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Abstract

Purpose: To generate fully automated and fast 4D-flow MRI-based 3D segmentations of the 

aorta using deep learning for reproducible quantification of aortic flow, peak velocity, and 

dimensions.

Methods: A total of 1018 subjects with aortic 4D-flow MRI (528 with bicuspid aortic valve, 376 

with tricuspid aortic valve and aortic dilation, 114 healthy controls) comprised the data set. A 

convolutional neural network was trained to generate 3D aortic segmentations from 4D-flow data. 

Manual segmentations served as the ground truth (N = 499 training, N = 101 validation, N = 418 

testing). Dice scores, Hausdorff distance, and average symmetrical surface distance were 

calculated to assess performance. Aortic flow, peak velocity, and lumen dimensions were 

quantified at the ascending, arch, and descending aorta and compared using Bland-Altman 

analysis. Interobserver variability of manual analysis was assessed on a subset of 40.

Results: Convolutional neural network segmentation required 0.438 ± 0.355 seconds versus 630 

± 254 seconds for manual analysis and demonstrated excellent performance with a median Dice 

score of 0.951 (0.930–0.966), Hausdorff distance of 2.80 (2.13–4.35), and average symmetrical 

surface distance of 0.176 (0.119–0.290). Excellent agreement was found for flow, peak velocity, 

and dimensions with low bias and limits of agreement less than 10% difference versus manual 

analysis. For aortic volume, limits of agreement were moderate within 16.3%. Interobserver 

variability (median Dice score: 0.950; Hausdorff distance: 2.45; and average symmetrical surface 

distance: 0.145) and convolutional neural network–based analysis (median Dice score: 0.953–
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0.959; Hausdorff distance: 2.24–2.91; and average symmetrical surface distance: 0.145–1.98 to 

observers) demonstrated similar reproducibility.

Conclusions: Deep learning enabled fast and automated 3D aortic segmentation from 4D-flow 

MRI, demonstrating its potential for efficient clinical workflows. Future studies should investigate 

its utility for other vasculature and multivendor applications.
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1 | INTRODUCTION

Quantification of aortic flow is important for diagnosis and patient management in aortic 

diseases, including aortic valve abnormalities (eg, bicuspid aortic valve, aortic valve 

stenosis, regurgitation), aneurysm, or coarctation.1–3 Several studies have shown the 

potential of 4D-flow MRI for the comprehensive characterization of hemodynamic changes 

in different aortic diseases.4–6 However, evaluation of volumetric aortic flow dynamics from 

4D-flow MRI requires manual and cumbersome data analysis, including 3D segmentation of 

the thoracic aorta, which limits clinical translation and interobserver variability.

Previous attempts to automate 3D aorta segmentations have focused on exploiting 

anatomical landmarks or shape descriptors of the aorta, such as using atlas registration,7 

deformable surface, and active surface techniques,8,9 or nonrigid registration.10 However, 

these techniques attempted to derive generalizable landmark features from small and 

homogenous patient cohorts. Translation of such features to larger cohorts with 

heterogeneous patient populations is therefore challenging. This is, in part, due to the high 

variability in aortic shape, size, and geometry among different subjects (eg, pediatric vs 

adult) and disease progression (eg, aortic dilatation, shape changes).

Recent developments in deep learning and convolutional neural networks (CNNs) have 

demonstrated excellent results in the segmentation of MRI for the left ventricle, cartilage 

and musculoskeletal tissue, knee joint tissue, prostate, and various other anatomical 

structures.11–14 In this work, we sought to develop and evaluate a deep learning–based 

method that enables fully automated 3D aortic segmentation from 4D-flow MRI for fast and 

reproducible evaluation of aortic dimensions and flow. Our goal was to develop a dedicated 

aorta 3D segmentation CNN by leveraging a large data set of over 1000 in vivo aortic 4D-

flow MRI scans with established manually generated ground-truth labels, spanning a wide 

range of ages (pediatric to adult) as well as spanning a number of common aortic diseases, 

sizes, and shapes. We hypothesize that deep learning–based 4D flow analysis will allow for a 

faster workflow with similar accuracy compared with manual analysis.

2 | METHODS

2.1 | Study cohort

A total of 1193 subjects across a wide age range (2–91 years, median: 44 years), who 

underwent aortic 4D-flow MRI from 2011 to 2018 across two hospitals, were retrospectively 
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included in this study. A total of 1064 patients underwent standard-of-care cardiothoracic 

MRI (278 scans from Lurie Childrenʼs Hospital, 786 from Northwestern Memorial 

Hospital). Additionally, 129 healthy adult controls underwent research cardiothoracic MRI 

exams. This Health Insurance Portability and Accountability Act–compliant study was 

approved by the institutional review boards at Lurie Childrenʼs Hospital and Northwestern 

Memorial Hospital. Patients were retrospectively enrolled with waiver of consent. Controls 

provided written informed consent as per the institutional review board requirement.

2.2 | MRI

All subjects underwent 4D-flow MRI with full volumetric coverage of the thoracic aorta 

(sagittal-oblique 3D volume) using either 1.5T (N = 1053; Aera, Avanto, or Espree; Siemens 

Healthineers, Erlangen, Germany) or 3T MRI systems (N = 140; Skyra; Siemens 

Healthineers). The 4D-flow MRI pulse sequence parameters were as follows: spatial 

resolution = 1.2–3.1 × 1.2–3.1 × 1.2–5.0 mm3, temporal resolution = 32.8–44.8 ms, velocity 

sensitivity (venc) = 80–500 cm/s, FOV = 124–406 × 180–500 × 38–176 mm3, TE = 2.1–3.0 

ms, TR = 4.1–5.7 ms, and flip angle = 7°−25°. Data for all subjects were acquired during 

free-breathing with respiratory navigator gating and either prospective (N = 1172) or 

retrospective (N = 21) electrocardiographic gating. For N = 1064 subjects, a contrast agent 

(either Gadavist, Magavist, Multihance, dotarem, or Ablavar [Bayer Healthcare, Berlin, 

Germany] or Feraheme [Amag Pharmaceuticals, Waltham, MA]) was administered before 

the 4D-flow scan acquisition as standard-of-care protocol.

2.3 | Data Analysis

2.3.1 | Standard 4D-flow MRI analysis workflow—All subjects were analyzed using 

a clinically standard 4D-flow preprocessing workflow programmed in MATLAB 
(MathWorks, Natick, MA) (Figure 1). The 4D-flow MRI data were corrected for eddy 

currents, noise, and velocity aliasing as described previously.15–18 Preprocessed data were 

used to calculate a 3D phase-contrast MR angiogram (PCMRA)19 and served as the basis for 

manual 3D segmentation of the thoracic aorta using commercial software (Mimics; 

Materialise, Leuven, Belgium). The PCMRA was generated by taking the mean sum squared 

of the time-averaged velocity magnitude data of the 4D-flow scan as follows:

PCMRA = ∑
t = 1

T
Mt

2 V x, t
2 + V y, t

2 + V z, t
2 /T (1)

where Vx, Vy, and Vz are the x-velocity, y-velocity, and z-velocity components of the 4D-

flow data; M is the magnitude data; and T is the total number of cardiac time frames of the 

data set.

The manual 3D segmentations were performed over a period of 6 years (2012–2018) by over 

20 operators. Each manual 3D segmentation was reviewed by two reviewers with 2 and 3 

years of experience. To ensure an accurate ground-truth segmentation of the thoracic aorta, 

only those data sets that both reviewers approved were included in the final cohort. After 

review, the manual PCMRA-based 3D segmentation served as ground truth for training, 

validation, and testing of the CNN.
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2.3.2 | Convolutional neural network for automated aorta 3D segmentation—
The CNN used was a 3D U-Net network20 with DenseNet-based dense blocks21 replacing 

the original convolution layers. The preprocessed 4D flow–derived 3D PCMRA was 

automatically center-cropped to a fixed dimension of 128 × 96 × number of slices and used 

as the input to the CNN. The dense blocks (Figure 2B) featured a constant convolutional 

channel size of 12, reducing the overall number of parameters and mitigating overfitting. 

Additionally, the dense blocks concatenated all prior feature maps for use as inputs for 

subsequent layers, ensuring efficient feature reuse. As shown in Figure 2A, the encoder 

section used down-sampling layers (max pooling), whereas the decoder section used up-

sampling layers (transposed convolution). The final layer consisted of a 1 × 1 × 1 

convolution and softmax function to generate a probability of each voxel in the input for the 

binary classes (background or foreground). The final segmentation was generated by 

selecting the class with the highest probability per voxel. A composite loss function 

(softmax-cross entropy and Dice loss) was used during training.

The network was coded in Python 3.6.8 (Python Software Foundation, Beaverton, OR) using 

Tensorflow 1.12.0 (Google, Mountain View, CA). All training and testing were performed 

on an Intel i7–8700k processor with a Nvidia GTX 1080-Ti GPU. Additional details of the 

CNN architecture, hyperparameters, and implementation are provided in the Supporting 

Information.

2.3.3 | Convolutional neural network performance metrics—To compare manual 

versus CNN 3D segmentations, the Dice score (DS), Hausdorff distance (HD), and average 

symmetrical surface distance (ASSD) were calculated as follows22:

DS X, Y = 2 * X ∩ Y
X + Y (2)

HD X, Y = max maxy ∈ Y minx ∈ X d x, y , maxx ∈ X minx ∈ X d x, y (3)

ASSD X, Y = 1
X + Y ∑

x = 1

X
miny ∈ Y d x, y + ∑

y = 1

Y
minx ∈ X d x, y (4)

where X and Y are binary segmentations and d is the Euclidian distance.

To determine the most common discrepancies in the automated 3D segmentations, all CNN 

segmentations with DS < 0.90 were manually assessed for notable differences compared 

with their manual segmentations.

2.3.4 | Flow, volume, and diameter calculation—For flow quantification, three 2D-

analysis planes were manually placed in the ascending aorta (AAo, proximal to the 

brachiocephalic artery), the aortic arch (distal to the brachiocephalic artery but proximal to 

the left subclavian artery), and the descending aorta (DAo, distal to the left subclavian 

artery). The planes were constrained to be perpendicular to an automatically generated aortic 

centerline. The 3D aorta segmentation was used to define the lumen boundaries. Maximum 
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velocity (95th percentile of velocity at peak systole) and flow-time curves (used to determine 

peak, net flow, and net regurgitation) were calculated for each plane. In addition, the 

maximum lumen diameter was extracted by fitting an ellipse with the same normalized 

second-area moment as the cross section and taking the major axis for each of the three 

planes.23 Finally, the volume of the thoracic aorta 3D segmentation was determined.

2.3.5 | Interobserver variability—Interobserver comparisons of standard manual 

analysis workflow were performed by two observers with 2 years of experience (HB and 

MS) on 40 randomly selected data sets from the testing cohort (18 bicuspid aortic valve 

[BAV], 12 tricuspid aortic valve [TAV], 10 controls). Each observer independently 

performed a manual 3D segmentation of the aorta and was blinded to the results from the 

other. Values of DS, ASSD, and HD were calculated between the two observers’ 

segmentations, as well as between each observer versus the CNN segmentation.

2.3.6 | Statistical analysis—Segmentation performance metrics (DS, HD, and ASSD) 

were assessed for normality using the Shapiro-Wilk test, with normally distributed values 

reported as mean and SD or nonnormally distributed values reported as median (interquartile 

range). Flow metrics, lumen diameters, and aorta volume were compared with values from 

manually generated segmentations using Bland-Altman analysis. Bland-Altman limits of 

agreement (LOA) percent difference was defined as the LOA divided by the mean of the 

reference manual segmentation. Linear regression was used to assess the impact of 

demographic and scan parameters (age, venc, heart rate, body mass index, spatial resolution) 

on CNN performance (DS). Comparisons were performed to assess the CNN performance 

on different MRI field strength (1.5 T vs 3 T) as well as for sex and the presence of 

gadolinium contrast agent. An unpaired t-test or Mann-Whitney U-test was used (depending 

on normality) to perform the comparisons. A P-value < .05 was considered statistically 

significant.

3 | RESULTS

3.1 | Study cohort

After manual review of the 4D-flow MRI segmentations to generate a ground-truth data set, 

175 data sets were excluded due to insufficient aorta 3D segmentation quality (N = 57 

included regions outside the aorta, N = 56 included nonaorta vasculature [pulmonary 

arteries/veins, vena cava], N = 30 with partially missing portions of the AAo or DAo, N = 30 

with inadequate FOV, and N = 2 with missing data). The remaining 1018 data sets were 

included in the study. As summarized in Table 1, the study cohorts consisted of 528 BAV 

patients (384 males, median age = 42 years [range 2–80 years], 507 with contrast), 376 TAV 

patients with aortic dilation (241 males, median age = 45 years [range 2–91 years], 345 with 

contrast), and 114 controls (59 male, median age: 48 years, range = (19–81) years, 38 with 

contrast). A total of 212 pediatric patients were included in the cohort (median age = 14.3 

years [range 2–18 years]), to train and test the CNN on more complex aortic geometry that 

may not be found in adult patients. A wide variety of diseases were represented across the 

pediatric cohort, including coarctation (N = 46), BAV with coarctation (N = 32), Marfan 

syndrome (N = 27), and Turner syndrome (N = 18).
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3.2 | Convolutional neural network for automated aorta 3D segmentation: training, 
validation, and testing

As illustrated in Figure 3, the 1018 4D-flow MRI scans were randomly divided into 49% 

(499 of 1018) for training (260 BAV, 192 TAV, 47 controls; age range = 3–91 years, 110 

pediatric patients), 10% (101 of 1018) for validation (53 BAV, 30 TAV, 18 controls; age 

range = 2–81 years, 19 pediatric patients), and 41% (418 of 1018) for testing (215 BAV, 154 

TAV, 49 controls; age range = 4–91 years, 83 pediatric patients). The validation data set was 

used to adjust the network hyperparameters (eg, learning rate). The total training time was 

22 hours. The time needed to perform a CNN segmentation for a single 4D-flow data set was 

0.438 ± 0.355 seconds compared with 630 ± 254 seconds for manual segmentation.

3.3 | Convolutional neural network performance

As summarized in Table 2, the aorta segmentation CNN demonstrated the following 

performance for the testing cohort: DS: 0.951 (0.930–0.966), HD: 2.80 (2.13–4.35), and 

ASSD: 0.176 (0.119–0.290). For individual cohorts, the CNN showed mildly lower 

agreement between automated and manual segmentation for controls (DS: 0.938 [0.916–

0.958], HD: 2.50 [2.24–5.17], and ASSD: 0.186 [0.132–0.420]) and best performance for 

TAV patients (DS: 0.958 [0.944–0.971], HD: 2.40 [2.13–3.16], and ASSD: 0.143 [0.098–

0.209]). Figure 4 provides three examples of the manual (red) and automated (blue) 

segmentations for subjects with an excellent DS (0.958), an intermediate DS (0.898), and the 

lowest DS (0.766) from the entire testing data set.

In the testing cohort, 34 data sets had DS below 0.90. Figure 5 summarizes the most 

frequent discrepancies and errors found between the manual and CNN segmentations in this 

subgroup. The most common disagreements were aortic root segmentation differences (N = 

26; Figure 5A), with the CNN more likely to include the aortic root and outflow tract. 

Branch segmentation differences were another common discrepancy (N = 10; Figure 5B) 

with differences in the superior extents of aortic branches. Additionally, there were 

differences in aortic size where the manual (N = 10; Figure 5C) or the automated 

segmentation (N = 9; Figure 5D) was larger. Finally, several data sets were found to have 

discrepancies between the CNN and manual segmentations in distinguishing the AAo from 

the pulmonary arteries (N = 6; Figure 5E) or in the distal DAo (N = 5; Figure 5F).

3.4 | Effects of demographic and scan parameters on CNN performance

The aorta segmentation CNN performance was stable with age (<0.001 decrease in DS per 

year, P = .05), venc (<0.001 decrease in DS per cm/s increase, P = .06), heart rate (<0.001 

change in DS per beat per minute, P = .48), and body mass index (<0.001 change in DS per 

1-kg/m2 increase, P = .38). In addition, the CNN performance saw no significant differences 

in field strength (median 1.5 T: DS = 0.951 [0.933–0.967]; median 3 T: DS = 0.945 [0.916–

0.961], P = .19) or sex (median males: DS = 0.950 [0.933–0.966], median females: DS = 

0.952 [0.925–0.967], P = .67). The CNN performance was sensitive to voxel size (0.0012 

decrease in DS per 1-mm3 increase, P < .001) and the administration of gadolinium contrast 

(contrast: N = 890, median DS = 0.954 [0.935–0.968]; no contrast: N = 128, median DS = 

0.938 [0.921–0.954], P < .001).
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3.5 | Flow, volume, and diameter comparisons

Aortic diameter comparisons across all regions are summarized in Table 3, with Bland-

Altman analysis for the testing cohort showing bias: −0.2 to <0.001 mm, LOA: ±1.9 to ±2.4 

mm, LOA percent difference: 6.6%−9.4%. Aortic diameter Bland-Altman plot is available in 

Supporting Information Figure S1. Controls showed the largest differences between manual 

and CNN segmentations, with LOA greater than 10% in the arch (bias: 0.1 mm, LOA: ±3.0 

mm, LOA difference: 12.2%) and DAo (bias: 0.1 mm, LOA: ±2.5 mm, LOA difference: 

10.8%). For total aorta volume, Bland-Altman analysis (Supporting Information Figure S2) 

showed a bias of < 0.001 mL, LOA: ±33.6 mL, and LOA percent difference: 16.3%.

Regional flow and peak velocity comparisons between manual and CNN segmentations are 

summarized in Table 4. Four BAV subjects with severe AAo velocity aliasing were 

excluded, resulting in a total of 414 subjects for this analysis. For peak velocity, CNN 

segmentations for the entire testing cohort showed a low bias of <0.001 m/s and LOAs of 

0.01% difference across all regions (Supporting Information Figure S3). Similarly, net flow 

was found to have a low bias between −0.2 to 0.1 mL/cycle and strong LOAs with 6.4%

−9.2% difference at the AAo, arch, and DAo (Supporting Information Figure S4). For peak 

flow, the automated segmentation had a bias between −0.9 and −0.2 mL/s and LOAs of 6.7%

−9.0% difference across all planes (Supporting Information Figure S5). The largest disparity 

was found for arch peak flow in controls (bias: 0.3 mL/s, LOA: ±31.9 mL/s, difference: 

13.7%). For net regurgitation, there was a low bias and LOAs between 14.3% and 15.8% 

difference across all planes for the testing cohort (Supporting Information Figure S6). Figure 

6 provides three examples of the diameter measurements and flow-time curves at the AAo, 

arch, and DAo for the 3 subjects seen in Figure 4.

3.6 | Interobserver comparison

The CNN performed as well as our expert observers. Interobserver comparisons (between 

observers 1 and 2) showed a DS of 0.950 (0.931–0.960), HD of 2.45 (2.13–3.00), and ASSD 

of 0.173 (0.118–0.242). Between observer 1 and the CNN, the median DS was 0.958 

(0.935–0.966), HD was 2.24 (2.13–2.52), and ASSD was 0.145 (0.110–0.211). Similarly, 

between observer 2 and the CNN, the median DS was 0.953 (0.927–0.967), HD was 2.91 

(2.26–4.05), and ASSD of 0.198 (0.114–0.299). Bland-Altman analysis of the flow and 

diameter comparisons between the two observers and each observer to the CNN are 

summarized in Supporting Information Table S1. For diameter measurements, peak velocity, 

net flow, and peak flow, there was a low bias and LOA < 10% difference for the 

interobserver comparisons as well as for the comparisons of both observers to the CNN. For 

net regurgitation, all comparisons showed similar LOAs of between 10% and 20% 

difference.

4 | DISCUSSION

Using fewer than 1000 4D-flow data sets, we developed a CNN for fast and automated 3D 

segmentation of the thoracic aorta from 4D-flow MRI data. The main findings of our study 

were (1) CNN-based aorta 3D segmentation was feasible in <1 second versus 630 seconds 

for manual 3D segmentation; (2) the CNN showed excellent performance compared with 
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standard manual analysis (median DS = 0.951 across 418 subjects); (3) the CNN was stable 

across a wide range of ages (2–91), body mass index, different genders, aortic valve 

phenotypes (bicuspid and tricuspid valves), and MRI field strength; (4) CNN-based 3D 

segmentation provided reliable quantification of aortic flow and dimensions (Bland Altman 

analysis: low bias and limits of agreements generally lower than 10% difference of the mean 

ground-truth values); and (5) the CNN achieved DSs (median observers 1 and 2: 0.953 and 

0.958) at the level of our interobserver comparison (median: 0.950).

Previous methods of automated or semi-automated aortic segmentation of 4D flow were 

either time-consuming or required manual interactions. Bustamante et al used an atlas-based 

registration to automatically generate time-resolved segmentations, requiring an initial 

execution time of 3600 seconds.24 An alternative method by van Pelt et al used an active 

surface segmentation algorithm, which while rapid (execution time: 5 seconds), required an 

approximate initial isosurface based on manual interactions for efficient and accurate 

performance.9 Our CNN provided fully automated 3D aortic segmentations, requiring no 

manual inputs, in less than 1 second.

Performance-wise, our CNN was on par with other automated segmentations of the aorta 

from 2D phase-contrast MRI. Herment et al used a 2D+time deformable surface technique 

to achieve DSs of 0.945 ± 0.014 in a study using healthy controls and patients with dilated 

aorta (N = 52).25 A deep learning–based approach was used by Bratt et al for fully 

automated aortic 2D segmentation and flow quantification, achieving an average DS of 0.94 

and high flow correlations to manual and alternative automated segmentation methods (N = 

270).26 We achieved a similar level of performance as 2D phase-contrast MRI segmentations 

for the 3D segmentation of 4D flow. Compared with 2D, 3D segmentations required the 

incorporation of more complex spatial features to automate and accurately segment. 

Additionally, flow quantifications were limited with 2D segmentations, inhibiting the ability 

to examine complex hemodynamics throughout the entire thoracic aorta. With 3D 

segmentations, we were able to take full advantage of the 4D-flow MRI information.

By providing rapid and accurate aortic flow and diameter metrics, our CNN was able to 

improve the repeatability and clinical feasibility of 4D-flow MRI. To obtain accurate 

hemodynamic information, 4D-flow MRI required extensive and time-consuming 

preprocessing, with manual segmentation being the most cumbersome. Rapid, automatic, 

and repeatable segmentation of 4D-flow MRI addressed a key limitation in bringing 4D flow 

into widespread clinical use.

Our interobserver comparison indicated that our CNN was well within human-level 

performance and comparable to prior work manually segmenting 4D-flow MRI. In a study 

of 14 patients, van Ooij et al achieved an interobserver DS of 0.94 ± 0.2.27 In addition, our 

CNN was shown to be robust to patient characteristics and valve morphology, indicating its 

capabilities for a clinical setting. Further studies are needed to demonstrate our CNN’s 

performance on patient-specific aortic pathologies and its application to 4D-flow data of 

other vessels.
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Our study had several limitations. To avoid computational memory constraints from 

processing large 3D data sets, our CNN used cropped 4D-flow data sets as an input, 

providing segmentations of a certain size. In the future, we will explore using the developed 

CNN several times in a tiled fashion to cover the whole data set. In addition, our CNN 

currently only performs accurately using mean sum-of-squares PCMRAs: Attempting to use 

an alternative PCMRA calculation as an input would require the CNN to be retrained either 

from scratch or through transfer learning. Another limitation is that our flow analysis was 

performed using manual plane placement, which may result in observer variability. An 

automated, deep learning network to designate and separate different regions of the thoracic 

aorta is currently being developed to provide faster or more robust measures. Furthermore, 

our data were preprocessed by more than 20 operators with a wide variety of experience and 

skill, generating a large data set of varying quality. Although our reviewers assessed the 

quality of the segmentation to ensure an accurate ground truth, the velocity 4D-flow data 

were not subjected to review, which may result in unusual and inaccurate flow 

measurements. All data sets underwent a standard 4D workflow28; however, our workflow 

requires manual user inputs, which when performed poorly can result in a distortion of the 

flow data.29 For the flow quantitative measures, the same 4D-flow velocity data were used 

for both the manual and automated flow assessment; as such, any inaccuracies would be 

present in both data sets. Although our CNN was able to be integrated into a standard 4D-

flow analysis pipeline by incorporating manually preprocessed data, we are currently 

developing a fully automated preprocessing pipeline for 4D-flow MRI to address this 

limitation. Additionally, our data set was acquired using MRI systems from a single vendor 

and a specific 4D-flow MRI protocol. This may result in a selection bias. Further work 

would be required using a multicenter, multivendor cohort to explore the generalizability of 

our CNN’s performance. Our CNN had a slight decline in performance based on a decline in 

image quality (resolution) or lower SNR (contrast). Tellingly, our CNN showed the worst 

performance on controls, the smallest group in our cohort, and the group with the lowest 

proportion of contrast-enhanced scans. The incorporation of additional noncontrast or down-

sampled data sets during training may improve the CNN performance on noncontrast and/or 

lower-resolution scans. Additionally, our results showed net regurgitation to have the highest 

variance between manual and CNN segmentations across all cohorts. Net regurgitation 

volume was generally small compared with net flow and were very sensitive to slight 

changes in the segmentation. These results were also reflected in our interobserver 

comparisons, which similarly showed net regurgitation to have the highest variance between 

the manual observers as well as the observers to the CNN—all showing similar levels of 

agreement. Another issue is that our automated segmentations were static and generated 

from time-averaged data. As such, our analysis did not take into account the motion of the 

aorta throughout the cardiac cycle. Generating a time-resolved segmentation is very time-

consuming, requiring the operator to perform 3D segmentation for each cardiac time frame 

in the 4D-flow data set (generally between 10 and 30 time frames), and is further 

complicated by reduced signal during diastole when velocities are lower. In the future, we 

hope to use the transfer learning approach from our current CNN model to perform 

automated time-resolved segmentation, allowing us to reduce the number of training data 

sets needed. Finally, although our cohort contained patients with various aortic pathologies 

(eg, coartation, BAV, Marfan syndrome), we were not able to perform a systematic study to 
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assess how well our CNN performs on that cohort. A future direction of this study is to 

assess the CNN performance on disease-specific cohorts.

5 | CONCLUSIONS

A CNN was developed for rapid, fully automated 3D segmentation of the thoracic aorta 

from 4D-flow MRI, yielding human-level performance and excellent agreement across flow 

and diameter measurements when compared with manual segmentations. Future studies 

should investigate its utility for other vasculature and multicenter, multivendor applications.
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FIGURE 1. 
Analysis workflow for 4D-flow MRI involving corrections for phase offsets, velocity noise, 

and velocity antialiasing. After preprocessing, a 3D phase-contrast MR angiogram 

(PCMRA) was generated and used to perform a manual 3D segmentation of the thoracic 

aorta, which served as labeled data and ground truth for convolutional neural network 

(CNN) training, validation, and testing. Analysis planes were manually placed perpendicular 

to the vessel centerline in the ascending aorta (AAo), arch, and descending aorta (DAo). 

Mag, magnitude; Vx, Vy, and Vz, velocity in the x, y, and z directions
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FIGURE 2. 
Convolutional neural network architecture and layer structures. All input images were 

cropped PCMRAs with dimensions of 128 × 96 × S (S = number of slices). A, The CNN 

consisted of a symmetrical encoder-decoder design from a traditional U-Net network with 

the addition of dense blocks in each layer. In the encoder sections, the number of layers of 

the dense block were increased to extract more intricate and complex feature maps, and a 

max-pooling layer was applied after every dense block. The max-pooling had a kernel size 

of 2 × 2 × 1 to down-sample feature maps across the encoder section except in the slice 

number direction, to allow for scans with differing numbers of slices. The decoder section 

followed the same layout with transposed convolution layers replacing the max-pooling 

layer to up-sample the input. B, Dense blocks consisted of a series formed by a batch 
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normalization, a linear rectified unit, a convolution layer, and a dropout layer (rate = 0.1). As 

in the original implementation of DenseNet, feature maps were concatenated after each layer 

and served as the input for all subsequent layers
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FIGURE 3. 
Study cohort breakdown showing the number of subjects and subgroups (bicuspid aortic 

valve [BAV], tricuspid aortic valve [TAV], and controls) for CNN training, validation, and 

testing
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FIGURE 4. 
Representative 3D segmentations of the thoracic aorta. In each panel, the manual 3D aorta 

segmentation is shown in red, and the CNN-based automated 3D aorta segmentation is 

shown in blue. The difference maps show aortic regions with differences between CNN-

based segmentation versus manual 3D aorta segmentation. The top panel shows a 

segmentation with excellent agreement between manual and automated segmentations, 

despite complex anatomy. The center panel shows a below-average segmentation with a 

Dice score (DS) of 0.89, and the bottom panel shows the subject who had the lowest DS (ie, 

the worst agreement between CNN-based vs manual aorta 3D segmentation)
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FIGURE 5. 
Failure modes in all N = 34 CNN-based automated aorta 3D segmentations with DS < 0.90 

with a representative example for each failure type. A, In N = 26 cases, manual and 

automatic segmentations differed at the aortic root. Most commonly (N = 20), the CNN 

segmented the left ventricular outflow tract while the manual observer cut the segmentation 

at the aortic valve. B, Branch segmentation differences. Here the CNN segmented the supra-

aortic branches more extensively, of which there are N = 10 cases. Examples of N = 9 cases 

(C) and N = 8 cases (D) show segmentations where the manual or CNN segmentations, 

respectively, were larger over the entirety of the segmentation. E, Example of N = 6 cases 

shows an example in which the segmentation of the distal DAo differs between manual and 

CNN-based segmentations. F, Example of N = 5 cases shows an example in which there 

were differences between manual and CNN-based segmentations in the region of the AAo, 

where the pulmonary artery crosses. One segmentation had a low DS due to a poor manual 

segmentation that was not caught during manual quality control (not shown). Note that each 

segmentation can have multiple problems (as seen in [E], where there are differences in both 

the DAo and branches), so the failures do not add to the number of segmentations with DS < 

0.90. Abbreviation: PA, pulmonary artery
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FIGURE 6. 
Representative planar flow analysis for the same subjects shown in Figure 4 (from top to 

bottom: excellent DS, below average DS, and lowest DS). Left panel: Aorta 3D 

segmentation difference map (CNN-based vs manual) and three manually placed 2D 

analysis planes used for quantification of flow and aortic dimensions. Central panel: Mask 

comparison on each 2D analysis plane and diameter measurement (blue, automated 

segmentation was larger; red, manual segmentation was larger; purple, shared pixels). Right 

panel: Flow waveforms for each of the three planes (solid lines, manual 3D aorta 

segmentation; dashed lines, CNN-based automated aorta 3D segmentation)
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