources of 

uncertainty in total Nr deposition budgets used for CL assessments. In the absence of 

methods to quantify these cumulative uncertainties in an absolute sense, a simple uncertainty 

metric for total Nr deposition is introduced. This metric is used to illustrate how 

understanding uncertainty in total Nr deposition budgets will assist in prioritizing future 

research and facilitate more informed management decisions. We then outline several 

recommendations for data synthesis, new measurements, and comparisons and 

improvements to models that will improve the accuracy and spatial representativeness of Nr 

deposition budgets and allow more rigorous estimates of uncertainty in the future.

2 Measurements and modeling platforms used in North American Nr 

deposition budgets

2.1 Measurement networks

The key monitoring networks supporting North American Nr deposition assessments 

(Supplemental Figure S1) are the NADP/National Trends Network (NTN), NADP/
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Atmospheric Integrated Research Monitoring Network (AIRMoN), the Clean Air Status and 

Trends Network (CASTNET) and the Canadian Air and Precipitation Monitoring Network 

(CAPMoN). The NADP/NTN network (http://nadp.slh.wisc.edu/NTN/) spans the 

contiguous US (CONUS) and extends into Canada, Puerto Rico, Mexico, and Alaska. It 

currently has 257 sites and the program dates back to 1978. The sites collect wet-only 

deposition samples and aggregate precipitation totals. The samples are collected weekly and 

sent to the NADP central analytical laboratory for analysis of dissolved inorganic N (NH4
+ 

and NO3
−), along with sulfate, chloride, bromide, and base cations. The NADP/AIRMoN 

network (http://nadp.slh.wisc.edu/AIRMoN/) includes 7 sites and has been operating since 

1992. These sites collect daily wet-only deposition samples that are also analyzed at the 

NADP laboratory. The precipitation-chemistry component of the CAPMoN (https://

www.canada.ca/en/environment-climate-change/services/air-pollution/monitoring-networks-

data/canadian-air-precipitation.html) network provides daily wet-only samples of dissolved 

inorganic N concentrations in precipitation, along with sulfate, chloride, and base cations. 

The network currently has 29 sites and dates back to 1983.

CASTNET (https://www.epa.gov/castnet) and CAPMoN both collect integrated ambient air 

concentrations of gases and particles using an open-face filterpack. The same arrangement 

of filters are used in both CAPMoN and CASTNET, but CASTNET filters are exposed for a 

week-long period at low flow rates (1.5 and 3.0 L min−1 for Eastern and Western sites, 

respectively) while CAPMoN uses a higher flow rate (17.5 L min−1) and 24-h collection. 

There is no explicit particle size cut in either network, thus fine and coarse mode particles 

are collected. CASTNET currently comprises 95 rural sites dating back to 1988. CAPMoN, 

in addition to the precipitation chemistry sites mentioned above, operates 18 ambient air 

sites dating back to 1983. Other air monitoring networks measuring atmospheric Nr are 

briefly described in Supplemental Material (Section S1.1).

2.2 Modeling platforms

2.2.1 Chemical transport models—In North America, the Community Multi-scale 

Air Quality Model (CMAQ), Global Environmental Multiscale model – Modeling Air 

quality and CHemistry (GEM-MACH), and the Comprehensive Air Quality Model with 

Extensions (CAMx) are the primary regional CTMs used to provide gridded deposition for 

CLs and other deposition assessments. For example, CMAQ deposition values are used in 

the TDep MMF procedure (Schwede and Lear, 2014) and to assess long term trends in 

deposition over the U.S. (Zhang et al., 2018b). Wet and dry Nr deposition fluxes have been 

output from different versions of GEM-MACH, both across North America at a 10-km 

horizontal resolution (Moran et al., 2017) and in regional studies at higher resolution (Makar 

et al., 2018). GEM-MACH deposition is also used in the Atmospheric Deposition Analysis 

Generated by optimal Interpolation from Observations/Analyse du Dépôt Atmosphérique 

Généré par Interpolation optimale des Observations (ADAGIO) MMF procedure. The 

CAMx model has recently been used to examine the contribution of various sources to Nr 

deposition in the Greater Yellowstone area (Zhang et al., 2018a) and Rocky Mountain 

National Park (Thompson et al., 2015). Features of these models relevant to uncertainty in 

deposition assessments, including emissions, chemistry modules, land use, and deposition 

schemes, are briefly described in Supplemental Material (Section S1.2.1).
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2.2.2 Measurement-model fusion—In an effort to reduce uncertainties and biases 

associated with CTM predictions, MMF approaches are increasingly being used to estimate 

total Nr deposition (Schwede and Lear, 2014; Nanus et al., 2017; McDonnell et al., 2018; 

U.S. EPA, 2019; World Meteorological Organization, 2017). In MMF, CTM output is 

combined with wet deposition and air concentrations from network measurements. While 

the methods of combining the fields can be similar to those used in data assimilation, the 

model is not re-forecast from the adjusted fields as is typical for data assimilation 

applications. TDep and ADAGIO are two examples of MMF used in North America.

The TDep MMF approach (Supplemental Figure S2) combines spatially interpolated 

CASTNET monitoring data with CMAQ deposition velocities to estimate dry deposition of 

HNO3, NO3
−, and NH4

+. The CASTNET monitoring data is also used to bias adjust the 

CMAQ dry deposition estimates as the measured data is considered more accurate and to 

avoid large step functions between the measured and modeled data. The measured and 

CMAQ modeled dry deposition datasets are combined based on inverse distance weighting 

(IDW) of the measured versus modeled value as a function of distance from the 

measurement location (Schwede and Lear, 2014). For Nr species not measured at 

CASTNET sites (i.e. gas phase NO, NO2, HONO, N2O5, NH3, PANs, organic nitrates), the 

CMAQ dry deposition estimates are used directly (uncorrected). NH3 dry deposition is 

modeled using a bi-directional flux framework (Bash et al., 2013). NADP measurements of 

precipitation amount and chemistry are combined with estimates of precipitation amount 

from the Parameter-elevation Regressions on Independent Sloped Model (PRISM, Daly et 

al., 2008) to produce spatially interpolated NO3
− and NH4

+ wet deposition fields. Dry and 

wet deposition are combined to produce weekly gridded maps of total deposition of Nr for 

the CONUS at a 4-km resolution, which are aggregated to annual deposition. More detailed 

information on the TDep method is available in Schwede and Lear (2014) and at http://

nadp.slh.wisc.edu/committees/tdep/tdepmaps/.

A slightly different approach has been developed by Environment and Climate Change 

Canada (ECCC). The ECCC project ADAGIO (Supplemental Figure S2) generates maps of 

optimized wet, dry and total annual deposition of N, sulphur (S), and ozone in Canada and 

the U.S. by combining observed and modelled data. For Nr, measured concentrations of gas-

phase HNO3, NO2, NO, and NH3; particulate NO3
− and NH4

+; and NO3
− and NH4

+ in 

precipitation from Canadian and U.S. networks are used to adjust predicted concentrations 

from GEM-MACH using optimal interpolation techniques. Optimal interpolation is a 

statistical method for weighting model and measurements based on error covariance 

parameters assigned to each data source to represent model and measurement uncertainty 

(Robichaud and Menard, 2014). Dry deposition velocities derived from GEM-MACH are 

then applied to the adjusted concentration grids of gas and particle species to generate 

deposition fluxes of measured species. Wet deposition fluxes are calculated using 

precipitation amounts from the Canadian Precipitation Analysis (CaPA) used at ECCC. 

CaPA uses the GEM weather forecast and adjusts daily precipitation amounts using climate 

station and radar observations, also using optimal interpolation methods. Wet and dry 

deposition fluxes of unmeasured species, including N2O5, HONO, and organic nitrates, are 

taken from the model directly.
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3 Aspects of uncertainty in Nr deposition budgets

CL exceedances may be calculated using the variety of deposition measurements and models 

described above. For deposition and CLs to be effectively combined for policy or 

management action, understanding of the relevant uncertainties and limitations in both 

components is needed.

3.1 Completeness of the budget

North American monitoring networks that support deposition research characterize only 

inorganic species in wet deposition and concentrations of particles and gases in air; organic 

compounds are not routinely measured. Atmospheric organic N is highly diverse, originating 

from soil, biomass burning, agricultural, marine, and anthropogenic sources. Primary 

emissions and secondary reaction products include amines and amino acids, urea, 

nitrophenols, alkyl amides, N-heterocyclic alkaloids, and organic nitrates (Jickells et al., 

2013; Cape et al., 2011). Globally, organic N compounds contribute ~ 25% of total water-

soluble N in precipitation on average (Jickells et al., 2013), with a similar fraction observed 

in particulate matter (Cape et al., 2011). In the U.S, annual averages for rainfall and PM 

range from 2.6% to 33% of total N as ON (Scudlark et al., 1998; Keene at al., 2002; Whitall 

and Paerl, 2001; Beem et al., 2010; Benedict et al., 2012; Walker et al., 2012; Zhang et al., 

2002a; Russell et al., 2003; Calderon et al., 2007; Lin et al., 2010; Zamora et al., 2011; Chen 

et al., 2018).

Representation of organic N in deposition budgets relies on model estimates. For the current 

TDep MMF, CMAQ Version 5.0.2 includes only peroxyacyl nitrate (PAN), aromatic PANs 

(OPAN), C3 and higher PANs (PANX), and some organic nitrates in the gas phase. Thus, the 

organic fraction of Nr dry deposition represents an underestimate. Wet deposition of organic 

N is also not well represented in CMAQ V5.0.2 due to a limited range of solubilities 

specified for organic nitrates. Subsequently, wet deposition of organic N is not included in 

the TDep Nr budget. In GEM-MACH, only PAN is treated individually, with an additional 

grouped “organic nitrates” species, and therefore is subject to similar limitations as CMAQ. 

Chemical mechanisms used with many CTMs are actively being updated to include more 

advanced treatment of organic N species (Luecken et al, 2019; Pye et al., 2015).

In the TDep maps, organic N dry deposition is included in the “non-measured other N” 

group with NO, NO2, HONO, and N2O5. While NO and NO2 are measured in urban and 

suburban networks (see Supplemental Material Section S1.1), these measurements are not 

currently included in the TDep fusion procedure. As predicted by CMAQ (V5.0.2), dry 

deposition of “other N” contributes an average of ~ 13% of the total deposition budget over 

the CONUS. Larger contributions are observed in urban areas of eastern U.S. where dry 

deposition of NO2 associated with mobile NOx sources is important. These patterns of 

oxidized Nr deposition underscore the need for incorporation of NO2 measurements from 

urban and suburban networks into the TDep MMF and new measurements of NO2 

concentrations and fluxes to better characterize deposition along urban to rural gradients. 

The latter may be complemented by the use of satellite observations to characterize spatial 

patterns (Cheng et al., 2013). In addition to underrepresentation of the dry organic N 

deposition, the mobile NOx emission inventory, which may be biased high (~ 30%, 
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McDonald et al., 2018), is another potentially important source of uncertainty in TDep 

estimates of “other N” dry deposition.

3.2 Characterizing uncertainty and bias in deposition estimates

3.2.1 Measurement to model comparisons—Biases in modeled deposition rates can 

be assessed by direct comparisons of measured versus modeled wet and dry deposition as 

well as the components of the deposition calculation. For wet deposition, the latter would 

include comparison of measured versus modeled precipitation amount, which is needed to 

calculate wet deposition. An evaluation of dry deposition could be informed by comparison 

of measured versus modeled air concentrations, which are applied to deposition velocities to 

calculate dry deposition rates.

It is important to note that the measurements used to directly calculate deposition, bias 

correct modeled air concentrations, and evaluate model performance contain error 

themselves. For example, Wetherbee et al. (2005) report median absolute errors of 11.3% 

and 4.97% for NTN measurements of NH4
+ and NO3

− concentrations in precipitation, 

respectively, for collocated AeroChem Metrics Model 301 collectors. Studies show that 

concentrations of NH4
+ in NTN precipitation samples are biased low ~ 10%, potentially due 

to microbiological processes (Gilliland et al., 2002 and references therein; Walker et al., 

2012). Sickles and Shadwick (2002) report median absolute relative differences for paired 

observations of CASTNET measured NH4
+, HNO3, and NO3

− air concentrations of 3.0, 5.5, 

and 7.8%, respectively. The filter-based methods employed by CASTNET and CAPMoN 

have been shown to exhibit biases in NO3
− (low) and HNO3 (high) associated with volatility 

of NH4NO3 aerosol (Lavery et al., 2009; Zhang et al, 2009), though the total NO3
− (gas + 

aerosol) is generally conserved (Lavery et al., 2009). It is noted that these studies have 

generally focused on NO3
− sampling biases (see Lavery et al., 2009 and references therein), 

rather than NH4
+. Regarding volatility, bias in fine mode NH4

+ should be lower in areas 

where NH4
+ is primarily associated with sulfate. Aspects of variability and bias associated 

with analytical procedures employed by the NADP, CASTNET, and CAPMoN networks are 

assessed through interlaboratory comparison programs (Wetherbee et al., 2010). These 

uncertainties and biases should be considered in comparisons of models to observations.

Zhang et al. (2018b) recently conducted a study of long-term trends (1990–2010) in wet 

deposition of inorganic N in the U.S., which included an evaluation of coupled WRF-CMAQ 

V5.0.2 (36 km resolution) against NTN measured annual wet deposition. Evaluated across 

the entire CONUS, normalized mean bias (model – observation) was −32.1% for TNO3 

(NO3
− + HNO3) and −33.7% for NHx (NH3 + NH4

+) after adjusting for bias in precipitation 

amount. Evaluation of CMAQ V5.0.2 at finer grid resolution (12 km) for the period 2002–

2012 shows smaller biases of −0.7% and −10.2% for NO3
− and NH4

+, respectively (Zhang 

et al., 2019). Performance tends to be better in the eastern U.S. owing to more complex 

terrain in the West (Zhang et al., 2018b). In both studies, uncertainties in NH3 emissions 

from agricultural sources and bidirectional NH3 air surface exchange processes were noted 

as potential reasons for model underestimation. Makar et al. (2018) recently evaluated 

GEM-MACH V2 against annual measured wet deposition in an evaluation of CL 

exceedances in Alberta and Saskatchewan, also noting an underestimate of modeled total 
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NO3
− + NH4

+ deposition (slope = 0.89). Evaluation of CAMx V6.1 (12 km resolution) over 

the western U.S. (UNC/ENVIRON, 2015) showed model underestimation of inorganic N 

wet deposition as well, with biases relative to annual measured NTN deposition of −38% 

and −48% for NO3
− and NH4

+, respectively. Over smaller domains in complex terrain, 

model performance may differ from regional and continental comparisons. For example, 

Zhang et al. (2018b) found positive biases of 31% and 49% in CAMx (12 km) estimates of 

NO3
− and NH4

+ annual wet deposition, respectively, compared to NTN in the Greater 

Yellowstone Area. Positive bias in precipitation amount was identified as an important 

contributor to the bias in wet deposition.

Evaluation against wet deposition measurements has also been performed in several multi-

model comparison studies, including PhotoComp, Atmospheric Chemistry and Climate 

Model Intercomparison (ACCMIP), and Task Force Hemispheric Transport of Pollution 

(HTAP I and II) (see Tan et al., 2018). Typically, measurement data were compared with the 

multi-model mean. When comparing annual wet deposition of NO3
− and NH4

+ with NADP 

measured values, the mean of the models was mostly within 10–20% of measurements as 

shown by the slope of the model vs. measurement linear fit (Table 1) and the reported mean 

biases of 11–38% for NO3
− and < 8% for NH4

+ (summarized by Tan et al., 2018). While 

individual models may perform better for specific locations and/or chemical species, in 

general, the ensemble of the models is the most robust estimator of wet deposition when 

considering all species and regions (Dentener et al., 2006; Tan et al., 2018). Generalizing 

results from the studies summarized in Table 1, measurement-model differences are ~ 30% 

for wet deposition among the models investigated. Knowledge of precipitation amount is a 

key uncertainty in CTM predictions of wet deposition and calculations of wet deposition 

from measured precipitation chemistry (see Supplemental Material Section S2.1.1).

The dry component of Nr deposition is not directly measured in a routine monitoring mode 

in North America. Additionally, with exception of the work of Munger et al. (1996) at 

Harvard Forest, dry deposition measurements in North America typically only span weeks to 

a few months. While useful for examining deposition processes, these datasets are not 

sufficient in temporal coverage to characterize annual dry deposition budgets. A lack of 

speciated Nr dry deposition measurements precludes a rigorous evaluation of uncertainty in 

model deposition velocities and fluxes at the national scale (Zhang et al., 2002b; Walker et 

al., 2019). However, uncertainty in dry deposition can be partly informed by comparison of 

modeled and measured air concentrations (CMAQ, Appel et al., 2011; Appel et al., 2018; 

Zhang et al., 2018a; GEM-MACH, Makar et al., 2018; Moran et al., 2017; CAMx, Zhang et 

al., 2018b; UNC/Environ, 2015). Comparing CMAQ V5.2.1 (12 km) versus CASTNET 

weekly measured HNO3, NO3
−, NH3, and NH4

+ concentrations across the CONUS 

(Supplemental Figure S3), normalized median bias (model – observation) ranges from +25% 

for HNO3 to −27% for NH3. Other studies have documented an underestimation of NH3 air 

concentrations in CTMs compared to observations, noting incorrect magnitude (i.e., low) 

and spatial allocation of emissions, model grid resolution, and uncertainty in bidirectional 

exchange processes as reasons for disagreement (Kelly et al., 2014; Butler et al., 2015; 

Battye et al., 2016; Zhang et al., 2018b). The overestimate in HNO3 may be related to 

uncertainties in emissions or representation of chemistry (Luecken et al., 2019). In Figure 

S3, a significant portion of the total root mean square error is unsystematic, reflecting 

Walker et al. Page 8

Sci Total Environ. Author manuscript; available in PMC 2020 December 09.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



differences between model and observations related to random processes. In the absence of 

bias correction, both components of error in the air concentration propagate to the model 

deposition calculation.

While data from routine networks are most commonly used in comparisons of measured 

versus modeled deposition, throughfall and bulk deposition measurements collected within 

smaller scale, more intensive studies are also used (see Supplemental Material Section 

S2.1.2).

3.2.2 Model to model comparisons—Models vary widely in their emissions inputs, 

horizontal and vertical resolution, and the chemical and physical processes represented. 

Multi-model comparisons can provide an overall estimate of the resulting variability in 

model outputs. A number of global- and continental-scale model intercomparison projects 

have assessed N deposition among other air quality outputs (Tan et al., 2018).

In the PhotoComp study for the year 2000 (Dentener et al., 2006), the variance of modeled 

NOy wet deposition between the 23 models assessed was 10–30% across most of North 

America. While a corresponding spatial breakdown was not shown for NHx deposition 

(reported by only 7 models), the variance was similarly reported to be about 30% in the 

anthropogenic emissions regions including North America. ACCMIP reported similar 

variance between models of 20–30% in wet and dry deposition of both NOy (10 models) and 

NHx (5 models) for the year 2000, integrated over North America (Lamarque et al., 2013). 

In contrast, in the Air Quality Model Evaluation International Initiative (AQMEII) study 

which modeled 2006, the estimated total deposition of NO3
− in North America from 5 

different models had a variance of more than 50% (Solazzo et al., 2012). However, in that 

case, the emissions used by each model were not identical.

CTM predictions of dry N deposition (oxidized and reduced) were also compared with site 

specific inferential model values based on air concentrations at CASTNET sites in a limited 

number of studies (Vet et al., 2014; Tan et al., 2018). When species such as NO2 and NH3 

(not measured at CASTNET sites) are included in the modeled dry deposition, the model 

was higher than the inferential values by about a factor of 3 (Vet et al., 2014). However, 

excluding NO2 and NH3 dry deposition from the model totals in another study left the model 

dry N deposition values still higher by a factor of 2 compared to CASTNET inferential 

estimates (Tan et al., 2018). Further investigation of the comparisons revealed that it was 

primarily the air concentrations of HNO3, particle NO3
−, and particle NH4

+ that were 

overestimated in the model compared to the CASTNET measurements, rather than 

significant differences in the dry deposition velocities. Some of this discrepancy may be due 

to the coarse resolution of many global models (Tan et al., 2018) or limitations in the 

representativeness of CASTNET sampling locations (Hicks et al., 2006). Such studies 

illustrate the large uncertainties in modeled dry deposition.

Nr species exhibit a range of physical and chemical properties, leading to very different 

behaviors in the dry deposition process, which is often modeled as a deposition velocity 

(Vd):
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Vd = 1/ Ra + Rb + Rc (1)

where Ra is the aerodynamic resistance to turbulent transfer from the atmosphere to the 

surface, Rb is the resistance to diffusion across the laminar boundary layer of air 

immediately above the receptor, and Rc is a resistance to uptake at the receptor surface, 

termed the canopy resistance. Wu et al. (2018) recently intercompared five dry deposition 

algorithms and found that the four models based on Monin-Obukhov similarity theory 

produced similar (± 20%) results for Ra and Rb.

Surface uptake, represented by Rc, may occur via stomatal and non-stomatal (e.g., ground, 

leaf cuticle, woody material) pathways. For Nr other than highly soluble species such as 

HNO3 and N2O5, Rc is typically the largest resistance and thus controls Vd. Flux uptake by 

non-stomatal pathways cannot be measured directly or easily segregated from canopy scale 

flux measurements. For this reason, non-stomatal deposition processes remain poorly 

understood and therefore highly parameterized and uncertain, often producing large 

differences in modeled Vd (Wu et al., 2012). Adoption of a bidirectional flux framework for 

NH3 (Flechard et al., 2013) which is now common in CTMs, requires the use of 

compensation point parameterizations (e.g., soil and vegetation emission potentials) that 

remain poorly characterized for many ecosystems, leading to large uncertainty in NH3 dry 

deposition rates at the local scale (Dennis et al., 2013). Parameterization of emission 

potentials and surface resistances for NH3 are largely derived from European experiments 

(Massad et al., 2010; Zhang et al., 2010) and their applicability to North American 

ecosystems remains an open question.

Recent assessments in Europe (Flechard et al., 2011) and the U.S. (Schwede et al., 2011; Li 

et al., 2016) show that commonly used inferential dry deposition models may differ by a 

factor of 3 or more in mean deposition (exchange) velocities of Nr species, despite being 

driven by the same on-site meteorology and parameters for site characterization (e.g. leaf 

area index, surface roughness length, canopy height, etc.). The most extensive comparison of 

dry deposition schemes for Nr was conducted by Flechard et al. (2011), in which four 

models used in CTMs and monitoring networks in Europe and North America were 

compared using measurements of micrometeorology, air concentrations, and surface 

characteristics at 55 sites within the NitroEurope network. Site-specific annual average 

fluxes reported in Flechard et al. (2011, Table 3) are summarized here in Table 2. Deviation 

among models is generally small for HNO3, with the mean of the relative standard deviation 

of model fluxes at individual sites varying from 7% at grassland sites (N = 8) to 28% at 

forest sites (N = 29). Models diverged the most for NH3, with the mean of the relative 

standard deviation of model fluxes at individual sites varying from 190% at grassland sites 

(N = 8) to 50% at forest sites (N = 29). For NH3, parameterizations of non-stomatal 

resistances (e.g., cuticular) were identified as the main source of inter-model discrepancy. 

Summing model fluxes of the individual species, relative standard deviation of total N fluxes 

at individual sites varied from 37% over semi-natural vegetation (N = 9) to 67% at grassland 

sites (N = 29).
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3.2.3 Measurement-model fusion—There are several sources of uncertainty in MMF 

estimates of deposition including the observational data, the choice of CTM, and the fusion 

approach. Observational data may be spatially and temporally incomplete or inconsistent, 

depending on the networks used in the MMF. Spatial gaps in monitoring data can, for 

example, create artifacts in bias surfaces used to correct CTM output for dry deposition. 

Temporal gaps in data, which can be an issue at high elevation sites where wet deposition 

data may more frequently fail quality assurance requirements (Latysh and Wetherbee, 2012), 

can create inconsistencies in deposition time series. Temporal and spatial inconsistencies in 

MMF surfaces can also result in transitioning from measurement- to model-derived 

estimates when sites are shut down or change locations. Finally, observed values are not 

available for all chemicals. Subsequently, some important model species like organic N are 

not bias corrected in the MMF methods. The bias correction for measured species 

compromises the mass balance of the modeled deposition estimates. With the modeled 

concentrations of the other non-measured N species left uncorrected, the total amount of N 

deposited in the domain will be different than if the mass balance was maintained. However, 

previous work shows that the overall impact should be small (Dennis and Foley, 2009; Lear 

and Schwede, 2012). As further described in Supplemental Material, incommensurability 

(Section S2.2.1) of comparing model-grid average and pointwise observations (Swall and 

Foley, 2009) and the temporal consistency (Section S2.2.1) of MMF datasets can also 

represent sources of uncertainty.

MMF procedures can differ in the use of monitoring data, the treatment of deposition 

processes and the fusion procedure. For example, while ADAGIO uses NADP/AMoN NH3 

measurements in the fusion procedure, TDep does not. One reason is related to the high 

spatial variability of NH3 concentrations, particularly in agricultural regions, which creates 

uncertainties in the IDW procedure for the TDep spatial interpolation (Schwede and Lear, 

2014). These uncertainties could be reduced by expanding NH3 monitoring in agricultural 

areas to better characterize spatial patterns in relation to sources. Enhanced ground-based 

monitoring could potentially be complemented with satellite observations of NH3 (Kharol et 

al., 2018). As previously noted, TDep does not use measurements of NO2 and other Nr 

species measured in urban and suburban networks while ADAGIO does, likely creating 

differences in estimates of deposition in these areas. Regarding differences in treatment of 

deposition processes, in contrast to CMAQ, the current version of GEM-MACH does not 

include bidirectional NH3 flux. Another reason AMoN NH3 measurements are not currently 

used in the TDep MMF relates to the challenges in bias correcting air concentrations in the 

compensation point based bidirectional flux model in CMAQ. Regarding wet deposition, 

TDep uses precipitation depth data from NADP and PRISM while ADAGIO uses data from 

CaPa. Differences in MMF deposition estimates may also arise from the fusion procedure 

itself. TDep uses IDW weighting of measured versus modeled values while ADAGIO uses 

optimal interpolation.

As shown in Figure 3 for 2010, over the contiguous U.S., 75% of the gridded TDep and 

ADAGIO values are within ±30%. When deposition is summed over the entire domain, the 

difference is less than 10%, with less total N deposition estimated by ADAGIO. Overall 

agreement is reassuring, given the many differences between the approaches, though regions 
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with significantly larger differences exist. While a more detailed analysis is forthcoming, 

areas with high NH3 concentrations appear to have larger differences, likely due to the 

bidirectional treatment in CMAQ (TDep) but not in GEM-MACH (ADAGIO).

3.3 Spatial representativeness

Typical dry deposition output from CTMs is provided at the grid scale and is obtained by 

averaging sub-grid variability in either surface characteristics or dry deposition velocities. 

The CTM does not spatially resolve the land use types within the model grid and only has 

knowledge of the percent coverage of the land use type. Differences in leaf area index (LAI), 

surface roughness, soil moisture, and plant stomatal response are some of the factors that 

contribute to sub-grid variability in Vd. For fast deposition species such as HNO3, greater 

roughness and LAI lead to higher deposition velocities over forests compared to other 

surfaces. For chemicals such as NH3 that exchange bidirectionally with the atmosphere, 

gridded values that either ignore bidirectional exchange, or don’t consider the potentially 

compensating contributions of upward and downward fluxes across the heterogeneity of a 

grid cell can differ from those that do.

Recent studies have begun to examine the impact of downscaling gridded estimates to 

provide ecosystem-specific values of deposition. Schwede et al. (2018) examined deposition 

to global forests and contrasted values based on grid-base estimates with land use specific 

values as predicted by the co-operative programme for monitoring and evaluation of the 

long-range transmission of air pollutants in Europe (EMEP) model (Simpson et al., 2012). 

Their study found differences in deposition up to a factor of 2 between the two values, 

noting that differences depended on the degree of heterogeneity in the grid cell. Paulot et al. 

(2018) downscaled deposition values from the NOAA Geophysical Fluid Dynamics 

Laboratory (GFDL) model to land use specific values. Their results indicate that grid-based 

results from coarse scale models may underestimate deposition to natural vegetation by up 

to 30%. Comparison of land-use specific versus grid-average dry deposition fluxes derived 

from the CMAQ v5.3 with the new Surface Tiled Aerosol and Gaseous Exchange (STAGE, 

Bash et al., 2018) module further illustrates large differences that can be observed in some 

locations for HNO3 and NH3 (Supplemental Figure S4) even at smaller grid sizes (12 km x 

12 km) than the Schwede et al. (2018) and Paulot et al. (2018) studies. The STAGE results 

are consistent with those studies, as well as Flechard et al. (2011), further emphasizing that 

the use of gridded deposition values for comparison against ecosystem-specific CLs can be a 

significant source of uncertainty in the evaluation of exceedances. Ecosystem-specific 

deposition values are preferred for such assessments.

3.4 Challenges in quantifying uncertainty in total Nr deposition budgets

The previous sections describe numerous sources of uncertainty in deposition estimates 

derived from CTMs and MMF procedures. Here we use the TDep MMF procedure to 

illustrate the challenges in developing quantitative estimates of uncertainty in total Nr 

deposition estimates. The TDep MMF procedure comprises uncertainties associated with:

• measurements of chemical concentrations in air (NH4
+, NO3

−, HNO3) and 

precipitation (NH4
+, NO3

−)
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• spatial interpolation in the fusion procedure

• PRISM estimates of precipitation amount

• CMAQ concentration predictions for unmeasured species

• CMAQ deposition velocities

• incompleteness of the measured and modeled deposition budgets

To estimate total (cumulative) uncertainty in annual total Nr deposition, estimates of 

uncertainty are first needed at the weekly time scale for individual chemical components of 

the budget, which then must be propagated to the cumulative uncertainty in weekly total 

deposition and then to the annual sum of deposition, or weekly uncertainty for individual 

chemical components must be propagated up to annual and aggregated across chemical 

components to yield cumulative uncertainty in total annual Nr deposition.

Methods for quantifying some of the sources of uncertainty, such as bias and uncertainty in 

CASTNET and NADP measurements, are described in previous sections. TDep spatial 

interpolations employ IDW, for which estimates of uncertainty can be derived using 

jackknife cross-validation (Willmott and Matsuura, 1995). Note that this only produces an 

estimate of uncertainty in the interpolation procedure itself, not uncertainty associated with a 

lack of observations in the interpolation space. The PRISM methodology includes 

uncertainty estimates for predictions of precipitation amount (Daly, 2008). Lacking 

measurements of sufficient spatial and temporal representativeness, uncertainty in the 

CMAQ air concentrations for the non-measured components (Figure 2), as well as 

deposition velocities, cannot be rigorously evaluated across the CONUS in an operational 

sense (Dennis et al., 2010).

While it may be possible to derive estimates of some aspects of uncertainty at the weekly 

time scale of the TDep procedure, methods for aggregating the component uncertainties 

within and across chemical species and then to the annual scale require development. 

Furthermore, incompleteness of the measured and modeled budgets with respect to 

deposition of organic N and other species precludes a quantitative assessment of total 

uncertainty in the deposition budget.

3.5 Simple metric of uncertainty for total Nr deposition

In the absence of a rigorous estimate of absolute uncertainty, a simpler metric of relative 

uncertainty, based on current understanding of deposition processes, would be useful to the 

critical loads community. An example of such an uncertainty metric is developed here using 

the TDep MMF methodology, though the concept can be applied to ADAGIO as well.

Total deposition at each grid point within the TDep maps comprises HNO3 dry deposition 

(HNO3_dry), particulate NO3
− dry deposition (NO3_dry), NH3 dry deposition (NH3_dry), 

particulate NH4
+ dry deposition (NH4_dry), dry deposition of non-measured species 

(NoM_dry, described in Figure 2), wet deposition of NO3
− (NO3_wet) and wet deposition of 

NH4
+ (NH4_wet). For the purposes of calculating a metric for uncertainty of a “total” 

deposition budget, we have added an estimate of wet deposition of unmeasured species 

(NoM_wet), which is discussed below. Each of these 8 deposition components is first 
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assigned a discrete, numerical uncertainty rating from 1 to 5, with 1 representing the lowest 

uncertainty (most certain) and 5 representing the highest uncertainty (least certain). 

Uncertainty ratings for individual components do not vary temporally or spatially. Next, for 

each component of the budget, a weighted uncertainty is calculated as the product of the 

discrete uncertainty rating (URi) for component i of the deposition budget and the fractional 

contribution of that component to total deposition at the corresponding location (FTDepi). 

The deposition weighted uncertainty for each component is then summed to estimate the 

deposition weighted average uncertainty for the total deposition budget, referred to as the 

weighted deposition uncertainty metric (WDUM).

W DUM = ∑ FTDepi ∗ URi (2)

Deposition components and uncertainty ratings are summarized in Table 3. The uncertainty 

ratings reflect the current level of understanding of deposition processes relative to wet 

deposition of NH4
+ and NO3

−. While there is some uncertainty in the measurements and 

spatial interpolation of precipitation amount and chemistry and in the PRISM estimates, 

understanding of the magnitude and spatiotemporal patterns of wet deposition of NH4
+ and 

NO3
− is more complete than for the other components of the TDep Nr budget. Thus, NH4+ 

and NO3− wet deposition both have an uncertainty rating of 1 (i.e., lowest uncertainty). The 

TDep MMF does not include wet deposition of organic N. To incorporate this aspect of 

uncertainty, we have defined a non-measured wet deposition variable NoM_wet, assumed to 

reflect the bulk organic fraction of wet N deposition. Based on the global synthesis of wet 

deposition of organic N reported by Jickells et al. (2013), we assume that NH4
+ and NO3

− 

wet deposition account for 75% of total N wet deposition on average, with NoM_wet 

accounting for the balance (25%). As it is neither measured or modeled in the TDep 

procedure, an uncertainty rating of 5 is assigned to NoM_wet, reflecting the highest degree 

of uncertainty.

Estimates of TDep dry deposition are derived from CMAQ deposition velocities and are 

therefore inherently more uncertain than TDep wet deposition of NH4
+and NO3

−. As noted 

above, HNO3_dry, NO3_dry, NH4_dry are bias corrected using CASTNET measurements. Of 

the dry deposited species, knowledge of HNO3 deposition is more complete than for other 

species. This is reflected in the much higher level of agreement for HNO3, relative to other 

N species, between the inferential deposition models summarized in Table 2. HNO3 dry 

deposition is primarily governed by atmospheric and boundary layer resistances, as opposed 

to canopy surface characteristics that are less understood (Wesely, 1989; Zhang et al., 2003). 

HNO3_dry is assigned an uncertainty rating of 2, reflecting more uncertainty than wet 

deposition of NH4
+ and NO3

−, but the lowest degree of uncertainty of the dry deposited 

species.

While modeling of particle dry deposition is advancing, differences among commonly used 

dry deposition schemes and between models and observations suggest that significant gaps 

in understanding of the deposition processes remain (Khan and Perlinger, 2017). 

Understanding of particle dry deposition is generally more limited than that of HNO3, which 

is reflected in the greater degree of deviation between dry deposition schemes for NH4
+ and 

Walker et al. Page 14

Sci Total Environ. Author manuscript; available in PMC 2020 December 09.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



NO3
− compared to HNO3 in Table 2. NO3_dry and NH4_dry are assigned an uncertainty 

rating of 3, reflecting a greater degree of uncertainty relative to HNO3_dry.

TDep NH3_dry is estimated by CMAQ V5.0.2 using a bidirectional air-surface exchange 

module (Pleim et al., 2013; Bash et al., 2013), which requires knowledge of the surface 

characteristics that govern NH3 compensation points as well as surface resistances (Flechard 

et al., 2013). The process of NH3 air surface exchange is more complex and less understood 

than HNO3, as reflected in the greater degree of deviation between NH3 inferential models 

in Table 2. Additionally, NH3_dry is not bias corrected with measured air concentrations. 

NH3_dry is subsequently assigned an uncertainty rating of 4. The final component of the 

TDep dry deposition budget is the non-measured species (NoM_dry) described in section 

3.1, which is also estimated using CMAQ. This component of the budget is incomplete with 

respect to treatment of gas phase and organic N compounds and is not bias corrected. 

NoM_dry is also assigned an uncertainty rating of 4.

Based on these uncertainty ratings, the WDUM can theoretically range from a value of 1 to 

5. An important feature of the WDUM is the implied linear relationship between the 

uncertainties of the deposition components, which is an obvious oversimplification. For 

example, the uncertainty for dry deposition of NH3 may, in reality, be more than a factor of 4 

larger than wet deposition of inorganic N. Another oversimplification is the application of a 

constant uncertainty rating, which ignores spatial and temporal variability. This approach 

fails to capture, for example, a likely greater level of uncertainty in wet deposition in 

mountainous terrain (Latysh and Wetherbee, 2012). Additionally, this approach does not 

reflect uncertainties associated with sub-grid variability in land use previously discussed.

The WDUM for the corresponding 2016 TDep total N deposition map is shown in Figure 4 

for the CONUS along with the probability distribution of values. The WDUM ranges from 

2.1 to 3.8, with red colors denoting locations with the greatest uncertainty in total 

deposition. High values of WDUM occur in the Southwest, California Central Valley, and 

east of the Cascade Mountains in the Northwestern U.S. where the total deposition budget is 

dominated by dry deposition. High values in eastern North Carolina and some areas of the 

Midwest reflect a large contribution to from NH3 dry deposition and corresponding high 

overall uncertainty. High values in and around urban areas in the Northeast U.S. and cities 

such as Atlanta, Georgia show areas where NO2 dry deposition is important. Lowest values 

occur where wet deposition dominates the budget.

The percent contribution of individual components of the TDep budget to the WDUM for 

each location is shown in Figure 5. Dry deposition of NH3 is the largest contributor to 

uncertainty in the total N budget overall, as reflected in the similarity between NH3_dry in 

Figure 5 and the general spatial patterns of WDUM in Figure 4. Uncertainty in dry 

deposition of non-measured compounds is an important contributor in the eastern U.S., 

reflecting the importance of NO2, whereas uncertainty in HNO3 and NO3
− dry deposition is 

important in the Southwest. Uncertainty in dry deposition of NH4
+ aerosols is a small 

contributor to the WDUM overall. The wet deposition fraction is dominated by uncertainty 

associated with organic N dep across the U.S.
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3.6 Using WDUM in assessment of CL exceedances

Knowledge of the level of uncertainty in the total deposition budget can help to inform the 

level of confidence with which policy and management actions to address CLs can be 

implemented. Using the distribution of the WDUM to assign ranges of lowest, intermediate, 

and highest uncertainty is one expression of the WDUM that could be used, akin to the 

reliability categories for CLs (Bobbink et al., 2003; Pardo et al., 2011). For example, at a 

near-exceedance site where uncertainty in the deposition estimate is considered low, a land 

manager may be more confident in implementing an action to achieve the CL.

Using the herbaceous richness CL (Simkin et al., 2016) as an example, Figure 6 illustrates 

how the WDUM can be used to assess uncertainty at near exceedance sites and its spatial 

patterns within an area. Combining the information in Figure 6 with the relative 

contributions of individual components to the WDUM (Figure 5) further allows for the 

identification of the most important components of the deposition budget with respect to 

uncertainty. Collectively, this information can be used to develop and prioritize measures to 

improve deposition budgets and reduce uncertainties for a specific area. This concept is 

further illustrated below using results for the Croatan and George Washington National 

Forests and Shenandoah National Park (Table 4).

The Croatan National Forest has 24 (of 60) sites at near-exceedance with an average Nr 

deposition of 1.1 kg ha−1 yr−1 (11.5%) below the CL. The average WDUM for the near-

exceedance sites is 2.7, reflecting an intermediate level of uncertainty relative to the WDUM 

distribution (Figure 4). The dominant components of the uncertainty are non-measured wet 

organic N (NoM_wet, 24.4%) and NH3 dry deposition (23.4%). Enhanced monitoring to 

refine the deposition budget for this National Forest would prioritize these components.

The George Washington National Forest has 62 (of 431) sites near-exceedance with an 

average deposition 1.4 kg ha−1 yr−1 (12.5%) below the CL. Shenandoah National Park has 

152 sites (of 327) near-exceedance with an average deposition of 0.5 kg ha−1 yr−1 (0.1%) 

below the CL. The WDUM indicates an intermediate level of uncertainty at near-exceedance 

sites in both areas. Non-measured Nr species again make up the majority of the uncertainty 

(Shenandoah 37.7%; George Washington 42.9) with NH3 dry deposition now contributing 

34.5% at Shenandoah and 19.6% at George Washington. These two federal land units exist 

on opposite sides of the Shenandoah Valley. Locations with the highest WDUM values occur 

on the western slope of Shenandoah and the eastern unit of George Washington. Based on 

the spatial distribution of the component uncertainties, monitoring and research activities to 

improve the deposition budgets in these areas would prioritize NO2 and organic N in George 

Washington NF and NH3 in Shenandoah NP.

The near-exceedance sites in the Simkin et al. (2016) dataset all exist in the eastern U.S. 

Examples of application of the WDUM to CLs for other life forms in the western U.S. are 

summarized in Table S1. The Bitterroot National Forest (WDUM = 2.9, high) exceeds the 

CLs for a change in the alpine herbaceous community (3.5 kg ha−1 yr−1; Bowman et al., 

2012) with the majority of uncertainty coming from dry NH3 deposition (41.0%). The 

Columbia River Gorge National Forest (WDUM = 2.9, high) just exceeds the CL for a 

decrease in lichen richness (3.5 kg ha−1 yr−1; Geiser et al. 2019) in an area where lichen play 
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an important role in ecosystem stability; dry deposition of non-measured N (34.5%) and 

NH3 (20.6%) drive the uncertainty. The Santa Monica Mountains National Recreation Area 

(WDUM = 3.2, high) exceeds the CL for increased invasive grass growth (11 kg ha−1 yr−1; 

Cox et al 2014) with uncertainty coming from dry non-measured deposition from Los 

Angeles to the south (30.3%) and dry NH3 deposition from agricultural emissions from the 

north (28.6%). Finally, Joshua Tree National Park (WDUM = 2.7, intermediate) exceeds the 

CL for invasive grass growth which can increase fire risk (2.1 to kg ha−1 yr−1; Rao et al. 

2010) with the majority of uncertainty coming from dry HNO3 deposition (31.2%) and dry 

NH3 deposition (24.4%). These examples further illustrate how identifying where areas of 

high uncertainty in deposition overlap with areas of ecological sensitivity can help direct 

future local efforts to improve deposition budgets for CL assessments.

4 Recommendations

The preceding discussion of sources of uncertainty in Nr deposition budgets motivates 

research in several areas, including improvements to both measurements and models. Here 

we outline several key needs for data synthesis, new measurements, and comparisons and 

improvements to models that will improve the accuracy and spatial representativeness of Nr 

deposition budgets and facilitate more rigorous estimates of uncertainty.

Deposition budgets used for North American CL assessments are biased low by an unknown 

yet likely important amount due to lack of measurements of wet and dry organic N 

deposition and incomplete treatment of organic N in CTMs. An important first step in 

addressing this bias is to establish standard methods for measuring organic N in precipitation 

and PM within existing monitoring infrastructure. A goal would be to incorporate routine 

measurements of bulk organic N into NADP (precipitation), CAPMoN (precipitation and 

PM) and CASTNET (PM) sampling and analytical protocols. Along with incorporation of 

organic N measurements in national monitoring networks, a more detailed treatment of 

organic N in CTMs is also needed (Pye et al., 2015).

Comparisons of measured versus modeled wet deposition of inorganic N across North 

America generally show biases of ± 30% or less, which is on the same order as the variance 

among deposition models in the intercomparison studies summarized here. Incorrect spatial 

allocation and magnitude of emissions and differences in emission inventories are identified 

as important sources of uncertainty. For NH3 emissions from animal production in North 

America, improvements are needed in the emission factors and process-level emission 

models themselves (McQuilling and Adams, 2015) as well as the accuracy and availability 

of the activity data (i.e., number and locations of animals, types of) required to develop the 

inventories (U.S. EPA, 2014). Spatial allocation of emissions will remain an issue until 

inventories are developed at the animal facility scale but may be better informed by satellite 

observations. For modeling NH3 emissions from fertilized soils (Cooter et al., 2012), 

additional studies are needed to evaluate soil emission potentials (Bash et al., 2013; Zhang et 

al, 2010) for a wider range of soil types and fertilizer characteristics. Inventories for NH3 

mobile sources also require refinement, as recent measurements indicate emissions from 

automobiles may be underestimated by a factor of 2 in the U.S. (Sun et al., 2017). 
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Improvement of NOx emission inventories are needed to address potential overestimates (~ 

30%) in mobile sources (McDonald et al., 2018).

Lack of understanding of dry deposition processes, and subsequent uncertainty in deposition 

velocities and bi-directional exchange rates, remains a key limitation to improvement of Nr 

deposition budgets. As noted above, commonly used inferential dry deposition models may 

differ by a factor of 3 or more in mean deposition (exchange) velocities of Nr species, even 

when driven with the same inputs (Schwede et al., 2011; Li et al., 2016; Flechard et al., 

2011). Additional monitoring and process-level measurements are needed to improve dry 

deposition models for North America. Establishment of a small number of long-term 

intensive flux measurement sites (e.g., Harvard Forest, Munger et al., 1996; NitroEurope 

‘Level 3’ sites, Skiba et al., 2009) in key ecosystems is needed to characterize the most 

important flux processes and to improve their representation in models. Measurements that 

elucidate non-stomatal and bidirectional (e.g., NH3) exchange processes and the importance 

of in- and near-canopy chemistry on canopy-scale fluxes are particularly needed. Low-cost 

time integrated direct dry deposition methods such as the Conditional Time-Averaged 

Gradient (COTAG) technique (Famulari et al., 2010) could be deployed in a monitoring 

mode at a larger number of sites, using existing monitoring infrastructure (e.g., CASTNET), 

to quantify dry deposition budgets and to provide additional data for evaluation of models.

In addition to new measurements, greater use of existing data would be beneficial. Efforts 

are underway to develop a database of throughfall measurements across North America to 

facilitate evaluation of models against independent non-network measurements. A second 

effort is underway to construct a global metadatabase of micrometeorological flux 

measurements of Nr (i.e., dry deposition) to help facilitate further evaluation and 

improvement of dry deposition schemes.

Going beyond the general intercomparisons of CTMs summarized here, more detailed 

comparisons will be needed to identify the most important sources of uncertainty in wet and 

dry deposition to prioritize model improvements. For example, the next (fourth) phase of the 

AQMEII study presents an opportunity to examine the importance of differences in Rc 

parameterizations for Vd calculations. Other analyses should be performed to assess the 

importance of meteorology, surface physical characteristics, and atmospheric chemistry to 

intra-model differences in dry and wet deposition. Mapping this variability between models 

will yield a more detailed analysis of deposition uncertainty.

In theory, methods such as TDep and ADAGIO that combine measurements and models 

yield the best possible continuous fields of total Nr deposition currently available. While 

preliminary comparisons show generally good agreement (75% of observations within ± 

30%), more detailed analyses of the magnitude and spatial patterns of agreement, and 

analysis of the components that differ most, would help to inform a quantitative estimate of 

uncertainty in total deposition. These should include assessments of the impact of using 

bidirectional (TDep) versus unidirectional (ADAGIO) models for NH3 deposition, 

differences in sources of data for precipitation depth for wet deposition calculations (NADP/

PRISM for TDep versus CaPa for ADAGIO), and differences in the fusion method (IDW 

bias correction for TDep versus optimal interpolation for ADADIO).
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Regarding improvements to MMF procedures, recent studies (Schwede et al., 2018; Paulot 

et al., 2018) show that the use of grid-average deposition estimates from CTMs can be a 

large source of error in calculating CL exceedances for some locations. Incorporation of 

methods such as CMAQ STAGE (Bash et al., 2018) into MMF methods to produce maps of 

land use specific total deposition should be explored. The TDep MMF procedure does not 

currently include bias correction for NH3 due to uncertainty in the IDW parameterization 

and difficulties introduced by the bi-directional exchange framework. Expanded monitoring 

to better characterize NH3 spatial variability in agricultural regions is needed to address 

these issues. Incorporation of data from existing urban air monitoring networks into the 

TDep MMF procedure is needed to improve deposition estimates along urban to rural 

gradients, particularly for NO2. The use of satellite NH3 and NO2 data to inform expanded 

ground-based monitoring and to fill geographical gaps in monitoring data for MMF 

applications should be explored.

Incompleteness of deposition budgets with respect to organic N and the complexities of 

quantifying and aggregating uncertainties in deposition components in CTMs and MMF 

precludes a rigorous calculation of uncertainty in total Nr deposition. In the absence of a 

quantitative estimate of absolute uncertainty, we introduce a simpler metric of relative 

uncertainty in total deposition (WDUM). Our analysis highlights that dry deposition of NH3 

is an important source of uncertainty in many areas of the country. Uncertainty in the dry 

deposition of oxidized N is important over large areas of the eastern U.S. Examples of 

uncertainty for specific locations demonstrate the use of the WDUM in identifying the most 

uncertain components of the budget to prioritize future research and monitoring activities to 

improve deposition budgets and reduce uncertainties in CL exceedances.

While the metric is presented here in its numerical form, alternative expressions could be 

considered. For example, delineating ranges of the WDUM as “lowest, “intermediate”, and 

“highest” levels of uncertainty may be more useful in some decision frameworks or more 

compatible with approaches such as the reliability rating used for CLs (Bobbink et al., 2003; 

Pardo et al., 2011). Future work will explore the use of geographical information to 

incorporate a spatial component to the WDUM to account for greater uncertainty in 

deposition at higher elevations.

While the WDUM is a useful starting point, an ultimate goal is to generate quantitative maps 

of total uncertainty that could accompany maps of total deposition such as those developed 

using TDep and ADAGIO MMF approaches. This will require improvements to 

measurements and models informed by the recommendations outlined above. Additionally, 

new methods are needed for aggregating different types of uncertainty estimates within the 

total deposition budget, including uncertainties derived for measurements, spatial 

interpolation, bias corrections of air concentrations, probabilistic estimates for modeled 

variables, and other aspects of MMF procedures. This includes propagation of the 

uncertainty from the weekly timescale of TDep and ADAGIO to the annual scale.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Exceedance of herbaceous richness critical load based on TDep total N deposition 2013–

2015. Colored values represent locations (1860 of 16,833 total) where the exceedance is 

within ± 2 kg ha−1 yr−1 of the total N deposition. Exceedance data from Simkin et al., 2016.

Walker et al. Page 26

Sci Total Environ. Author manuscript; available in PMC 2020 December 09.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 2. 
NADP TDEP map of the percentage of total deposition attributed to dry deposition of non-

measured (NoM) N species (i.e. “Other N”), which includes NO, NO2, HONO, N2O5, and 

organic N.
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Figure 3. 
Comparison of ADAGIO and TDep MMF estimates of total N deposition.
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Figure 4. 
Map of weighted deposition uncertainty metric (WDUM) for corresponding TDep 2016 total 

deposition map. Probability distribution of the WDUM (bin-size of 0.025) is inset.
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Figure 5. 
Percent contribution of components of the TDep total N deposition budget to the 

corresponding WDUM values shown in Figure 4. Uncertainty ratings (UR) used in equation 

(2) and described in Table 3 are also indicated.
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Figure 6. 
WDUM for near exceedances (± 2 kg ha−1 yr−1) of the herbaceous richness critical load 

based on TDep total N deposition 2013–2015. Inset maps show distribution of survey plots 

from Simkin et al., 2016 within Croatan National Forest, George Washington National 

Forest, and Shenandoah National Park.
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Table 3.

Summary of deposition components and uncertainty ratings for the weighted deposition uncertainty metric 

(WDUM).

Deposition Component Description Uncertainty Rating

NO3_wet Wet deposition of NO3
− 1

NH4_wet Wet deposition of NH4
+ 1

NoM_wet Wet deposition of ON (non-measured) 5

NO3_dry Dry deposition of NO3
− 3

HNO3_dry Dry deposition of HNO3 2

NH4_dry Dry deposition of NH4
+ 3

NH3_dry Dry deposition of NH3 4

NoM dry Dry deposition of “other N” species 4
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Table 4.

Summary of total deposition (TDep, Total N 2013–2015), exceedances (Exceed), WDUM, and percent 

contribution of deposition components to WDUM (% of WDUM) for Simkin et al. (2016) points (Count) that 

fall within the boundaries of the Croatan and George Washington National Forests, and Shenandoah National 

Park.

Croatan NF George Washington NF Shenandoah NP

All Near Exceedance All Near Exceedance All Near Exceedance

Count 60 24 431 62 327 152

TDep 8.5 8.6 7.6 8.4 9.7 10.3

Exceed −2.9 −1.1 −3.9 −1.2 −2.0 −0.5

WDUM 2.7 2.7 2.5 2.6 2.7 2.8

% of WDUM % of WDUM % of WDUM

HNO3_dry 5.8 5.8 17.5 18.1 13.4 12.3

NH3_dry 22.9 23.4 15.1 19.6 29.4 34.5

NH4_dry 2.6 2.6 2.6 2.9 1.9 1.7

NH4_wet 9.6 9.3 8.2 7.5 7.9 7.2

NO3_dry 10.8 11.0 3.0 3.3 2.2 2.0

NO3_wet 5.4 5.4 6.5 5.7 4.9 4.6

NoM_dry 17.8 18.1 22.6 20.9 19.1 17.9

NoM_wet 25.0 24.4 24.4 22.0 21.3 19.8
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