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Abstract

The ITCH/AIP4 ubiquitin E3 ligase was discovered independently by two groups searching for
atrophin-1 interacting proteins and studying the genetics of mouse coat color alteration,
respectively. ITCH is classified as a NEDD4 family E3 ligase featured with the C-terminal HECT
domain for E3 ligase function and WW domains for substrate recruiting. ITCH deficiency in the
mouse causes severe multi-organ autoimmune disease. Its roles in maintaining a balanced immune
response have been extensively characterized over the past two and a half decades. A wealth of
reports demonstrate a multifaceted role of ITCH in human cancers. Given the versatility of ITCH
in catalyzing both proteolytic and non-proteolytic ubiquitination of its over fifty substrates,
ITCH’s role in malignancies is believed to be context-dependent. In this review, we summarize the
downstream substrates of ITCH, the functions of ITCH in both tumor cells and the immune
system, as well as the implications of such functions in human cancers. Moreover, we describe the
upstream regulatory mechanisms of ITCH and the efforts have been made to target ITCH using
small molecule inhibitors.
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1. Introduction

Ubiquitination is a post-translational modification in which the 76-amino acid ubiquitin
molecule is covalently linked, usually to Lys residues, in target proteins [1]. Protein
ubiquitination is a highly co-ordinated enzymatic reaction which requires the E1 ubiquitin-
activating enzymes, the E2 ubiquitin-conjugating enzymes, and the E3 ubiquitin-ligating
enzymes [2]. E1 activates the ubiquitin molecule in an ATP-dependent fashion which forms
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a thioester bond between the catalytic cysteine in E1 and the carboxyl terminus in ubiquitin;
the activated ubiquitin is then conjugated to the E2 enzyme. Finally, the E3 ubiquitin ligases
mediate the transfer of ubiquitin to the e-amino group of the lysine residue on the substrate
protein through an interaction involving both the substrate and the E2 enzyme [2].

The ubiquitin E3 ligase ITCH, also named atrophin-1 interacting protein 4 (AlP4), is a
member of the NEDD4 HECT-type family E3 ligases [3]. A yeast two-hybrid screen of
atrophin-1 interacting proteins led to the discovery of AlIP4, along with other AIPs,
including AIP2/WWP2 and AIP5/WWPL1, all of which are NEDD4 family E3 ligases [4]. In
the same year, an independent study on the genetics of the non-agouti-lethal 28+ (a18H)
mouse strain, which exhibits immunological disorders, identified a locus that is
paracentrically inverted with the agouti locus. Given the autoimmune phenotypes found in
the a18H strain, the gene was named /fchy [5]. In the past two and a half decades since then,
the functions of ITCH in the immune system and malignancies have been extensively
characterized. ITCH controls a wide spectrum of signaling pathways by promoting the poly-
ubiquitination of its over 50 target proteins: c-JUN, c-FLIP, LATS1, p63, p73, TCR-C,
BRAF, and many others (Table 1). The dynamic and context-dependent roles of ITCH in
both immune cells and tumor cells are reflected by the variety of substrates that ITCH
regulates. It is fascinating that ITCH not only catalyzes the canonical K48-linked poly-
ubiquitination of its substrates for proteolysis but also contributes to the ubiquitin linkage
diversity by assembling K63, K27, and K33-linked poly-ubiquitin chains. The roles of ITCH
in the immune system have been well summarized elsewhere [6]. The purpose of this article
is to review the involvement of ITCH, along with its substrates and upstream regulators, in
cancer cells and their immune microenvironment. We expect that the summary of such
knowledge will shed light on the future development of strategies to target ITCH in human
cancers.

ITCH is a HECT-type, NEDD4 family ubiquitin E3 ligase

The HECT family is a relatively small (28 known members) group of E3 ligases. They
feature highly conserved C-terminal HECT domains of about 350 amino acids in length (see
reviews in [7,8]). As opposed to RING-type E3 ligases, HECT-type E3 ligases are
considered E2-E3 hybrids owing to their capability to receive activated ubiquitin from E2
conjugating enzymes, a process mainly controlled by the HECT domain [7]. The HECT
domain consists of Atterminal and C-terminal lobes linked by a flexible linker region. The
E2-binding site is found in the A-lobe, while the C-lobe encodes the active-site cysteine
forming the thioester bond with the ubiquitin molecule [2,9-12]. The substrate specificity of
HECT-type E3 ligases is believed to be determined by the domains located in the A-
terminus. HECT E3s are grouped into three subfamilies based on these A-terminal regions:
the NEDD4 E3 ligases (9 members), which contain tryptophan-tryptophan (WW) domains
for substrate interaction, the HERC (HECT and RCC1-like) E3 ligases (6 members)
harboring RCC1-like domains (RLDs), and a group of other HECT E3 ligases without either
RLD or WW domains [8,13-16].

The NEDD4 family E3 ligases are among the most characterized HECT domain proteins;
the members include NEDD4 (NEDD4-1), NEDD4L (NEDD4-2), ITCH (AIP4), WWP1
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(AIP5), WWP2 (AIP2), NEDL1 (HECW1), NEDL2 (HECW?2), SMURF1 and SMURF?2.
All of these proteins share a very similar domain composition: an A-terminal C2 domain,
two to four WW domains, and the catalytic HECT domain at the C-terminus [13,15,16]. The
C2 domain of NEDD4 family E3s binds to phospholipids and can direct NEDD4 proteins to
plasma membranes, endosomes and multivesicular bodies (MVBs) [17,18]. WW domains
found in the central part of NEDD4 family E3 ligases mainly serve to interact with substrate
proteins owing to their intrinsic protein-protein interacting capability [19]. The most
characterized NEDD4-WW interacting motifs include the PPxY motif and other proline-rich
motifs [8]. The NEDDA4 E3s tend to adopt an autoinhibitory conformation in basal status
through direct interaction between the A-terminal C2 or WW domain and the C-terminal
HECT domain [20-22]. Such interactions may help to prevent substrate or E2 access and
function as a switch for fine-tuning NEDD4 E3 activity [3].

The human ITCH gene encodes a 903 amino acid polypeptide with a typical NEDD4 family
protein domain structure with four WW domains to interact with its substrates (Fig. 1A)
[23]. The ITCH proteins are highly conserved among humans and other mammals, for
example, there is 91 % identity between human and mouse ITCH proteins. Like other HECT
type E3 ligases, ITCH catalyzes substrate ubiquitination in a two-step reaction. The first step
is the ubiquitin transfer from E2 to the catalytic cysteine in the HECT domain, which is
often referred to as the trans-thioesterification reaction. The carboxyl terminus of the
charged ubiquitin is then nucleophilically attacked by the primary amino group of the
substrate protein, which forms a peptide bond between ubiquitin and the substrate protein
[7]. HECT type E3 ligases catalyze substrate ubiquitination in a processive fashion and, the
poly-ubiquitin chain linkage is considered to be determined by the HECT E3s, rather than
the E2s [7]. However, some of the NEDD4 family E3s, including ITCH, exhibit a
remarkable versatility in promoting different types of polyubiquitin linkages. As shown in
Table 1, among the approximately 50 known ITCH ubiquitin substrates, ITCH has been
shown to promote substrate poly-ubiquitination using K48, K63, K27, K29, and K33
linkages. Therefore, how ITCH and its accompanied E2 dictate linkage selection
mechanistically is worthy of future investigation. A previous study uncovered a unique K48-
K63 branched poly-ubiquitin chain assembled by HECT E3 HUWE1 and RING E3 TRAF6
[24]. Such branched ubiquitin chains facilitate NF-xB activation while preventing K63
deubiquitinase CYLD-mediated negative feedback regulation hence sustaining NF-xB
signaling in cells. Given the flexibility of ITCH in promoting both K63 and K48-linked
ubiquitination, it will be intriguing to assess if ITCH alone could catalyze a branched
linkage /n vitroand in cells.

3. Regulation of ITCH

Previous studies unveiled that a subset of NEDD4 family E3 ligases including SMURF1,
SMURF2, NEDD4, and WWP2 adopt an autoinhibitory conformation in which the C2
domain binds the HECT domain to prevent E2 and substrate access. Truncation mutants of
these E3s without their A-terminal C2 domain exhibit an increased activity [20-22]. It is
intriguing that ITCH with the C2 domain deleted (AC2-1TCH) displayed a similar activity as
WT-ITCH, yet it is still less active compared to its HECT domain in vitro [20,25],
suggesting other autonomous regulatory mechanisms. Indeed, Riling and colleagues found
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that WW2 and WW3 domains directly interact with the HECT domain to restrain ITCH E3
ligase activity, which could be relieved through the competitive binding of NDFIP1 (NEDD4
family-interacting protein 1) and NDFIP2 proteins [25,26]Table 2 More recently, the crystal
structure of the inactive AC2-1TCH was resolved, and it shows consistency with previous
biochemical data; it was found that a small linker region (aa 351-381) between WW2 and
WW3 domains of ITCH was, in fact, bound to the HECT domain of ITCH in the
autoinhibited state [27] (Fig. 1B). This model was also supported by a study focused on the
autoinhibitory mechanism of WWP2 [28].

In addition to NDFIP1-controlled activation of ITCH, an early study from the Karin group
revealed that in T cells, upon anti-CD3 and anti-CD28 stimulation, the MEKK1/JNK kinase
cascade phosphorylates ITCH at S240, S263, and T273 to promote ITCH-mediated JUNB
ubiquitination and subsequent degradation [29]. Similarly, phosphorylation events that occur
at the linker region between C2 and WW domains, which includes ATM-mediated S161 [30]
and AKT-mediated S257 [31] phosphorylation, facilitates ITCH activation (Fig. 1A). These
phosphorylation events may serve to alter the suppressive conformation of the ITCH A-
terminal region or to recruit p-S/T interacting proteins to disrupt the WW-HECT interaction.
On the other hand, FYN-mediated Y420 [32] and SGK3-mediated T385 and S450 [33]
phosphorylation, which are found within the WW2-WWa3 region (Fig. 1A), inhibits ITCH
activity presumably through disrupting WW-substrate interactions. Such a notion was
supported by an NMR study in which it was found that threonine phosphorylation in the
WW3 domain of ITCH blocks its interaction with PPxY-containing ligands [34]. In addition
to the phosphorylation at the A-terminus, IKK-mediated phosphorylation in the HECT
domain at S687 has also been demonstrated to inhibit the E2-HECT interaction [35] Table 2.

Several ITCH-associated proteins have been identified to modulate ITCH activity. Binding
to NDFIP proteins through the WW domains of ITCH allows the access of PPxY motif-
containing substrates [26]. Indeed, NDFIP1 and NDFIP2 were found to enhance ITCH-
mediated ubiquitination of JUNB and endophilin [25,27,36]. A very similar mechanism was
observed for LRAD3, which contains two PPXY motifs within its intracellular domain and
interacts with the WW domains of ITCH and NEDDA4 to facilitate their auto-ubiquitination
and degradation [37]. B-Arrestin 2, on the other hand, is required for ITCH-dependent
endosomal sorting of the chemokine receptor CXCR4 [38], while its homolog, p-Arrestin 1,
functions as an adaptor for ITCH by promoting the ubiquitination of transient receptor
potential ion channel protein TRPV4 and thereby negatively regulating intracellular calcium
signaling [39]. B-Arrestin 2 also forms a complex with ITCH to promote K63-linked
polyubiquitination of the Hedgehog pathway tumor suppressor SUFU, which inhibits the
GLI-dependent transcription program [40]. Likewise, the adaptor protein Numb facilitates
ITCH-mediated degradation of Glil, which also helps to terminate Hedgehog pathway
activation [41,42] Table 2.

ITCH catalyzes its own ubiquitination through either the K48 or the K63 linkage [43]. It has
been shown that the deubiquitinases USP9X [44] and YOD1 [45] antagonize the proteolytic
K48-linked auto-ubiquitination of ITCH /n vitroand in cells. On the other hand, K63-linked
autoubiquitination of ITCH prevents proteolytic K48-linked autoubiquitination and
stabilizes the ITCH protein [43]. Also, ITCH negatively regulates the deubiquitinase A20
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and hence suppresses A20-mediated inactivation of the RIPK1 during NF-xB activation
[48].

4. Cancer cell autonomous roles of ITCH in tumorigenesis

4.1.

4.2.

ITCH was initially identified as a key enzyme in maintaining a balanced immune response
and is closely associated with autoimmune disease [47]. Its roles in malignancies have also
been unveiled through the discovery of its approximately 50 ubiquitin substrates (Table 1).
The /TCH gene is not frequently mutated, deleted or amplified in most human cancers
(www.chioportal.org). However, overexpression of /7CH has been observed in several
human cancers including anaplastic thyroid carcinoma [48], breast cancer, ovarian cancer,
and sarcomas [49]. Like other NEDD4 family genes, its regulation may primarily occur at
the transcriptional and post-translational levels. ITCH demonstrates distinct roles through
tagging different substrates for ubiquitination and hence modulating different signaling
pathways. Therefore, it is not surprising that ITCH exhibits both oncogenic and tumor
suppressor functions in different types of human cancers. ITCH is often activated when it
receives stimulatory signals from upstream kinases or binding partners (Fig. 1A); thus, it
may act primarily as a caretaker gene to fine-tune the downstream signaling pathways (Fig.
2).

ITCH in Hippo pathway regulation

The Hippo signaling pathway is a signaling relay carried out by a few key kinases and
transcription factors which control cell proliferation, differentiation, and death [50]. The key
components of the Hippo pathway consist of LATS1 and LATS?2 kinases as well as YAP and
TAZ transcriptional coactivators. Phosphorylation of YAP/TAZ by LATS1/2 leads to their
cytoplasmic retention, degradation, and subsequently reduces their target gene expression
[51]. LATS1 functions as a tumor suppressor by inducing G2-M arrest and promoting
apoptosis [52,53]. Hyperactivation of YAP and TAZ is frequently found in human cancers to
maintain cancer stem cell properties and to promote epithelial-mesenchymal transition
(EMT) [54]. ITCH has been identified as an upstream E3 ligase for LATS1 to promote its
proteolysis [49,55]. /TCH silencing in breast cancer cell lines MCF7 and MDA-MB-231
suppressed YAP-mediated cell growth [49,55], while the ectopic expression of ITCH
transformed MCF10A cells in vitro [49]. A recent study uncovered that the deubiquitinase
YODL1 stabilizes ITCH and enhances ITCH-mediated activation of YAP/TAZ transcription
in liver cancer cells [45]. In contrast to the oncogenic roles of ITCH in destabilizing the
tumor suppressor LATS1, Lim and colleagues discovered that ITCH also targets a YAP/TAZ
transcription coactivator WBP2 for proteolysis in breast cancer cells, which positions ITCH
as a tumor suppressor in breast cancer cells [56]. Notably, ITCH-controlled WBP2
degradation is blocked by WNT and EGFR activation through the disruption of ITCH/WBP2
interaction [56]. These findings suggest that ITCH could function as a potentiometer to
precisely control the signal flux in response to different upstream inputs in tumor cells.

ITCH in Hedgehog pathway regulation

Like the Hippo pathway, the Hedgehog pathway was initially discovered from genetics
studies using the fruit fly Drosophila melanogaster [57]. The Hedgehog pathway is
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composed of a chain of molecular events transmitted from the Hedgehog ligands via their
receptors Patched (PTCH1) and GPCR-like protein Smoothened (SMO) to the GLI
transcription factors. SUFU is a negative regulator for this signaling cascade [57]. The
Hedgehog pathway drives the transcription of a panel of oncogenes including MYCN,
CCND1, CCND2, BCLZ, and many others [58]. ITCH seems to modulate the Hedgehog
pathway at all the signaling transduction stages. GLI1 stability was found to be negatively
regulated by ITCH with the assistance from the adaptor protein NUMB [42], indicating that
ITCH opposes Hedgehog pathway activation. Similarly, ITCH targets GLI-similar 3
(GLIS3) transcription factors for proteolysis in pancreatic  cells [59]. Further, ITCH forms
a complex with B-Arrestin 2 to catalyze K63-linked ubiquitination of SUFU, which
increases the association of SUFU with GLI3 and facilitates the conversion of GLI3 into a
repressor, thereby inhibiting the GLI-mediated Hedgehog pathway activation [40]. These
findings together support a tumor suppressor role of ITCH through antagonizing the
canonical GLI-dependent Hedgehog pathway.

In contrast to such a role, PTCH1 was found ubiquitinated at K1413 by ITCH, the
ubiquitination provoked PTCH1 proteolysis, subsequent GLI activation, and cell survival
[60]. On the other hand, ITCH-mediated activation of MAPK and TGF-f pathways
facilitated PTCH1/SMO-independent activation of GLI transcription factors [61] and likely
antagonized the proteolytic inhibition of the canonical Hedgehog signaling as described
above.

4.3. ITCH in TGF-B pathway regulation

The TGF-p signaling pathway regulates cell proliferation, differentiation, apoptosis, and
migration. Upon the binding of TGF-p to its receptor, SMAD2, SMAD3, and SMAD4
proteins are translocated from the cytoplasm to the nucleus for transcription initiation,
whereas SMAD?7 functioned as an inhibitory molecule to antagonize this circuit [62]. ITCH-
dependent regulation of TGF- signaling was uncovered by the Liu group through the
identification of ITCH as the upstream E3 ligase for SMAD2. Interestingly, SMAD2 poly-
ubiquitination by ITCH appeared to be non-proteolytic, which led to the increased activating
phosphorylation of SMAD2 [63]. In contrast, ITCH suppressed TGF-f pathway activation
by enhancing the association of SMAD?7 with the activated TGFp-RI [64]. In addition to
modulating the canonical TGF-B pathway proteins, ITCH catalyzed the K27-linked poly-
ubiquitination of TIEG1 which facilitated its transcriptional activation to boost FOXP3
expression [65,66]. ITCH was also found to regulate HEF1 stability by forming a complex
with SMAD3 and HEF1 in a TGF-B-independent manner [67].

In addition to the canonical SMAD-dependent pathway, TGF-p also triggers JNK activation
through TAK1 and MKK4, which are MAP3K and MAP2K for the JNK kinase [68]. INK-
dependent phosphorylation and subsequent activation of ITCH may further amplify the
canonical SMAD-mediated transcription program. Intriguingly, ITCH also targets TAK1 for
proteolytic ubiquitination in T cells [69], suggesting a negative feedback regulation of this
noncanonical TGF-B cascade. Given the context-dependent role of TGF-p pathway in
tumorigenesis, it is reasonable to postulate that ITCH could function differentially in
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different cellular contexts to either promote or suppress tumor cell proliferation and
metastasis.

ITCH in AP-1 transcription factor regulation

The AP-1 transcription factors c-JUN and JUNB are the founding members of the ITCH
ubiquitin substrates (Table 1) [70,71]. Upon TCR-mediated JNK activation in T cells, E3
ligase activity of ITCH is stimulated by JNK-mediated phosphorylation (Fig. 1A), which
drives the ubiquitination of JUN proteins [29]. Paradoxically, INK itself is the activating
kinase for JUN family transcription factors. INK phosphorylates c-JUN at its A-terminus to
stimulate JUN transcriptional activity by promoting either an interaction with basal
transcriptional machinery or coactivators [72]. In such a scenario, ITCH seems to provide
negative feedback regulation on AP-1 activation. This is particularly important because
AP-1 transcription factors are double-edged swords in tumor cells; they facilitate
proliferation but at the same time provoke apoptosis [73]. The timely extinction of the JUN
signal is vital to properly utilizing this oncogenic pathway; therefore, it is not surprising that
JUN proteins are subjected to proteolytic regulation by ITCH, SCFFBW7 and CUL4COP1 E3
ligases [72]. However, it remains largely unknown if these JUN-upstream E3s work
cooperatively or competitively to control JUN protein stability in tumor cells.

ITCH in WNT and NOTCH signaling pathways

Both WNT and NOTCH signaling pathways play indispensable roles in embryonic
development and tumorigenesis [74,75]. ITCH ubiquitinates the phosphorylated form of
Dishevelled (DVL), a key molecule in mediating WNT signal transduction, for proteolysis,
such that ITCH antagonizes WNT activation [76]. However, a recent study unveiled that
ITCH facilitates the ubiquitin-dependent endocytosis of the WNT receptor LRP6 and
promotes canonical WNT activation [77]. These results suggest that ITCH could have both
positive and negative impacts on the canonical WNT signals. DVL directly regulates small
GTPases RHOA, RAC and CDC42 to enhance cell mobility [78]. Conversely, the
destabilization of DVL by ITCH indicates that ITCH may have a negative impact on the
non-canonical WNT pathway in tumor cells.

An early study in 2000 reported that ITCH promotes NOTCH poly-ubiquitination [79]. The
poly-ubiquitin chain assembled on NOTCH was later characterized as the K29-linkage:
K29-linked ubiquitination of NOTCH facilitates its lysosomal degradation in the absence of
the ligand [80]. Intriguingly, ITCH also facilitates the K29-linked ubiquitination of another
NOTCH signaling component, Deltex, for lysosomal degradation [81]. The association of
ITCH with lysosomal regulation of WNT and NOTCH signaling modules is further
supported by the findings linking ITCH with ubiquitin-dependent sorting and degradation as
described below.

ITCH regulates p63/p73 transcription factors

The proteins p63 and p73 are p53 homolog transcription factors that play important roles in
multiple biological processes including skin morphogenesis, regeneration, tumorigenesis,
and response to chemotherapy [82]. In the epidermis, ITCH mediates the degradation of p63
to regulate epidermal keratinocyte differentiation [83]. On the other hand, p73 is upregulated
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in response to DNA damage, cell cycle arrest and apoptosis [84-86]. When cells are not
under stressful conditions, the basal level of p73 is kept at a low level through ITCH-
mediated ubiquitination and proteasome-dependent degradation. In response to DNA
damage, ITCH is rapidly degraded which stabilizes p73 and leads to growth arrest and
apoptosis [87]. Given the tumor suppressor roles of both p63 and p73 in human cancers, it is
conceivable that ITCH may exhibit oncogenic functionality to accelerate p63 and p73
turnover in skin or lung cancers, where p63 and p73 display a profound tumor suppressor
role.

ITCH regulates endosome and lysosome functions

In addition to proteasome-dependent proteolysis, ubiquitin-dependent sorting of integral
membrane proteins for degradation in lysosomes is an important mechanism to terminate
extracellular signals or to recycle molecules back to the plasma membrane [88]. Cancer cells
have frequently been observed to escape from endocytic degradation through receptor
tyrosine kinase (RTK) mutants [89]. ITCH has been demonstrated to participate in endocytic
sorting by regulating several key endocytic regulators. ITCH was found localized within the
endosomal system where it bound to endophilin A1 and promoted its endocytic degradation
[90]. Similarly, ITCH mediates agonist-dependent ubiquitination of the chemokine receptor
CXCR4 and the HGF-regulated tyrosine kinase substrate Hrs, the latter plays a central role
in endocytic sorting [91]. P13-kinase-dependent activation of the cytokine-independent
survival kinase CISK/GSK3 antagonizes ITCH-mediated CXCR4 degradation and therefore
sustains CXCR4-mediated oncogenic signals [33]. The endocytic scaffolding protein
intersectinl (ITSN1), on the other hand, is regulated differently by ITCH depending on the
isoform that is modified. The major isoform ITSN1-s is monoubiquitinated, while the minor
isoform, ITSN1-22a, undergoes a combination of mono- and oligoubiquitination. The
monoubiquitination of ITSN1-s promotes its stabilization, whereas the oligoubiquitination
of the minor isoform leads to its proteasomal degradation [92]. ITCH has also been shown to
form a functional complex with the phosphatidylinositol (PI) 4-kinase type lla (P14Klla)
through which ITCH promotes the non-proteolytic ubiquitination of PI4Klla, and as a
result, facilitates the internalization of the WNT-activated frizzled 4 (Fz4) receptor [93].

ITCH in DNA damage response

Dysregulation of the DNA damage response (DDR) pathway is crucial for tumor cells to
cope with genomic instability-triggered cell death pathways [94,95]. Poly-ubiquitinated
histone H1 serves as an important signaling intermediate to stimulate RNF8/RNF168-
mediated DDR at DNA damage sites for 53BP1 foci formation following ionizing radiation
(IR) [96]. ITCH-mediated polyubiquitination of H1.2 suppresses RNF8/RNF168-dependent
formation of the 53BP1 foci, which plays an important role in DNA damage response. AKT-
mediated activation of the ITCH-H1.2 axis may confer triple-negative breast cancer (TNBC)
cells to counteract the replication stress and to facilitate tumor cell survival in response to
DNA damage [31].

ITCH in other signaling pathways

ITCH has been found to regulate the RTK-MAPK signaling module. Meijer et al. reported
that ITCH catalyzes mono-ubiquitination and K63-linked poly-ubiquitination of ERBB4
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isoform CYT-1, which promotes the endocytic degradation of ERBB4 CYT-1. ITCH-
dependent degradation of ERBB4 suppresses EGF-dependent oncogenic programs [97,98].

Downstream of the RTK, BRAF plays an indispensable role in activating the MEK/ERK
pathway to drive tumorigenesis in melanoma [99-102]. Our group reported that, in response
to proinflammatory cytokines, BRAF is subjected to K27-linked poly-ubiquitination in
melanoma cells by ITCH. K27-linked ubiquitination of BRAF recruits PP2A to antagonize
the S365 phosphorylation and disrupt the inhibitory interaction with 14-3-3, leading to
sustained BRAF activation and subsequent elevation of the MEK/ERK signaling [103].

ITCH has been demonstrated to ubiquitinate the anti-apoptotic protein c-FLIP for
degradation [104]. The ubiquitination and degradation of c-FLIP are partly responsible for
the cytotoxic activity of TNFa, which activates ITCH via JINK-mediated phosphorylation
[29]. On the other hand, ITCH was found to destabilize MKK4, an upstream MAP2K that
activates the JINK/p38 kinases, providing a form of feedback regulation to the MEKK1-
MKK4-JNK signaling axis [105].

Immunological functions of ITCH and their implications in

tumorigenesis

The most remarkable phenotype found in the /tchy mice (/tch?18H/218H) s the presence of
multi-organ inflammation and autoimmune disease [6]. Therefore, it is not surprising that
ITCH is involved in the control of many aspects of lymphocytic function and host immune
defense, which includes T-cell activation and anergy, T-helper cell differentiation, innate
immunity, B cell development, and viral infection. Several ITCH substrates described above
in the discussion of tumorigenesis are also central players or modulators of these processes.
Though most immunological functions of ITCH were identified through studying the
peripheral immune system of the /fchy mice, such mechanisms may shed light on the
potential roles that ITCH plays in the tumor immune microenvironment (Fig. 3).

5.1. The tumor immune microenvironment

Tumors are not isolated from the host tissues, but rather they are surrounded by the tumor
microenvironment (TME), which contains blood vessels, extracellular matrix (ECM),
signaling molecules and tumor infiltrated immune cells [106-111]. Immune cells present in
the TME mainly include T lymphocytes, B lymphocytes, macrophages, dendritic cells
(DCs), myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, and natural
killer T (NKT) cells [112-115]. The communication between tumor cells and tumor
infiltrated immune cells occurs at every stage of tumor development. The functions of the
immune cells in recognizing, eliminating and promoting tumor cell development have been
investigated for decades.

It is generally accepted that a high number of interferon (IFN)-y secreting CD8" T cells and
CD4* T helper 1 cells (Th1), tumor-associated M1 macrophages, NK cells, type | NKT cells
and mature DCs probably correlates with good prognosis in cancer patients [116-122]. One
the other hand, a subset of immune cells like Tregs, MDSCs, M2 macrophages, and

immature DCs facilitates tumor progression by antagonizing antitumor immunity [113,123—
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125]. Although Th2 and Th17 cells are initially characterized as tumor-promoting
lymphocytes, several groups reported that they play rather contradictory roles in different
tumor settings [115,124,126-128]. Such context-dependent roles are also observed for B
lymphocytes [106,129-131]. The double-sided roles of these cells in tumorigenesis are
likely due to cytokines and other molecules they produced. These molecules exhibit distinct
functions in different TME through regulating a wide variety of signaling pathways not only
in tumor cells but also in immune and stromal cells [113,125,132]. One of such examples is
the signaling networks ITCH influences in the immune system and its potential impact on
the tumor immune microenvironment.

ITCH in T cell activation

The T cell antigen receptor (TCR) is the starting point of T cell activation upon its
interaction with antigenic ligands, which are short peptide fragments bound to MHC class |
or class Il molecules [133]. ITCH has been shown to directly modulate TCR-( function
[134]. ITCH also works together with Cbl-b to promote K33-linked ubiquitination of TCR-
G, which inhibits TCR-C’s binding to ZAP70 and suppresses the phosphorylation and
subsequent activation of ZAP70 [134]. This finding supports a model in which ITCH
cooperates with Cbl-b to inhibit TCR activation. Further, ITCH has been demonstrated to
regulate Ca?*-induced T cell anergy through the ubiquitination and degradation of PKCO
and PLC-y1, both of which are vital for calcium signal-mediated T cell activation [135,136].
However, in a recent study, CD4* T cells with both /zchand WwpZ2 deleted exhibit a
compromised TCR activation and a bias toward Th2 cells [137]. ITCH and WWP2 form a
complex to catalyze K27-linked ubiquitination of the phosphatase SHP-1, which disrupts the
interaction between SHP-1 and the tyrosine kinase Lck; this leads to the promotion of TCR
signaling [137]. During TCR activation, Lck phosphorylates TCR-C and ZAP70 to facilitate
the activation of downstream NF-xB and MAPK signals. SHP-1 functions as a negative
regulatory element to terminate TCR signaling by depho-sphorylating Lck. These
observations indicate that the balance between WWP2 and Cbl-b functions could play an
important role in directing ITCH’s role in TCR signaling (Fig. 3).

ITCH in Th2 cell differentiation

T helper cells are activated after the naive CD4* Th cells recognize and interact with an
antigen-MHC class Il molecule complex. The activated Th cells secrete cytokines to
facilitate the activation of B cells, cytotoxic T cells, macrophages, and various other cell
types that participate in the immune response. Different sets of cytokines produced by
activated Th cells dictate different immune responses [138]. There is mounting evidence
suggesting the central, while complicated, roles of T helper cells in immune response and
tumor immunity, which is largely owing to the complexity of T helper cell subtypes
including Thi, Th2, Th9, Th17, and T-follicular helper (Tth) cells [139].

Compared to Th1 cells, which produce IFN-y and IL-2 as their signature cytokines, Th2
cells mainly secrete cytokines such as IL-4, IL-5, and IL-13; thus, Th2 cells are essential for
host defense. /fc//~ T cells exhibit an elevated production of the Th2 cytokines IL-4 and
IL-5 without affecting IFN-y production, suggesting that ITCH negatively regulates Th2
polarization [70]. Such a phenotype was due to ITCH-mediated proteolytic ubiquitination of
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the JUNB transcription factor [70]. Upon TCR stimulation, JNK phosphorylates ITCH to
facilitate its activation, leading to the ubiquitination and degradation of JUNB which in turn
suppressed 1L-4 production and Th2 differentiation [140]. Consistent with ITCH’s role in
restraining Th2 differentiation, genetic ablation of Ndfip1 in the mouse phenocopied the
biased differentiation of Th2 cells observed in /tch?18H218H mice [36]. Th2 cells have a dual
role in tumor immunity due to the context-dependent functions of Th2 cytokines, a review
on this topic could be found at [141].

Th2 cells are generally considered as tumor-promoting through secreting
immunosuppressive cytokines such as IL-10 [141]. However, other Th2 cytokines may
exhibit context-dependent functions in different tumor microenvironments and therefore
provides a rather controversial role for Th2 cells in tumor immunity [141]. At least, it has
been reported that in coordination with other cell types, such as tumor-infiltrating
eosinophils, Th2 cells exhibit anti-tumor activity [142,143].

ITCH in Treg cells

The induction of regulatory T cells (Tregs) from naive CD4* T cells is driven by TGF-f and
IL-2 signals, which stimulates the expression of the Foxp3 transcription factor [144]. There
are two types of Treg cells identified, some are generated in the thymus early in life, thus
named thymic Treg cells (tTreg or nTreg); others are generated in various tissues of the body
throughout life, and are named peripheral Treg cells (pTreg or iTreg) [144]. pTreg, not tTreg,
cells are found decreased in /fch deficient mice, suggesting a positive role of ITCH in
promoting pTreg differentiation [65,66]. Mechanistically, IL-6 activates the tyrosine kinase
Tyk?2 to phosphorylate TIEG1 at Y179, which promotes ITCH-mediated K27-linked
polyubiquitination of TIEG1. TIEG1 acts downstream of TGF-f3 to promote Foxp3
expression and pTreg cell differentiation [65,66]. In an effort to specifically investigate the
roles ITCH plays involving Treg cells, Treg cell-specific /fch knockout mice were generated
(1tcHVM:Foxp3-Cre) [145]. Surprisingly, the absence of /fchin tTregs does not affect Foxp3
expression or the overall tTreg development, suggesting a secondary effect of IL-4
production rather than an intrinsic role of /7CH in pTreg cells.

Treg cells suppress the proliferation and function of a variety of anti-tumor immune cell
populations by producing IL-10, TGF- and cytotoxic T-lymphocyte antigen 4 (CTLAA4)
[146]. Clinical studies show that tumor-infiltrating Tregs usually correlate with poor
prognosis in a variety of cancers including lung cancer [147] and pancreatic cancer [148].
However, in certain types of cancers such as head and neck cancer [149] and bladder cancer
[150], tumor-infiltrating Tregs seem to predict better prognosis.

ITCH in Th17 cells

Th17 cells are characterized by the production of IL-17 and 1L-22 cytokines [151]. IL-17
cytokines are double-edged agents and, depending on different types of cancer, it can be
either tumor-suppressive or tumorigenic [152]. ITCH negatively regulates Th17
differentiation through the ubiquitination and degradation of the RORyt transcription factor,
a lineage marker for the Th17 cell population [153]. It has been consistently shown that
NDFIP1, which activates the catalytic activity of ITCH, also promotes RORyt degradation
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and reduces IL-17 production in Th17 cells [154]. Accumulation of IL-17 in the colonic
mucosa has been attributed to spontaneous colonic inflammation and colorectal
carcinogenesis, suggesting a tumor suppressor role of ITCH in inflammation-induced colon
cancer [153].

ITCH in Tfh and B lymphocytes

One of the major functions of CD4* T cells is to assist B lymphocyte development and
antibody production. T follicular helper (Tfh) cells are a specialized subset of CD4* T cells
required for germinal center reactions which promote B cell proliferation, somatic
hypermutation, and class-switch recombination [155]. ITCH facilitates Tth cell
differentiation by targeting FOXO1, a negative regulator of Tfh differentiation, for
proteolysis [156]. In addition to Tfh cells, FOXO1 has been shown to possess an important
role in suppressing the activated Treg (aTreg) cell population [157]. Therefore, it is worth
further investigating the role of ITCH in controlling aTreg cells, especially in tumor-
infiltrating lymphocytes. Notably, although Tfh cells exhibit a dual role in the tumor immune
microenvironment [158], CXCL13-associated Tth and B cell infiltration has been
demonstrated as a favorable prognostic marker in colon cancer patients [159].

B cells are responsible for humoral immunity through antigen presentation to T cells and
secretion of antigen-specific antibodies, while dysregulated development and activation of B
cells are associated with immunodeficiency and autoimmunity [160]. B cells are also
subjected to ITCH-dependent regulations. There was an increased germinal center B cell
number found in /fc/P18H/a16H mice, and /tch deficient B cells which exhibited increased
proliferation and glycolytic capacity largely due to mTORC1 activation [161]. However, the
mechanism by which ITCH modulates B cell proliferation remains unexplored. In an
independent study, conditional knockout of /zc/7in mouse B cells (/tcAfl;Cd19-Cre)
resulted in fewer pro-B cells in the bone marrow, more small resting IgM-IgD-B cells in the
periphery, and lower B-cell numbers in the lymph nodes [162].

ITCH in the regulation of inflammatory cytokines

Chronic inflammation is a risk factor for developing several types of human cancers.
Epidemiology studies revealed a 14 % increase in prostate cancer risk due to prostatitis, a 25
% increase in colorectal cancer risk due to ulcerative colitis, and a 10-20-fold increase in the
risk of pancreatic cancer for patients who have experienced pancreatitis [163]. Since multi-
organ inflammation has been found in /fch#18H/218H mice, ITCH may exhibit anti-
tumorigenic roles in these types of cancers. Using a syngeneic Lewis lung carcinoma model,
Ahmed and colleagues observed increased tumor development in /tc/#18H/218H and Cyld
~~mice [69]. The mechanistic study showed that ITCH is complexed with CYLD to
promote the transition of K63-linkage to K48-linkage via sequentially cleaving the K63-
linked ubiquitin chain followed by catalyzing K48- linked ubiquitination on the TAK1
protein. Such ubiquitin linkage switches triggers the proteasomal degradation of TAK1 and
an attenuation of the inflammatory response [69]. Moreover, ITCH targets the scaffolding
protein BCL10 for proteolysis [135]. BCL10 is a component of the lymphocyte-specific
CARMAL/CARD11-BCL10-MALT1 (CBM-1) signalosome that stimulates the MALT1
protease to activate canonical NF-xB and JNK signaling [164].
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6. Targeting ITCH in human cancers

Targeting ubiquitin enzymes is an attractive therapeutic approach for the treatment of
multiple cancers. One of the best examples is the discovery of the FDA approved
proteasome inhibitor Bortezomib and Carfilzomib for the treatment of multiple myeloma
[165]. Compared to efforts against the proteasome or the E1/E2 enzymes, targeting ubiquitin
E3 ligases appears to be a more specific approach given the fact that E3s dictate the substrate
specificity in the ubiquitin—proteasome system. To date, only three compounds target the
ubiquitin E3 ligase cereblon. Namely, the teratogenic compounds thalidomide, and its
analogs lenalidomide and pomalidomide, have been approved by the FDA for this use [166].
Compared to RING family E3s, only limited efforts have been devoted to targeting HECT
type E3 ligases. A pan-HECT inhibitor heclin was discovered from a screen that targets the
HECT domain catalytic cysteine for oxidation, thereby inhibiting HECT E3 activity [167].
In another study, indole-3-carbinol (I13C) derivatives were found to bind the HECT domain
of NEDD4 and suppress its E3 ligase activity [168]. Notably, 13C has recently been
demonstrated to also inhibit WWP1 activity and restore PTEN tumor suppressor activity in a
MY C-driven prostate cancer mouse model [169]. High throughput screening approaches
(using ITCH autoubiquitination as a marker ITCH activity) identified clomipramine, which
is an antidepressant drug, as a putative ITCH inhibitor that suppressed the growth of breast,
prostate and bladder cancer cell lines. Mechanistically, clomipramine inhibits ITCH
autoubiquitination by interfering with ubiquitin transthiolation activity in an irreversible
manner [170]. Due to the highly conserved mechanisms of ubiquitin transfer and substrate
recruitment among NEDD4 family E3s, there is uncertainty surrounding the specificity of
these NEDD4 E3 inhibitors [171]. Therefore, future in-depth investigations on both the
specificity and /n vivo preclinical studies are urgently needed.

7. Conclusion and perspectives

Since its discovery in 1995, ITCH’s roles in maintaining a balanced immune response have
been extensively investigated [172]. Our knowledge of the immunological functions of
ITCH are mainly obtained from the studies of the non-lethal al8H agouti strain
(Itch18H/a16H) and the conditional knockout /tcAVf strain. Despite the autoimmune disease
found in /zch?18H/218H mice, no obvious malignancy was reported. The lack of malignancy
in /tch*16H/a18H mice may be due to their short life span, which is typically 6-8 months on
the C57BL/6 J background [70]. Given the accelerated tumor formation of colon cancer and
lung cancer cells in /zct16H/218H mice [69,153], it will be of great interest to examine if loss
of /tchfacilitates colon cancer and lung cancer development in genetically engineered
mouse models (GEMMSs). Most of the evidence accumulated to date on the role of ITCH in
tumorigenesis were derived from /n vitro or ex vivo models. It is therefore likely that the
absence of an intact tumor microenvironment might not fully reflect all of the
pathophysiological changes that ITCH could influence at both the cancer cell-intrinsic and
the systemic levels. In addition to germline deletions, specifically targeting /fch expression
in conditional GEMMs may provide an important opportunity to examine the role of /ichin
tumorigenesis, especially in aged mice. For example, an /rc/T; Krag-SL=G12D/+- p55Ul |yng
cancer GEMM would be valuable to assess the roles Itch plays in Kras®2P-driven lung
adenocarcinoma. More importantly, further introducing the Cd4-Cre allele will provide a set
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of genetically defined models to fully deduce the roles of Itch in the lung epithelium and the
T helper cells.

Genetic alterations in the /7TCH gene occur infrequently in the most common types of
human cancer. Somatic mutations of ITCH were found in 3.4 % of HER2* breast cancer and
7.9 % of triple negative breast cancer cases [56]. Among these mutations, the E855 K
mutant of ITCH exhibits a loss of E3 ligase activity, and attenuation of ITCH function has
been shown to promote WNT pathway activation and facilitate breast cancer cell survival
[56]. In contrast to the low frequency of somatic ITCH mutations observed, there is good
evidence that post-translational modifications modulate ITCH function in response to
different upstream signals (Fig. 1A). Our group has recently identified a cytokine-stimulated
maintenance of ERK activation by JNK/ITCH-mediated BRAF non-proteolytic
ubiquitination in BRAANT melanoma cells [103]. This provides a mechanistic explanation
of the pro-survival roles of the inflammatory cytokines in melanoma cells [173]. DNA
damage activates the ATM kinase, which promotes the activation of ITCH [30], and ITCH in
turn destabilizes the p63 [83] and p73 [87] tumor suppressors to alleviate the apoptotic
stress. This signaling axis may contribute to the oncogenic functions of ITCH in skin
cancers. The adaptor proteins NDFIP1 and NDFIP2 facilitate ITCH activation by relieving
the intramolecular interaction between the WW and HECT domains. Expression levels of
these scaffolding proteins may impact ITCH activity in certain types of cancers. Of note,
NDFIP1 has been found overexpressed in the TCGA-PAAD and TCGA-THYM datasets,
indicating a potential hyper-activation of ITCH in pancreatic adenocarcinoma and thymoma
tumors. Looking forward, the development of cancer type-specific ITCH animal models and
the design of specific ITCH inhibitors will be important for us to better understand and to
specifically target this important signaling molecule in human cancers.
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WWP2 WW domain-containing protein 2
YAP Yes-associated protein
ZAPT0 zeta-chain-associated protein kinase 70
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Fig. 1.
Schematic illustration of ITCH activation and regulatory mechanisms.

A) The domain structure of the human ITCH protein. The red residues indicate activation
phosphorylation sites, while the blue residues indicate inhibitory phosphorylation sites. B)
Inactive and active conformations of the ITCH protein based on the structural studies
[27,28].
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Fig. 2.

IT%:H targets different signaling pathways in tumor cells.

The arrowhead from ITCH indicates positive regulation of the substrate protein, while the
blunt head from ITCH indicates negative regulation of the substrate protein. Blue line
indicates a K48-linked polyubiquitination of the substrate, red line indicates a non-
proteolytic linkage, while green line indicates the target protein is subjected to endocytic
degradation after modified by ITCH. The arrowhead towards ITCH indicate a positive
regulation of ITCH E3 ligase activity, while the blunt head towards ITCH indicates negative
regulation of ITCH E3 ligase activity.
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Fig. 3.

IT%:H plays multifaceted roles in T cells.

The arrowhead from ITCH indicates positive regulation of the substrate protein, while the
blunt head from ITCH indicates negative regulation of the substrate protein. Blue line
indicates a K48-linked polyubiquitination of the substrate, while red line indicates a non-
proteolytic linkage. The arrowhead towards ITCH indicates a positive regulation of ITCH E3
ligase activity, while the blunt head towards ITCH indicates negative regulation of ITCH E3
ligase activity.
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