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A systems biology framework integrating  
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Abstract 

Background:  Genetic pressure in animal breeding is sparking the interest of breeders for selecting elite boars with 
higher sperm quality to optimize ejaculate doses and fertility rates. However, the molecular basis of sperm quality is 
not yet fully understood. Our aim was to identify candidate genes, pathways and DNA variants associated to sperm 
quality in swine by analysing 25 sperm-related phenotypes and integrating genome-wide association studies (GWAS) 
and RNA-seq under a systems biology framework.

Results:  By GWAS, we identified 12 quantitative trait loci (QTL) associated to the percentage of head and neck 
abnormalities, abnormal acrosomes and motile spermatozoa. Candidate genes included CHD2, KATNAL2, SLC14A2 and 
ABCA1. By RNA-seq, we identified a wide repertoire of mRNAs (e.g. PRM1, OAZ3, DNAJB8, TPPP2 and TNP1) and miRNAs 
(e.g. ssc-miR-30d, ssc-miR-34c, ssc-miR-30c-5p, ssc-miR-191, members of the let-7 family and ssc-miR-425-5p) with 
functions related to sperm biology. We detected 6128 significant correlations (P-value ≤ 0.05) between sperm traits 
and mRNA abundances. By expression (e)GWAS, we identified three trans-expression QTL involving the genes IQCJ, 
ACTR2 and HARS. Using the GWAS and RNA-seq data, we built a gene interaction network. We considered that the 
genes and interactions that were present in both the GWAS and RNA-seq networks had a higher probability of being 
actually involved in sperm quality and used them to build a robust gene interaction network. In addition, in the final 
network we included genes with RNA abundances correlated with more than four semen traits and miRNAs interact‑
ing with the genes on the network. The final network was enriched for genes involved in gamete generation and 
development, meiotic cell cycle, DNA repair or embryo implantation. Finally, we designed a panel of 73 SNPs based 
on the GWAS, eGWAS and final network data, that explains between 5% (for sperm cell concentration) and 36% (for 
percentage of neck abnormalities) of the phenotypic variance of the sperm traits.

Conclusions:  By applying a systems biology approach, we identified genes that potentially affect sperm quality and 
constructed a SNP panel that explains a substantial part of the phenotypic variance for semen quality in our study 
and that should be tested in other swine populations to evaluate its relevance for the pig breeding sector.
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Sperm carries the paternal genome and a wide reper-
toire of molecules including RNAs, which are essential 
for fertilization and the development of a new organism. 
Spermatogenesis, the process whereby germ cells pro-
liferate and develop into mature spermatozoa, is con-
trolled by multiple factors. Both DNA polymorphisms 
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and gene expression have been linked to sperm quality 
and/or fertility in several mammalian species including 
cattle [1] and swine [2] and review in [3]. High-quality 
sperm is decisive to optimize the propagation of the best 
genetic material in livestock and the sustainability of the 
pig breeding sector. For this reason, ejaculated sperm is 
subjected to strict quality filters in boar artificial insemi-
nation (AI) studs. AI farms regularly evaluate the quality 
of ejaculates by measuring traits such as concentration, 
morphology, viability and motility kinetics, as a way to 
predict their fertilizing ability [4]. Although the heritabil-
ity of these traits is low to moderate [5–8], the molecular 
processes and genetic mechanisms that control sperm 
quality are not yet fully understood and boar replacement 
due to insufficient sperm quality remains an economic 
hurdle for the sector [9].

Currently, there are few genetic and transcriptomic 
studies that have used high-throughput techniques to 
investigate the genetic basis of sperm quality in swine. 
To date, five genome-wide association studies (GWAS) 
have been performed. Diniz et  al. [5] identified a single 
quantitative trait locus (QTL) region associated to sperm 
motility in Large White pigs. Two years later, Zhao and 
collaborators [10] reported three multi-single nucleo-
tide polymorphism (SNP) QTL regions associated with 
epididymal weight, sperm concentration and total sperm 
per ejaculate, respectively and seven singleton QTL 
related to sperm motility, semen temperature, seminifer-
ous tubule diameter and number of ejaculates in a White 
Duroc × Erhualian F2 population. Marques et  al. [6] 
detected 16 and six QTL in Large White and Landrace 
pigs, respectively, associated with sperm motility, num-
ber of cells per ejaculate and morphological abnormali-
ties. More recently, several QTL have been identified in 
a Duroc population associated to number of sperm cells, 
sperm motility, sperm progressive motility, total mor-
phological abnormalities, coiled tail, bent tail, proximal 
droplets, distal droplets and distal midpiece reflex [11, 
12].

The presence of RNA molecules in the boar sperm is 
well documented [13, 14], but their relation to sperm 
quality is very little explored. Porcine sperm RNAs are 
highly fragmented and their gene abundances are mostly 
associated to prior transcriptional events linked to sper-
matogenesis, fertility and embryo development [13]. 
A complex suite of RNAs are present in sperm, includ-
ing coding (mRNA), long noncoding RNAs (e.g. circu-
lar RNA—circRNA-) and short noncoding RNAs (e.g. 
microRNA –miRNA- or Piwi interacting RNA—piRNA-) 
[13]. Several studies have reported a relation between 
RNA abundances and semen quality in mammals 
[15–17]. In swine, Curry et al. [18] performed quantita-
tive RT-PCR (RT-qPCR) that targeted 10 miRNAs and 

identified five and two miRNAs associated to sperm mor-
phology and motility, respectively. Moreover, our group 
has also identified a correlation between the abundance 
of some circRNAs [19] and piRNAs [20] with semen 
quality parameters in swine.

Based on these recent studies, it is now clear that the 
genetic complexity of sperm quality involves several 
molecular mechanisms and pathways that are highly 
interconnected. Complex traits are typically affected by 
a large number of genomic regions, many of which may 
explain only a small proportion of the phenotypic vari-
ance and do not reach significant levels in a GWAS or dif-
ferential expression analysis. Moreover, classical GWAS 
or differential expression analyses carried out on a single 
trait [21] cannot consider the pleiotropic effects of vari-
ants or the interactions between them. In recent years, 
different methods such as the associated weight matrix 
(AWM) [22] and partial correlation coefficient with 
information theory (PCIT) [23] have been developed to 
carry out analysis of gene networks from GWAS or tran-
scriptomics data and to identify co-associated genes for 
a set of correlated phenotypes [22, 24–26]. Furthermore, 
the integration of GWAS and RNA-seq data can be used 
to design knowledge-based technologies such as DNA 
marker panels including SNPs with a high functional 
potential for their application to animal breeding [27, 28]. 
SNPs that display a genetic association with a phenotype 
and show functional potential (e.g. coding or regulatory 
variants) are less likely to show spurious associations 
than non-functional SNPs.

Our aim was to identify candidate genes, pathways and 
DNA variants associated to sperm quality in pigs by inte-
grating GWAS and RNA-seq results under an unprec-
edented systems biology approach. Moreover, we sought 
to estimate the weight of the most relevant genes and 
DNA variants on the sperm phenotypes.

Methods
Sample collection and phenotype measurements
Three hundred fresh sperm ejaculates, each from a differ-
ent Pietrain boar from commercial farms, were collected 
by specialized professionals between September 2014 and 
January 2017. Sperm was obtained using the gloved-hand 
method [29], immediately diluted (1:2) in commercial 
extender and kept at 16°C for up to 2 h until phenotype 
assessment. Blood samples were collected from special-
ists during their routine sample collection and gDNA was 
extracted using a phenol–chloroform based method [30]. 
The ejaculates were purified to remove somatic cells as 
described previously [14] and purified spermatozoa were 
stored with Trizol® at − 80°C until further use.

Phenotypic records from fresh sperm were meas-
ured as previously described [14] and included: sperm 
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concentration (CON), percentage of viable cells (VIAB), 
percentage of morphologically abnormal acrosomes 
(ACRO), osmotic resistance test (ORT), percentage 
of morphologically abnormal sperm cells (of the head 
-HABN-, neck -NABN- and tail -TABN-) and of cells 
with cytoplasmatic droplets (proximal -PDROP- and dis-
tal -DDROP-). Sperm motility traits were also assessed 
using the computer-assisted semen analysis (CASA) sys-
tem (Integrated Sperm Analysis System V1.0; Proiser) 
and included the percentage of motile spermatozoa cells 
(MT) (with average path velocity -VAP- > 10 µm/s), aver-
age curvilinear velocity (VCL) (µm/s), average straight-
line velocity (VSL) (µm/s) and average VAP (µm/s). All 
phenotypes were assessed after 5 and 90 min of incuba-
tion of the samples at 37°C, except for sperm concen-
tration, ORT, sperm abnormalities and cytoplasmatic 
droplets, which were measured only after 5 min of incu-
bation at 37°C. To calculate the correlations between 
RNA abundance and phenotype, sperm traits were cor-
rected using the fixed effects of farm of origin (3 levels), 
season and year of collection (9 levels) and boar age (3 
levels) with the "lm" function of R [31] using a linear 
model. The 90  min/5  min incubation ratios were also 
calculated. In total, 25 phenotypic measures per sample 
were recorded. Phenotypic correlations between traits 
were assessed and graphically displayed with the R pack-
age “corrplot” [32].

The different analyses are described below, and the 
complete outline is summarized in Additional file 1: Fig-
ure S1.

Genome‑wide association study (GWAS)
Two hundred and eighty-eight boars were genotyped 
using the high-density (660 K markers) Axiom™ Porcine 
Genotyping Array (Thermo Fisher Scientific). The result-
ing genotype dataset was stringently filtered by exclud-
ing the samples with a genotype call rate lower than 
96%. SNP locations were converted from Sscrofa10.2 
to Sscrofa11.1 coordinates using plink v1.9 [33]. Then, 
we excluded SNPs that (i) had a minor allele frequency 
lower than 0.05, (ii) deviated from Hardy–Weinberg 
equilibrium (P-value ≤ 0.001), and (iii) for which there 
were more than 5% missing genotypes. These are stand-
ard parameters that are typically used in similar studies 
[34–36]. Single-SNP association analysis was carried out 
using the genome-wide complex trait analysis (GCTA) 
v.1.91.5 software [37] with the following model:

 where Yijkl is the phenotype modeled as a function of the 
population mean ( µ ), δ is the SNP allelic effect, estimated 

Yijklm =µ+ δSNPi + Farmj + SeasonYeark

+ Agel + um + eijklm,

as a regression coefficient on the corresponding (values 
− 1, 0, 1) of the SNP i ; correcting for the fixed effect of 
farm ( Farmj ), season and year (SeasonYeark) and boar 
age ( Agel ); um is the infinitesimal genetic effect of indi-
vidual m , with u ∼ N

(

0,Gσ 2
u

)

 , where G is the genomic 
relationship matrix (GRM) calculated using the filtered 
SNPs based on the methodology described by Yang et al. 
[37], and σ 2

u is the additive genetic variance; and eijklm  is 
the residual term.

The significance of SNP associations was corrected 
for multiple testing with the false discovery rate (FDR) 
approach [38] and only significant SNPs (FDR ≤ 0.05) 
were kept for further analysis. Significantly associated 
SNPs with consecutive distances shorter than 5 Mbp 
were considered to belong to the same GWAS interval 
[39]. A new interval was called if the consecutive SNPs 
were more than 5 Mbp apart. SNPs that mapped to the 
sex chromosomes or to unmapped scaffolds were not 
considered for further analysis. Genomic heritability 
was assessed with GCTA v.1.91.5 through a genomic 
restricted maximum likelihood (GREML) approach using 
the GRM based on the methodology from Yang et  al. 
[37]. Manhattan plots of the GWAS results displaying 
the genetic associations (P-value) between each SNP and 
phenotype were generated with the “qqman” R package 
[40].

RNA isolation, sequencing and gene annotation
RNA isolation from 40 sperm samples was performed as 
previously described [14] and included 35 samples from 
boars analyzed in the GWAS. The other five boars did 
not pass the genotyping quality control and thus were 
not included in the GWAS. Extracted RNA was subjected 
to quality control assays including quantification with 
the Qubit™ RNA HS Assay kit (Invitrogen), assessment 
of RNA integrity with the 2100 Bioanalyzer using the 
Agilent RNA 6000 Pico kit (Agilent Technologies), and 
evaluation by RT-qPCR of the sperm-specific PRM1, the 
somatic PTPRC mRNA and genomic DNA to confirm 
that the samples were free from somatic cell RNA and 
gDNA contaminations.

The ribosomal RNA (rRNA) from the 40 RNA sam-
ples was depleted with the Ribosomal RNA depletion 
Kit (Illumina) and libraries were prepared with the 
SMARTer Low Input Library Prep kit v2 (Clontech) 
and sequenced to generate 75  bp pair-end reads on 
an Illumina’s HiSeq2000/2500. Undepleted total RNA 
was also subjected to short noncoding RNA (sncRNA) 
library preparation (34 of the previous 40 samples) 
using the NEBNext library prep kit (New England Bio-
labs) and sequenced at 50 bp single-end on a Hiseq2000 
(Illumina).
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Total RNA-seq reads were evaluated for quality con-
trol with the FastQC software (https​://www.bioin​forma​
tics.babra​ham.ac.uk/proje​cts/fastq​c/). Low-quality reads 
(phred –Q < 20 and read length < 25  bp) and sequenc-
ing adaptors were trimmed with Trimmomatic v.0.36 
[41]. Filtered reads were mapped to the porcine genome 
(Sscrofa 11.1) using HISAT2 v.2.1.0 [42]. Duplicate reads 
were removed with Picard Tools v.2.18.29 (http://picar​
d.sourc​eforg​e.net) Markduplicates. RNA levels of the 
genes annotated in the porcine genome (Ensembl v.91) 
were then quantified with StringTie v.1.3.4 [43]. Only the 
genes with average RNA abundances ≥ 10 fragments per 
kb of exon per million reads mapped (FPKM) were kept 
for further analysis with the aim to discard low abundant 
genes and spuriously mapped reads.

The effect of external variables on gene expression was 
assessed using the following mixed effect model as in 
Reverter et al. [44]:

 where Yijklmn represents the log2-transformed FPKM 
value from library i (40 levels), gene j (4120 levels), farm 
k (3 levels), year-season l (6 levels), age m (3 levels) and 
assay run n (4 levels). Accordingly, Yijklmn was mod-
eled as a function of the mean (µ ), fixed effect of library 
( Li ) and the random effects of gene ( Gj ), gene by farm 
( GFjk ), gene by year-season ( GYSjl ), gene by age ( GAjm ) 
and gene by assay run ( GRjn ). Random residuals in eijklmn 
were assumed to be independent and identically distrib-
uted. Using standard stochastic assumptions, the effects 
of Gj , GFjk , GYSjl , GAjm and GRjn were assumed to fol-
low a normal distribution with zero mean and between-
gene, between-gene within-farm, between-gene within 
year-season, between-gene within age, between-gene 
within assay and within gene components of variance, 
respectively. Restricted maximum likelihood estimates 
and solutions to model effects were obtained using VCE6 
[45].

For the sncRNA-seq data, trimming of adaptors and 
low-quality bases (phred –Q < 20 and read length < 12 bp) 
was performed with Cutadapt v1.0 [46]. Reads were 
mapped to the Sus scrofa genome (Sscrofa11.1) with the 
sRNAtoolbox v.6.17 [47] using default settings and with 
the porcine miRBase [48] release 21 database. Multi-
adjusted read counts were normalized by library size as 
counts per million (CPM). Only miRNAs with an average 
abundance higher than 1 CPM in all the samples were 
considered. miRNA abundance was stabilized with the 
log2 transformation.

The relationship between the 25 phenotypes and each 
of the log2-stabilized mRNA’s and miRNA’s abundances 

Yijklmn =µ+ Li + Gj + GFjk

+ GYSjl + GAjm + GRjn + eijklmn,

were calculated using the Pearson correlation coefficient. 
Only correlations with a P-value ≤ 0.05 were kept.

SNP calling from RNA‑seq data and linkage disequilibrium 
with GWAS lead SNPs
Mapped RNA-seq reads of the 35 samples with RNA-seq 
and genotype data were subjected to SNP calling. Vari-
ant calling was performed with SAMtools mpileup and 
BCFtools v.1.9 [49]. Only SNP variants for which the 
alternative allele was present in at least 10 samples with 
a minimum Phred quality of 25 and a minimum read 
depth of 10 were kept. The effect of the SNP on protein 
sequence was predicted with SnpEff v.4.3T [50] and only 
low, moderate and high impact variants were kept. The 
new SNP genotypes were merged to the Axiom geno-
types and the linkage disequilibrium (LD) R2 between 
GWAS lead SNPs and RNA-seq SNPs was assessed with 
PLINK v1.9 [33] using the default parameters, with the 
exception of “-ld-window 100”, “-ld-window-kb 0” and “–
ld-window-r2 0” to assess all the pair-wise LD values.

Expression GWAS
Expression GWAS (eGWAS) included the 35 samples 
with RNA-seq and genotype data. The RNA abundances 
of the detected genes were taken as quantitative traits 
and tested for association with the genotypes that passed 
quality control using a linear model. Single-SNP associa-
tion analysis was performed with the GCTA v.1.91.5 soft-
ware [37], with the following model:

where Yi is the log2-transformed gene abundance mod-
eled as a function of the population mean ( µ ), fixed effect 
of each SNP ( SNPi ), and a residual effect ( ei).

eGWAS significant associations (FDR ≤ 0.05) were con-
sidered only if: (i) the eGWAS associated SNP was also a 
significant hit (FDR ≤ 0.05) in the GWAS for sperm qual-
ity phenotypes and (ii) the gene’s RNA abundance corre-
lated to the same phenotype as the corresponding GWAS 
SNP hit.

SNP co‑association and gene co‑abundance analyses
We also carried out a SNP co-association analysis by 
building an AWM from the GWAS results [22, 51]. The 
AWM was constructed from two matrices that contained 
row-wise SNPs and column-wise phenotypes. The first 
matrix included the P-values of the association between 
each SNP and the phenotype, and the second matrix 
corresponded to the SNP z-score standardized additive 
effect. As live cells with intact plasma membrane are 
essential for fertilization [52, 53], the percentage of via-
ble spermatozoa at 5 min (VIAB_5) was selected as key 

Yi = µ+ SNPi + ei,

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://picard.sourceforge.net
http://picard.sourceforge.net
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phenotype and the associated SNPs (P-value ≤ 0.01) were 
included in the AWM. In the next step, the dependency 
between phenotypes was estimated based on the aver-
age number of non-key phenotypes associated (Ap) with 
these SNPs (P-value ≤ 0.01) (Ap ≥ 2). Then, SNPs that 
were located less than 2500 bp or more than 1 Mbp from 
the nearest annotated gene (Ensembl v.91) were kept. The 
most significant SNP from each annotated gene was kept 
to build the AWM. The standardized SNP effects across 
phenotypes were computed and represented using the 
hierarchical cluster analysis based on Euclidean distance 
with the R package “dendextend” [54]. Then, significant 
gene–gene interactions were assessed to build the SNP 
network with the PCIT algorithm [23]. PCIT applies 
first-order partial correlation coefficients together with 
an information theory approach to identify meaning-
ful gene–gene associations [23]. Only significant gene 
co-associations (P-value ≤ 0.05) were kept in the SNP 
network.

For the RNA co-abundance analysis, significant gene–
gene interactions that were used to build the RNA net-
work were also predicted with PCIT using the stabilized 
RNA abundances. Interactions between genes and miR-
NAs were also assessed with PCIT [23], and only signifi-
cant negative correlations (P-value ≤ 0.05) were kept.

Integration of SNPs and RNA network data and network 
visualization
The genes and interactions that were present in both the 
GWAS and RNA-seq networks were considered to have a 
higher probability of being involved in sperm quality and 
were used to build a robust gene interaction network. 
The resulting network was named “shared network”. In 
addition, the genes that were not present in the shared 
network but that presented an abundance correlation 
with more than three phenotypes and their co-associated 
genes were merged with the shared network to create the 
so-called final network. This final network also included 
the interactions between miRNA and mRNA genes. 
Network visualization was performed with Cytoscape 
v3.6 [55] and included information on: (i) the number of 
phenotypes associated to a gene or miRNA, (ii) the phe-
notype with the highest correlation for each gene, (iii) 
whether the gene was annotated as a transcription factor 
(TF) or TF co-factor, and (iv) whether the gene was pre-
sent in the shared network or was only found in the final 
network. TF and TF co-factors were extracted from the 
AnimalTFDB3.0 database [56].

Development of an RNA model and SNP panel 
for the phenotypic prediction of sperm quality
The unadjusted RNA abundance of a subset of the genes 
in the network was used to identify which combination of 

genes was a better predictor of sperm quality phenotypes. 
For this, first we extracted 20 genes from the network. 
These genes were (i) correlated with at least four pheno-
types, (ii) did not present interactions (edges) between 
them, (iii) all samples presented RNA abundance lev-
els higher than 0 FPKM, and (iv) were potentially rel-
evant according to the existing literature. The RSQUARE 
statement of the REG procedure implemented in the 
SAS software [57] was used as an exploratory model to 
evaluate all possible subsets of linear regressions using 
unadjusted gene abundances and sperm phenotypes and 
extract the R2 magnitude from each prediction. Then, we 
selected the subset of 10 genes that were most commonly 
present in all the phenotype models. This subset of com-
mon genes was then used for the STEPWISE statement 
of the REG procedure implemented in the SAS software 
[57], which performs a linear regression analysis for each 
of the phenotypes to develop a model to predict the phe-
notype based on gene RNA levels. The model is:

where Yij represents the predicted phenotype value from 
i-th phenotypes (25 levels), j-th genes (10 levels). Yij was 
modeled as a function of the intercept value for the phe-
notype ( intercepti) , the gene abundance by parameter 
estimate ( GPEij) and a residual term ( eij) . The accuracy 
was ascertained from the model’s goodness-of-fit and 
based on the proportion of variance explained by the 
model (R2). We also developed a genome-wide SNP panel 
to identify the SNPs that could best predict the pheno-
typic variance of sperm-related traits. The panel included 
the lead SNPs from the GWAS and from the eGWAS 
hits, and the GWAS most significant SNP for each of the 
genes included in the network that also: (i) correlated 
with at least four phenotypes and (ii) were identified in 
the shared network. The proportion of the phenotypic 
variance explained by these SNPs was estimated with the 
GREML analysis implemented in the GCTA software 
using the GRM calculated with the 73 autosomal SNPs 
based on the methodology from Yang et al. [37].

Results
Phenotypic parameters
Three hundred ejaculates were phenotyped for 25 sperm 
quality traits (Table 1). Phenotype correlations (see Addi-
tional file 2: Figure S2) were consistent with their physi-
ological similarities. In general, SNP-based heritabilities 
(Table  1) were low to moderate with motility-related 
traits displaying higher values. MT_90 was the most her-
itable trait (h2: 0.39), whereas motility ratios, NABN and 
VIAB_5 showed heritability values close to 0 (Table  1). 
The sperm phenotypes correlated with farm, boar age 
and season per year (see Additional file 3: Table S1) and 

Yij = intercepti + GPEij + eij ,
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were thus included as fixed effects in the GWAS model 
and phenotypes were also corrected for these effects to 
carry out the correlation analysis.

GWAS analysis
After quality control, 466,592 SNPs and 276 samples 
remained for the GWAS. In total, 324 SNPs across the 
autosomal chromosomes and unplaced scaffolds dis-
played genetic associations (FDR ≤ 0.05) with one or 
more sperm quality phenotype (Table 1) and (see Addi-
tional file  4: Table  S2). Among these 324 SNPs, 255 
mapped to unplaced scaffolds and were not considered 
for further data analysis (Additional file  4: Table  S2). 
Nineteen chromosomal regions tagged by 69 significant 
SNPs were identified on Sus scrofa (SSC) chromosomes 
1, 3, 4, 6, 7, 9, 13 and 16. The number of SNPs that 

displayed significant associations (FDR ≤ 0.05) for each 
trait is summarized in Table 2.

Seven sperm quality traits exhibited significant asso-
ciation signals (Fig.  1a–g) and (see Additional file  4: 
Table S2), and only one SNP was associated with more 
than one trait (Table 2; Fig. 1d, e) and (see Additional 
file  4: Table  S2). The number of SNP signals was larg-
est for HABN and NABN with 41 and 18 associated 
SNPs, respectively (Fig.  1a, c) and (see Additional 
file  4: Table  S2). Six of the 19 QTL were represented 
by one associated SNP only and were discarded from 
further analyses (Table  2; Fig.  1). The most significant 
SNPs (rs318575212 and rs332927981) were associated 
with ACRO_5 (both with FDR = 0.006 and an additive 
effect = 4.11) (Table 2).

Table 1  Descriptive statistics, genomic heritability (h2) and  number of  significant SNPs in  the  GWAS for  sperm quality 
parameters (N = 300)

All traits except stated are presented as a percentage

Number of SNPs = GWAS number of single nucleotide polymorphisms significantly associated (FDR) with the trait

The values shown are raw excepting the ratios which were previously corrected and stabilized

SD standard deviation, SE standard error

Trait Acronym Mean (SD) h2 (SE) Number of SNPs 
in autosomal 
chromosomes

Number of SNPs 
in unplaced 
scaffolds

Concentration (sperm/mL) CON 141.3 (65.5) 0.13 (0.11) 0 0

Viability 5 min VIAB_5 90.1 (6.3) 1 × 10–6 (0.11) 0 0

Viability 90 min VIAB_90 77.4 (17.3) 0.14 (0.13) 0 0

Osmotic resistance test ORT 79.8 (12.5) 0.13 (0.12) 0 0

Head abnormalities HABN 2.1 (5.9) 0.16 (0.11) 41 0

Neck abnormalities NABN 3.0 (4.9) 1 × 10–6 (0.13) 18 0

Tail abnormalities TABN 2.7 (3.4) 0.09 (0.12) 0 0

Proximal droplets PDROP 3.5 (5.1) 0.12 (0.15) 1 0

Distal droplets DDROP 4.5 (4.5) 0.06 (0.11) 0 0

Motility 5 min MT_5 75.4 (18.1) 0.21 (0.15) 3 217

Motility 90 min MT_90 64.1 (22.0) 0.39 (0.14) 2 252

Average path velocity 5 min (µm/seg) VAP_5 34.0 (10.2) 0.17 (0.11) 0 0

Average path velocity 90 min (µm/seg) VAP_90 30.8 (9.5) 0.35 (0.13) 0 0

Curvilinear velocity 5 min (µm/seg) VCL_5 46.2 (12.5) 0.11 (0.10) 0 0

Curvilinear velocity 90 min (µm/seg) VCL_90 39.7 (10.2) 0.35 (0.13) 0 0

Straight line velocity 5 min (µm/seg) VSL_5 27.0 (8.3) 0.23 (0.13) 0 38

Straight line Velocity 90 min (µm/seg) VSL_90 25.9 (8.3) 0.34 (0.13) 0 0

Abnormal acrosomes 5 min ACRO_5 7.0 (5.6) 0.08 (0.11) 4 0

Abnormal acrosomes 90 min ACRO_90 16.4 (12.6) 0.06 (0.10) 0 0

Ratio motility R_MT 0.9 (0.2) 1 × 10–6 (0.11) 0 0

Ratio average path velocity R_VAP 0.9 (0.3) 1 × 10–6 (0.08) 0 0

Ratio Curvilinear velocity R_VCL 0.9 (0.3) 1 × 10–6 (0.09) 0 0

Ratio straight line velocity R_VSL 1.0 (0.3) 0.06 (0.10) 0 0

Ratio viability R_VIAB 0.9 (0.3) 0.08 (0.11) 0 0

Ratio acrosomes R_ACRO 3.4 (3.5) 0.08 (0.11) 1 0
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Sperm RNA isolation, RNA‑seq and bioinformatics analysis
Isolated RNA from mature spermatozoa was free from 
somatic cell RNA. Total RNA-seq resulted in an aver-
age of 40.7  M reads per sample and 98.2% of the reads 
passed the quality control filters (see Additional file  5: 
Table S3). An average of 83% of the reads mapped to the 
porcine genome and after removal of duplicate reads and 
RNA abundance filters, we identified 4120 genes (see 
Additional file  6: Table  S4). The most abundant protein 
coding transcripts included PRM1, OAZ3, DNAJB8, 
ANKRD35, SPATC1 and ZNRF4, among others, as well 
as mitochondrial genes such as COX1, CYTB and ND5 
(see Additional file  6: Table  S4). The variance compo-
nent estimated by the mixed model explained 84% (80% 
due to the main effect of the gene) of the variation in 
gene abundance. Consequently, RNA abundances were 
not corrected for external effects. For short RNA-seq, 
we obtained an average of 7.3 M of reads per sample. Of 
these, 99.2% passed quality control and 81.5% mapped to 
the porcine genome (see Additional file  5: Table  S3). In 
more detail, 42% of the aligned reads corresponded to 
sncRNAs, including piRNAs (16%), snRNA (8%), tRNA 
(9%) and miRNA (9%) (see Additional file  5: Table  S3). 
The remaining aligned reads corresponded to mitochon-
drial transfer and ribosomal RNAs (see Additional file 5: 
Table S3). We identified 95 miRNAs out of the 306 that 
are annotated in swine (see Additional file  6: Table  S4). 
The most abundant miRNAs with CPM higher than 1000 
were ssc-miR-30d, ssc-miR-34c, ssc-miR-30c-5p, ssc-
miR-191, ssc-let-7a, ssc-let-7g, ssc-miR-28-3p and ssc-
miR-425-5p (see Additional file 6: Table S4).

SNP calling from RNA‑seq and linkage disequilibrium 
with GWAS hits
Under the hypothesis that some of the GWAS hits may 
tag a causal variant that alters the protein sequence and 
function, and to identify additional SNPs with the poten-
tial to obtain better genetic markers than those identified 
in the GWAS, we sought to identify variants in annotated 
genes using the RNA-seq data. As a prerequisite, these 
variants had to be in LD with the cognate GWAS hit. 
After filtering, we identified 7719 expressed variants, 37 
of which were located within the genomic intervals iden-
tified in the GWAS (Table  2) and (see Additional file  7: 

Table  S5). Twenty-three SNPs were predicted to have a 
low effect on protein sequence (synonymous variants 
and 5′ UTR premature start codon), 13 SNPs showed a 
moderate effect (missense variants) and one SNP was 
predicted as a splice donor variant and thus, to have a 
high impact on protein sequence (see Additional file  7: 
Table S5).

Interval 1 (I1) on SSC13 was associated to HABN, 
harboured 21 expressed SNPs (7 and 14 with moder-
ate and low effects, respectively). The polymorphism 
rs331304027 (a missense variant with a moderate effect 
on the ULK4 gene) was in LD (LD = 0.40) with the 
strongest GWAS SNP hit of the interval (rs690794887) 
(Table  3). SSC13 I2, was also associated to HABN, 
included 11 SNPs (1 with a high, 5 with a moderate and 
5 with a low effect on protein sequence). Of these, the 
variant with the highest LD (LD = 0.2) with the GWAS 
hit (rs327865244) was a 5′ UTR premature start codon 
gain (low effect) SNP (rs323872641) in the ABHD14A 
gene (Table 3) and (see Additional file 7: Table S5). This 
interval was the only one that presented a SNP with a 
high effect (novel), a splice donor variant in the IQCF5 
gene, with almost no LD (LD = 0.02) with the GWAS 
hit (see Additional file 7: Table S5). SSC7 I2 was associ-
ated to NABN and encompassed two expressed SNPs 
(both with a low effect). rs330912302 (a synonymous 
SNP in the CHD2 gene) presented an LD (LD = 0.4) with 
the strongest hit of the interval (rs336588919) (Table 3). 
SSC1 I3 was associated to HABN and harboured three 
expressed SNPs (1 with a moderate and two with a low 
effect) (Table 3) and (see Additional file 7: Table S5).

Correlation of genes’ and miRNAs’ abundances with sperm 
quality traits
The correlation analysis of the 4120 genes and the 
25 phenotypes resulted in 6128 significant correla-
tions (P-value ≤ 0.05) involving 3007 genes and the 25 
traits (see Additional file  8: Table  S6). These genes pre-
sented between one and nine significant correlations 
with the different semen quality traits (see Additional 
file  8: Table  S6). Three hundred and forty-four genes 
were significantly correlated with more than four traits. 
For the miRNAs, the abundance of the 95 miRNAs 
and the studied phenotypes resulted in 306 significant 

(See figure on next page.)
Fig. 1  Manhattan plots depicting the genetic associations between SNPs and the sperm quality traits that showed genome-wide significant values. 
Significant associations have been found with the percentage of: a Percentage of cells with head abnormalities (HABN); b percentage of cells 
with abnormal acrosomes after 5 min incubation at 37°C (ACRO_5); c percentage of cells with neck abnormalities (NABN); d percentage of motile 
spermatozoa after 5 min incubation at 37°C (MT_5); e Percentage of motile spermatozoa after 90 min incubation at 37°C (MT_90); f Percentage of 
cells with proximal droplets (PDROP); g Ratio of the percentage of abnormal acrosomes at 5 min versus 90 min incubation times (R_ACRO). The 
x-axis represents chromosome length (Mb), and the y-axis shows the negative log10 P-values of the genetic associations. The horizontal red line 
represents the significance threshold (FDR ≤ 0.05)
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correlations (P-value ≤ 0.05) which involved 87 miRNAs 
and 17 semen traits (see Additional file 9: Table S7). The 
miRNAs presented between 1 and 9 significant correla-
tions with the semen quality traits (see Additional file 9: 
Table S7).

Expression GWAS analysis
In order to predict whether the GWAS hits tagged a 
causal variant that altered gene expression, we performed 
a within-trait eGWAS with the genotypes of 464,020 
SNPs that passed the quality control and the normal-
ized RNA abundances. Then, we focused only on the 
associations between GWAS SNP hits (with FDR ≤ 0.05) 
and transcripts with abundances that correlated with the 
same phenotype. We identified 45 SNPs (FDR ≤ 0.05) that 
were located in three genomic regions related to ACRO_5 
and HABN (Table  4). Six SNPs had unknown positions 
on the genome after the lift-over from Sscrofa10.2 to 
Sscrofa11.1. The remaining eGWAS hits were on SSC4, 6 
and 13 (Table 4) and (see Additional file 10: Table S8). All 
the SNPs had a trans effect on genes that were located on 
other chromosomes. The eQTL identified on SSC4, was 
related to ACRO_5 and was associated to three genes, 
NCLN, ASCC1 and AATF. The eQTL on SSC6 was also 
related to ACRO_5 and was associated to the IQCJ gene. 
Finally, the eQTL on SSC13 for HABN, included SNPs 
that were in the HARS, ACTR2, EPB41L3 and RAB1B 
genes.

Gene network analysis
After SNP selection, 2648 of the 466,592 SNPs were 
retained to build the AWM. Trait hierarchical cluster 
distributions were in agreement with the biological simi-
larities and phenotypic correlations (see Additional file 2: 
Figures S2 and S3). A clear separation between (i) mor-
phological abnormalities and motility parameters and (ii) 
cell viability and ORT was observed based on the additive 
effects of the SNPs calculated in the association analy-
sis. Consistent with previous studies [58, 59], the SNPs 

detected with the AWM explained 74.1% of the pheno-
typic variance of the key phenotype (VIAB_5). The SNP 
network predicted with PCIT [23] resulted in significant 
correlations that involved 2648 nodes (all the genes) con-
nected by 2,984,616 edges (Fig. 2).

For the RNA network analysis, the RNA levels of the 
4120 detected genes were used to identify potential con-
nections using PCIT [23]. The RNA network included 
4120 nodes (all the genes) connected by 1,173,995 edges 
(Fig.  2). PCIT also built 4539 significant interactions 
between 95 miRNAs and 630 genes.

To obtain the shared network, common SNP and RNA 
network edges were extracted, thus, focusing only on the 
shared set of interacting genes from both approaches. 
This comparison resulted in 613 nodes connected by 
16,591 edges (Fig.  2). The final network included a set 
of 344 additional genes (since they correlated with 
more than three phenotypes) and their interactions, 
resulting in 700 genes. Moreover, the final network also 
involved 1564 edges connecting 202 genes and 94 miR-
NAs (Fig.  2). Of the 1313 genes included in the final 
network, 1135 had an abundance that correlated with at 
least one phenotype, 68 have been reported as TF and 89 
as TF co-factors (Fig. 3a). Nearly a quarter of the genes 
(282 of the 1313) presented at least 200 edges. The genes 
that presented the largest number of interactions were 
PLCH2 (579 edges, present in the final but not in the 
shared network and correlated with three phenotypes), 
CEP152 (399 edges, in the shared network and correlated 
with four traits) and SLC41A2 (382 edges, in the shared 
network).

Gene ontology analysis of the genes included in the 
final network presented enrichment for DNA repair (e.g. 
RAD51, SETX, and SOD1), meiotic cell cycle (e.g. BAG6, 
HSPA2, and RAD51), gamete generation (e.g. TSSK3, 
PRDM14, and PRKAR1A) and spermatogenesis (e.g. 
BAG6, CAPZA3, and HSPA2) (see Additional file  11: 
Table S9).

Table 3  Summary of the SNPs identified from the RNA-seq datasets in genes mapping within the GWAS regions

SSC, Sus scrofa chromosome; # SNPs called, number of SNPs identified in the SNP calling analysis; LD, linkage disequilibrium; Genotypic frequency: allelic frequency for 
each of the genotypes; # called samples, number of samples with reads in the given SNP position; HABN, head abnormalities; NABN, neck abnormalities

The columns SNP effect and gene refer to the SNP with the highest LD in the region

SSC Interval Top SNP 
of the GWAS 
interval

# SNPs called Highest LD SNP with highest LD Genotypic 
frequency (0/0; 
0/1; 1/1)

# called 
samples

SNP effect Gene Trait

1 I3 rs327733412 3 0.07 rs710447566 0.34; 0.54; 0.11 35 Low KATNAL2 HABN

7 I2 rs336588919 2 0.4 rs330912302 0.63; 0.12; 0.25 32 Low CHD2 NABN

13 I1 rs690794887 21 0.4 rs331304027 0.06; 0.09; 0.85 33 Moderate ULK4 HABN

13 I2 rs327865244 11 0.2 rs323872641 0.49; 0.37; 0.14 35 Low ABHD14A HABN
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Development of an RNA model and a SNP panel
The R2 model predicted that the RNA levels of 20 genes 
could explain between 55 to 78% of the phenotypic vari-
ation across traits. The 10 selected genes that were most 
commonly present in all the phenotype models explained 
the vast majority (93 to 99%) of the phenotypic variation 
that was predicted by the model. The final set of 10 genes 
included in the linear regression model was composed 
of MICAL3, EFHC1, TRAPPC2L, ATP9A, THADA, 
MOBKL3, BLVRB, LARP4, CARS2, and NDUFV2. The 
analysis resulted in significant models for 10 of the 25 
phenotypes (Table 5). The most significant model was for 
PDROP, which could predict the phenotype with an effi-
ciency of 68% (Table 5). The estimated parameters of the 
significant models are in Additional file 12: Table S10.

The SNP-based panel was built with 73 SNPs (18 lead 
SNPs from GWAS hits, 2 lead SNPs from the eGWAS 
hits, 53 SNPs from the shared network and correlated ≥ 4 
phenotypes) (see Additional file  13: Table  S11). These 
polymorphisms could explain between 5 and 36% of 
the phenotypic variance across the 25 traits (Table 5). A 
moderate proportion (> 20%) of the phenotypic variance 
could be explained for 18 of the 25 traits. The best pre-
dictions were for sperm abnormalities (NABN, HABN, 
TABN) and sperm motility related traits (e.g. MT_5, 
VAP_90 and VCL_90) (Table 5).

Discussion
Investigating the genomic regions and molecular pro-
cesses that control sperm quality has become a focus of 
interest in humans and in livestock including swine, in 
the latter case for its relevance on the sustainability of 
pig breeding and production [5, 6, 10–12]. In fact, our 
results and those obtained by other groups [5–8], have 
shown that boar sperm quality has a genetic basis, which 
means that it can be selected for in breeding strategies. 
Here, we provide an exploratory analysis using multiple 
bioinformatics tools. Since our study was carried out on 
a relatively small sample size with one phenotypic ejacu-
late evaluated per boar, and sperm quality traits are influ-
enced to a great extent by environmental factors [60], our 
results should be considered as preliminary. This is the 
first study that explores at the genomic level the molec-
ular components of sperm and semen quality using an 
integrative approach that fits GWAS and RNA-seq data. 
Moreover, our study includes, for the first time, traits 
such as ORT, ACRO, VIAB and the dissection of mor-
phological abnormalities of different parts of the sperm 
cell (HABN, NABN and TABN).

GWAS analysis
The GWAS revealed 12 QTL that were represented by 
two or more significant SNPs and several positional can-
didate genes for HABN, NABN, ACRO_5 and MT_5 
(Table 2). The highest signals were observed on SSC4 for 
ACRO_5 (~ 2.41–2.42 Mbp) (Table 2) and (see Additional 
file  4: Table  S2), ~ 69  kb upstream of the solute carrier 
family 45 member 4 (SLC45A4) gene. SLC45A4 encodes 
a proton-coupled sugar transporter that plays a role in 
the nutrition of spermatozoa during their maturation 
in the epididymis [61] where acrosome assembly con-
tinues during the post-testicular maturation phase [62]. 
Another solute carrier family 35 member B3 (SLC35B3) 
was selected as a potential candidate for the MT_5 QTL 
on SSC7 (Table  2) and (see Additional file  4: Table  S2). 
SLC35B3 maps 0.6 Mbp away from this QTL.

We detected several significant regions for HABN 
(Table  2). Interestingly, HABN showed little correla-
tion with the other phenotypes (see Additional file  4: 
Table S2), but the biological rationale behind this remains 
to be elucidated. The QTL on SSC1 I2 (~ 94.9–98.8 Mbp) 
included interesting candidate genes such as the kata-
nin catalytic subunit A1 like 2 (KATNAL2). Dunleavy 
et  al. [63] reported that, in mice, Katnal2 is a critical 
regulator of male germ cell development by affecting 
sperm head shaping, acrosome attachment and sperm 
tail growth. Other candidate genes in that region were 
SLC14A2, encoding the urea transporter A, which has 
been suggested to participate in sperm head forma-
tion by reducing its volume though excretion of urea 

Fig. 2  Number of nodes (genes) in each of the gene network 
analyses. The SNP network involved 2648 nodes connected by 
2,984,616 edges (interactions). The RNA Network included 4120 
nodes connected by 1,173,995 edges. The shared network included 
the 613 nodes and 16,591 edges present in both the SNP and the 
RNA networks. The final network included (i) the shared network, 
(ii) 700 additional genes corresponding to genes that correlated 
with more than four traits and their interacting genes (iii) as well as 
94 co-associated miRNAs. These miRNAs interacted with 202 nodes 
involving 1564 edges
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[64], and the SMAD family member 2 (SMAD2), which 
is involved in spermatogonial differentiation [65]. On 
SSC13 I1, we identified two candidate genes: the testis 
and ovary-specific PAZ domain gene 1 (TOPAZ1) and 
the IQ motif containing F1 (IQCF1). Luangpraseuth-
Prosper et  al. [66] demonstrated that Topaz1-knockout 
mice presented meiotic arrest and male infertility. As for 
IQCF1, Fang et al. [67] reported that this gene localizes 
in the acrosome and that it is involved in sperm capacita-
tion in mice. Iqcf1−/− mice were significantly less fertile 
than wild type mice [67]. The QTL region on SSC13 I2 
included the candidate protein kinase C delta (PRKCD) 
gene. PRKCD is involved in spermatogenesis and embry-
onic development [68] and was highlighted in a GWAS 
for semen volume in Holstein–Friesian bulls [69].

Four QTL regions were identified for NABN (Table 2) 
and (see Additional file 4: Table S2). The QTL on SSC1 
I5 included as candidate gene the transporter ATP 
binding cassette subfamily A member 1 (ABCA1). In 
humans, ABCA1 localizes on the dorsal side of the 
sperm head and in the middle piece of the tail [70]. 

ABCA1 has been suggested to contribute to cholesterol 
transport and fertilization capacity [70].

Four of our GWAS hits are located near previously 
reported QTL for semen quality traits. This is the 
case for the SSC1 I6 QTL, associated to NABN, which 
mapped 335 kbp downstream from a QTL associ-
ated to sperm abnormalities and motility in boars [6]. 
The QTL SSC3 I2, associated to NABN lies 350 kpb 
upstream from a PDROP QTL [12]. The SSC4 I1 QTL, 
associated to ACRO_5, resides 655 kpb upstream from 
a QTL for the distal midpiece reflex [12] and the SSC7 
I1 QTL, associated to MT_5 maps 123 kpb upstream 
from a PDROP QTL [12]. These discrepancies across 
studies could arise due to different technical (e.g. sam-
ple size, SNP arrays, QTL or phenotyping accuracy), 
environmental (e.g. temperature, animal husbandry or 
sperm processing), or biological factors (e.g. genetic 
heterogeneity).

SNP calling from RNA‑seq data
Calling genomic variants from RNA-seq data can be a 
complementary method to detect previously unknown or 

Fig. 3  Co-association network based on the AWM and transcriptomics data. a Full network with 1313 genes and 94 miRNAs; b Subset of the 
network showing the transcription factor CARF and all its predicted interactions; c Subset of the network with the TRAPPC2L interactions, which 
included several miRNAs; d Subset of the network with the CHD2 gene interactions. The node color corresponds to the phenotype group with the 
highest correlation value, as follows: concentration (red), abnormal acrosomes (green), abnormalities and droplets (pink), osmotic resistance test 
(orange), motility (light blue) and viability (dark blue). miRNAs are depicted in yellow. Node and text sizes correspond to the number of significant 
phenotypes correlated with that gene or miRNA. Nodes with a black line border correspond to genes identified in the shared network. Node shape 
indicates classification as: triangle (TF), V (TF co-factor) and ellipse (other genes and miRNAs)
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ungenotyped polymorphisms in transcribed genes that 
might carry important functional implications or may be 
better genetic markers for that given trait. Should these 
genes be involved in related phenotypes and should the 
variants be: (i) in LD with the GWAS lead SNP and (ii) 
have a predicted effect on protein sequence, these poly-
morphisms could be suggested as potential causal candi-
dates. For that purpose, we sought to identify transcribed 
variants in the QTL regions and assessed their LD with 
the lead SNP hit of the QTL. Having said that, RNA-seq 
has some particular characteristics (namely splicing that 
makes read alignment challenging, allele specific expres-
sion that could miscall a true heterozygous animal with 
an incorrect homozygous genotype and RNA editing 
that post-transcriptionally generates additional variation 
not present in the DNA sequence), which make geno-
type calling from RNA-seq a challenging task. Moreover, 
our analysis was carried on a small number of samples 

(N = 35). Consequently, although we used stringent cri-
teria for genotype calling, these results should be consid-
ered as merely indicative and a larger number of samples 
should be analysed to draw more robust conclusions.

For HABN, we found new genetic variants in genes 
of physiological interest (Table  3) and (see Additional 
file 7: Table S5). On SSC13 I1, we detected several vari-
ants in the unc-51 like kinase 4 (ULK4) gene, which 
is in potential LD with the lead SNP of this GWAS hit 
(Table 3) and (see Additional file 7: Table S5). Although 
ULK4 has not been directly linked to sperm traits, Liu 
et  al. [71] showed that this gene has an essential role 
in ciliogenesis, a process that is also crucial in sperm. 
The previously discussed GWAS positional and physi-
ological candidate genes CHD2 and KATNAL2, also 
presented genetic variants in putative LD with the lead 
SNPs on SSC7 I2 (low effects: rs330912302 LD = 0.4 
and rs339719658 LD = 0.37) and SSC1 I3 (low effects: 
rs700749617 LD = 0.01, rs710447566 LD = 0.07 or mod-
erate effect: rs690151450 LD = 6.9 × 10–3), respectively 
(see Additional file 7: Table S5). Although the results on 
SNP calling and LD evaluation should be taken with cau-
tion, these SNPs in CHD2 and KATNAL2 deserve further 
investigation in larger datasets.

The porcine sperm transcriptome
The transcriptome profile obtained in this study is very 
similar to that from our previous work [13] and from 
research in other species [72, 73]. Five of the 10 most 
abundant protein-coding transcripts (PRM1, OAZ3, 
DNAJB8, TPPP2 and TNP1) have been associated to 
sperm function via different mechanisms. PRM1 is a 
protamine that replaces histones in the ultra-compacted 
chromatin of sperm. In a study on bulls, the RNA levels 
of PRM1 were reduced in low-fertility animals [74], and 
in humans, PRM1/PRM2 sperm ratios differed between 
fertile and infertile men [75]. OAZ3 plays a role in the 
regulation of polyamine concentration during spermio-
genesis and has been linked to sperm function and fer-
tility in different species such as humans [76] and mice 
[77]. DNAJB8 is a heat shock binding protein that regu-
lates the ATPase activity of HSP70, which is a crucial 
protein for male fertility and spermatogenesis, and it 
shows reduced RNA levels in infertile men [78]. TPPP2 
has been shown to affect sperm motility, probably by 
regulating energy production, and fertility in mice [79]. 
TNP1 is a spermatid specific protein that is involved in 
the replacement of histones by protamines in the sperm 
chromatin [80] and defects in this gene have been shown 
to cause male infertility [80].

Our sperm samples contained also a large and varied 
population of piRNAs (see Additional file  5: Table  S3) 

Table 5  R2 and  phenotypic variance for  each trait 
from the RNA model and SNP panel

Acronym descriptions are in Table 1

SE standard error

Acronym RNA model SNP panel

R2 P-value Phenotypic 
variance 
explained (SE)

CON 0.17 0.82 0.05 (0.05)

VIAB_5 0.43 0.06 0.27 (0.07)

VIAB_90 0.23 0.61 0.28 (0.07)

ORT 0.22 0.62 0.24 (0.07)

HABN 0.16 0.84 0.29 (0.06)

NABN 0.22 0.64 0.36 (0.07)

TABN 0.26 0.49 0.26 (0.07)

PDROP 0.68  < 0.0001 0.17 (0.07)

DDROP 0.42 0.07 0.06 (0.05)

MT_5 0.46 0.03 0.31 (0.07)

MT_90 0.34 0.22 0.30 (0.07)

VAP_5 0.58 0.002 0.34 (0.07)

VAP_90 0.55 0.005 0.34 (0.07)

VCL_5 0.61 0.001 0.33 (0.07)

VCL_90 0.55 0.01 0.34 (0.07)

VSL_5 0.36 0.16 0.31 (0.07)

VSL_90 0.61 0.001 0.33 (0.07)

ACRO_5 0.5 0.02 0.21 (0.06)

ACRO_90 0.21 0.68 0.23 (0.07)

R_MT 0.3 0.35 0.13 (0.06)

R_VAP 0.18 0.79 0.18 (0.07)

R_VCL 0.28 0.42 0.14 (0.07)

R_VSL 0.21 0.68 0.21 (0.07)

R_VIAB 0.44 0.05 0.23 (0.07)

R_ACRO 0.57 0.003 0.19 (0.07)
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[20] and, to a lesser extent, of miRNAs (see Additional 
file 5: Table S3 and Additional file 6: Table S4). piRNAs 
play an essential role in transposon silencing, are crucial 
for proper spermatogenesis [2], and have been anno-
tated in the sperm of multiple animals species includ-
ing humans [81], mice [82], bull [15] and boar [20]. In 
this study, we focused on the miRNA fraction since, as 
reviewed by Noora Kotaja [83], their involvement in the 
maintenance and regulation of spermatogonial stem cell, 
meiotic and post-meiotic processes and spermiogenesis 
is well documented. Some of the most abundant miRNAs 
identified in our dataset (see Additional file 6: Table S4) 
present relevant functions for spermatogenesis and 
embryo development. As a matter of fact, six of the seven 
miRNA with an average abundance CPM higher than 
1000 have been linked to sperm function or male fertility. 
For example, miR-34c has been proposed to be essential 
for spermatogenesis, since its absence leads to infertility 
in mouse [84], miR-30c that is upregulated in high motile 
bull spermatozoa [15], and miR-191, have abundance lev-
els that are significantly correlated with improved human 
embryo development [85]. Let-7 has been suggested as a 
regulator of IGF1 during the differentiation of spermato-
gonia to primary spermatocytes [86]. Recently, the level 
of miR-425-5p in the boar sperm has been linked to far-
rowing rate and litter size [87].

Correlation between genes and miRNAs with semen traits
For mRNA transcripts, the strongest correlation was 
between TTC28 and HABN (−  0.71) (see Additional 
file 8: Table S6). TTC28 is required for the condensation 
of spindle microtubules during mitosis and meiosis [88]. 
Other genes of interest included ABCA3, its RNA levels 
correlating with nine phenotypes (see Additional file  8: 
Table  S6). This gene encodes an ABC transporter that 
plays a role in flipin-cholesterol complexes as a mecha-
nism to remove cholesterol from the sperm membrane 
[89]. Although the molecular basis induced by choles-
terol efflux from sperm is not well understood, it has 
been reported to be required for sperm capacitation [90]. 
Another example is EFHC1 with RNA levels that corre-
lated with six phenotypes (see Additional file 8: Table S6). 
Efhc1−/− knockout mice show a reduced flagellar beating 
frequency [91].

Several miRNAs of interest including miR-23a, miR-
27a and miR-122 correlated with seven, eight and eight 
semen quality traits, respectively (see Additional file  9: 
Table S7). miR-23a, is dysregulated in subfertile men [92], 
abundance of miR-27a in spermatozoa is associated with 
lower progressive motility and normal morphology [93], 
and expression of miR-122 is associated with abnormal 
sperm development [94] and dysregulated in subfertile 
men [95].

eGWAS
GWAS hit SNPs may tag causal variants with regula-
tory functions on gene expression. For this reason, we 
also performed a within-trait eGWAS by linking for 
each phenotype, GWAS lead SNPs with genes that have 
RNA abundance correlated with the same trait. A robust 
eGWAS would require a larger sample size. However, we 
considered that the analysis was worthwhile as it could 
provide indicative results, which would deserve further 
investigation in larger populations. We identified three 
eQTL all with a trans-effect (Table 4) and (see Additional 
file  10: Table  S8). Only one of these regions included 
genes of interest that were directly associated to sperm 
quality, i.e. the trans-eQTL on SSC13 for HABN, which 
was associated to several genes including actin related 
protein 2 (ACTR2) and histidyl-TRNA synthetase (HARS) 
(Table 4) and (see Additional file 10: Table S8). Heid et al. 
[96] identified ACTR2 in the sperm head from bulls and 
suggested that it has a role in sperm capacitation and 
acrosome reaction. HARS has also been reported to be 
involved in the attachment of histidines to their cor-
responding tRNA molecules, a fundamental cellular 
process for the translation of mRNA into protein [97]. 
Waldron et  al. [98] showed that knockout zebrafish for 
HARS presented severe defects in high proliferative cells. 
Although its role in sperm remains unknown, HARS is 
overexpressed in sperm of low-fertility bulls [99] and 
we do not rule out a potential involvement of this gene 
in spermatogenesis. trans-eQTL hotspots (these trans-
eQTL involving several genes) are of particular interest 
since their SNPs could have important regulatory roles 
and influence gene expression, and thus are more likely 
to contribute to the phenotype.

Gene network analysis
In spite of the considerable number of candidate genes 
that were identified in our GWAS, many genes might 
have been missed by this traditional single-trait approach 
due to the lack of an acceptable significant association 
(FDR > 0.05). After all, sperm quality is a complex poly-
genic phenotype, which is also influenced by environ-
mental factors such as husbandry, weather, or testicular 
pathologies that involve an intricate network of genes 
and molecular processes. Moreover, low allelic frequency 
and low LD of the GWAS SNP with the causal variant 
decrease the power of the GWAS to detect genetic asso-
ciations. For this reason, an alternative strategy to exploit 
GWAS information is to perform an AWM analysis that 
extracts SNPs, which although they have a strong genetic 
association but lower than the significance threshold, 
are also associated to a certain number of traits [22]. 
The association of one SNP to more than one trait pro-
vides additional robustness to the potential relevance of 
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that SNP to semen quality, in our case. This, followed 
by a PCIT analysis to study gene–gene interactions can 
provide information on the relevant genes and pathways 
for some phenotypes and then one can search for SNPs 
in these genes or that affect them. Obviously, in paral-
lel to GWAS, transcriptomics data can contribute addi-
tional valuable information in the description of these 
genes and pathways. The integration of both sources of 
information can also be used to improve the accuracy of 
genomic predictions [35]. We believe that the small sam-
ple size and the limitation due to measuring only one 
ejaculate per boar in our study can be overcome partially 
by the AWM and PCIT approaches. For this reason, we 
addressed the genetics that underlie boar sperm quality 
through this integrative systems biology approach. The 
genetic co-association and RNA co-abundance interac-
tions revealed a number of appealing features such as 
new candidate genes, TF, TF co-factors, and miRNAs 
that belong to biological processes and relevant functions 
related to sperm.

The TF with the largest number of predicted interac-
tions (129) was encoded by the calcium responsive tran-
scription factor (CARF) gene, its RNA abundance being 
in turn, correlated with nine phenotypes (Fig.  3b) and 
(see Additional file  8: Table  S6). CARF acts as a tran-
scriptional activator promoted by calcium influx [100]. 
Since calcium ions are essential in sperm function [101], 
we cannot discard the possibility that this TF could be 
involved in pathways related to sperm maintenance and 
function. Some of the CARF predicted target genes from 
our analysis include interesting candidates such as the 
la ribonucleoprotein domain family member 4 (LARP4), 
THADA armadillo repeat containing (THADA) and EF-
hand domain containing 1 (EFHC1) genes. LARP4, has 
been proposed to regulate mRNA stability and trans-
lation of mRNAs [102]. Blagden et  al. [102] reported 
larp-knockout Drosophila mutants in which a consid-
erable proportion of the spermatocytes had meiotic 
defects. Although the role of THADA remains uncer-
tain in sperm, Moraru et al. [103] showed that in Dros-
ophila, THADA modulates the calcium signalling, energy 
storage and thermogenesis balance. EFHC1 encodes a 
myoclonin1 protein, which has been detected in sperm 
flagella in mice testis [104]. Although Efhc1-deficient 
mice were fertile, mutants presented a reduced ciliary 
(flagellar) beating frequency [91].

Other TF with a large number of interactions were 
the SMAD family member 4 (SMAD4) gene (interacting 
with 32 genes) and the lysine demethylase 3A (KDM3A) 
gene (281 gene interactions), both potentially target-
ing a set of genes that are enriched for cellular macro-
molecular complex assembly processes (see Additional 
file 11: Table S9). TF involved in DNA repair, such as that 

encoded by bromodomain adjacent to zinc finger domain 
1B (BAZ1B), were also identified. Its closest paralog, 
BAZ1A encodes a member of the chromatin remodeling 
complex [105]. Dowdle et al. [106] showed that Baz1a−/− 
mice were infertile because of spermatogenesis defects 
tied to changes in chromatin composition. Another TF 
gene of interest was estrogen receptor 1 (ESR1), which 
was present in the shared network. ESR1 has already 
been associated with pig sperm motility and cytoplas-
matic droplets [107]. Moreover, polymorphisms in ESR1 
have been suggested to influence estrogen levels which in 
turn, affect sperm motility [108].

The network comprised several new candidate genes 
for sperm quality. The trafficking protein particle com-
plex 2 like (TRAPPC2L) gene correlated with 27 miR-
NAs including miR-30d, which was the most abundant 
miRNA in our samples (see Additional file  6: Table  S4) 
and was found to be dysregulated in oligozoospermic 
men [109] (Fig. 3c). TRAPPC2L belongs to the TRAPPC 
gene family, with a reported role in ciliogenesis [110]. 
Interestingly, TRAPPC2L was associated in the final net-
work with the spermatogenesis and centriole associated 
1 (SPATC1) gene, which is localized in the neck region 
of mouse and human sperm [111]. Disruption of its 
homolog Spatc1l in mice led to male sterility due to sepa-
ration of sperm heads from tails, thereby advocating for a 
role in sperm head–tail integrity [112]. The network also 
included DNAI2, which correlated with four phenotypes 
(see Additional file  8: Table  S6). Mutations in DNAI2 
have been associated with ciliary defects and detected in 
males with reduced fertility due to impaired sperm tail 
function [113]. DNAI2 was also associated to boar sperm 
motility in a previous GWAS [6]. CHD2 is another inter-
esting gene in the network since it was also identified as a 
candidate gene in our GWAS analysis. This gene included 
new DNA variants in potential LD with GWAS lead 
SNPs, which would be worth testing in a genetic associa-
tion study (Fig. 3d; Table 3). CHD2 was hydroxymethyl-
ated in human sperm after exposure to bisphenol A, an 
epigenetic modifier that causes spermatogenesis defects 
and alters sperm motility [114].

Of the 94 miRNAs identified in sperm and included in 
the final network, 30 interacted with at least 20 genes. 
Some of these 30 miRNAs correlated with sperm traits 
and have also been linked to sperm quality and fertility in 
previous studies. It is worth noting that miR-16, a miRNA 
that was found to be  down-regulated in the semen of 
infertile males with sperm abnormalities [115], corre-
lated with four sperm phenotypes (see Additional file 9: 
Table  S7) and potentially interacted with 67 genes (e.g. 
ATP9A, found in the shared network and included in the 
RNA model). Similarly, miR-10b, previously associated 
with human infertile semen samples [116], correlated 
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with a motility-related parameter (VCL) and interacted 
with 32 genes (including the previously discussed TRAP-
PC2L that is present in the final network).

Development of an RNA model and a SNP panel
In this study, we provide a novel and innovative approach 
to develop an RNA model to estimate the phenotypes 
based on gene abundances. The model, which includes 10 
genes, was predicted to be significant for 10 phenotypes 
and performed best for PDROP and some of the motil-
ity-related traits in our samples (Table 5). The model for 
PDROP reported a highly significant role of the THADA 
gene (see Additional file  12: Table  S10), which was also 
present in the shared network, and its RNA levels are 
positively correlated with PDROP. THADA regulates 
energy metabolism via calcium signalling by binding the 
sarco/ER Ca2+ ATPase transporter mechanism [103] 
which plays an important role in the control of sperm 
motility acrosome reaction [117]. The CARS2 gene was 
another strong contributor in the model for PDROP and 
was also identified in the shared network (see Additional 
file 12: Table S10). CARS2 plays a critical role in protein 
synthesis but no direct link to spermatogenesis or sperm 
function has been reported.

Although SNPs have become the marker of choice for 
the genetic improvement of livestock species, the devel-
opment of a SNP array for the prediction of boar sperm 
quality remains to be done. Here, we propose a SNP 
model with 73 SNPs including those identified through 
the GWAS, eGWAS and gene:gene interaction and 
phenotypic correlation analysis (see Additional file  13: 
Table S11). The model could hold promising potential for 
its application in animal breeding programs. This panel 
of 73 SNPs estimated between 5 and 36% of the pheno-
typic variance across the 25 traits that were evaluated. 
These SNPs were better predictors for the phenotypes 
related to sperm abnormalities and motility (Table  5). 
Remarkably, when considering only the GWAS lead 
SNPs, the panel explained between 4 and 26% of the phe-
notypic variance, and only for three traits (HABN, NABN 
and TABN) was the model able to predict more than 20% 
of the phenotypic variance. Thus, this systems biology 
approach allowed us to include an additional set of SNPs 
that increased the predictive potential of the panel.

In a previous study for sperm motility and morphologi-
cal abnormalities using two porcine lines, Marques et al. 
[6] identified several QTL that cumulatively explained 
10.8% of the genetic variance including 412 and 271 
SNPs for each line. Gao et  al. [11] identified 20 and 16 
QTL that could explain 35.3 and 20.6% of sperm motility 
and morphological abnormalities traits in Duroc boars, 
respectively. Our approach was able to predict 30 to 31% 
and 26 to 36% of the variance of the same group of traits 

with only 73 SNPs for motility and morphological-related 
traits, respectively (Table  5). However, we have used an 
integrated and informed approach based not only on the 
GWAS and eGWAS FDR significant associations but also 
on a robust network built from co-associated SNPs (iden-
tified at suggestive levels but across several phenotypes) 
as well as gene RNA co-abundance. Moreover, our SNPs 
were chosen to minimize LD between them and thus 
maximize the informativity of the panel. This allowed the 
informed inclusion of a large number of SNPs with inde-
pendent marker potential and thus the development of a 
more powerful panel for the prediction of semen quality 
in pigs.

These results only hold in our Pietrain population with 
a modest sample size and one ejaculate measured per 
boar, thus the validation of the panel will require addi-
tional evaluations in other populations. Nonetheless, 
the integrative approach that we propose for ultimately 
building a SNP array provides compelling results of its 
application to any type of complex trait with a genetic 
basis. This opens another avenue to improve traits that 
are influenced by several genes that are of interest for the 
animal breeding industry.

Conclusions
In summary, our results suggest that the genetic vari-
ants identified in the 12 QTL regions that are mapped 
to—or near—the CHD2, KATNAL2, SLC14A2, IQCF1 
and ABCA1 genes, together with other candidate genes 
based on a systems biology approach including among 
others, LAPR4, THADA, EFHC1, SMADA4, SPATC1 or 
TRAPPC2L, may modulate sperm quality in pigs. This 
network also includes TF genes such as CARF, with a 
large number of potential interactions with target genes 
that are likely to be key players in shaping the complex 
inheritance of sperm quality traits. We have developed 
a SNP panel based on a systems biology approach that 
may be able to explain a larger amount of phenotypic 
variance than that obtained from a stand-alone GWAS. 
The model included GWAS lead SNPs, top eGWAS 
SNPs and SNPs from genes identified in the shared net-
work and could potentially explain more than 30% of 
the phenotypic variance for sperm quality traits such as 
motility and morphology. Although our results are very 
promising for the pig breeding sector, caution should be 
taken due to the sample size of our study and the lack 
of repeated measures from multiple ejaculates per boar. 
Future work should include the validation of the RNA 
and SNP model in a large number of pigs belonging to 
different breeds and populations. The implications of 
this research are broad, ranging from applications to 
animal breeding strategies to modelling the biology of 
infertility in mammals.
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Additional file 1: Figure S1. Outline of the analysis pipeline. It illustrates 
the framework of the dataset, analyses and methodologies included in 
the study. 

Additional file 2: Figure S2. Correlation across boar sperm qual‑
ity traits. Heatmap plot of the correlations among the 25 sperm traits 
measured on 300 boars. CON = concentration; VIAB_5 = viability 5 min; 
VIAB_90 = viability 90 min; ORT = osmotic resistance test; HABN = head 
abnormalities; NABN = neck abnormalities; TABN = tail abnormalities; 
PDROP = proximal droplets; DDROP = distal droplets; MT_5 = motility 
5 min; VAP_5 = average path velocity 5 min; VCL_5 = curvilinear velocity 
5 min; VSL_5 = straight line velocity 5 min; MT_90 = motility 90 min; 
VAP_90 = average path velocity 90 min; VCL_90 = curvilinear veloc‑
ity 90 min; VSL_90 = straight line velocity 90 min; ACRO_5 = abnormal 
acrosomes 5 min; ACRO_90 = abnormal acrosomes 90 min; R_MT = ratio 
motility; R_VAP = ratio average path velocity; R_VCL = ratio curvilinear 
velocity; R_VSL = ratio straight line velocity; R_VIAB = ratio viability; 
R_ACRO = ratio acrosomes. Figure S3. SNP based dendrogram for the 25 
semen parameters. Dendrogram of the standardized SNP effects across 
the 25 sperm traits. 

Additional file 3: Table S1. Effect of external factors on sperm qual‑
ity traits. Effect of farm, age and season per year across the sperm 
quality related phenotypes. * = P-value ≤ 0.05; ** = P-value ≤ 0.001; 
*** = P-value ≤ 0.0001; ns = not significant. 

Additional file 4: Table S2. Details on the SNPs showing significant 
associations (FDR ≤ 0.05) in the GWAS across autosomal chromosomes 
and unplaced scaffolds. Chr = chromosome; BP = base pairs (location); 
Beta = additive effect; MAF = minor allele frequency; FDR = false discovery 
rate; HABN = head abnormalities; MT_5 = percentage of motile sperma‑
tozoa at 5 min; MT_90 = percentage of motile spermatozoa at 90 min; 
NABN = neck abnormalities; PDROP = proximal droplets; R_ACRO = ratio 
abnormal acrosomes. 

Additional file 5: Table S3. Details of the RNA-seq extraction and map‑
ping statistics. Average and Standard Deviation (SD) for the 40 samples 
processed, including the amount of RNA obtained and several bioinfor‑
matics statistics for total RNA-seq (40 samples) and short RNA-seq (34 
samples) datasets. sncRNA = short noncoding RNA; MttRNA = mitochon‑
drial transfer RNA; piRNA = Piwi interacting RNA; snRNA = small nuclear 
RNA; MtrRNA = mitochondrial ribosomal RNA; tRNA = transfer RNA; 
miRNA = micro RNA; rRNA = ribosomal RNA; snoRNA = small nucleolar 
RNA. 

Additional file 6: Table S4. List of protein coding genes and miRNAs 
identified in sperm. Average and Standard Deviation (SD) for the samples 
processed. Protein coding and miRNA abundances are expressed in frag‑
ments per kb per million mapped reads (FPKM) and counts per million 
(CPM), respectively. 

Additional file 7: Table S5. SNPs identified in the RNA-seq data mapping 
within the GWAS regions. Chr = chromosome. LD = linkage disequilibrium. 
Genotypic frequency for each of the genotypes. # samples called = num‑
ber of samples with reads in the given SNP position. 

Additional file 8: Table S6. Correlations between gene abundances and 
phenotypes. P-values are given when (P-value ≤ 0.05). The correlation 
value is indicated between brackets. ns = not significant. 

Additional file 9: Table S7. Correlations between miRNA abundances 
and phenotypes. P-values are given when (P-value ≤ 0.05). The correlation 
value is indicated between brackets. ns = not significant. 

Additional file 10: Table S8. Associations identified in the within trait 
eGWAS. Thirty-nine SNPs showed significant associations (FDR ≤ 0.05) with 
semen phenotypes in the GWAS and also displayed significant association 
with the abundance of genes which abundance correlated with the same 
phenotype (P-value ≤ 0.05). Chr = chromosome. FDR = False Discovery 
Rate; ACRO_5 = Abnormal Acrosomes 5 min; HABN = Head abnormalities. 

Additional file 11: Table S9. Gene Ontology analysis of the genes 
included in the Final Network. GO biological process terms with significant 
Bonferroni corrected P-values and their associated genes. 

Additional file 12: Table S10. Parameter estimates for the significant RNA 
models. For each of the phenotypes, the model outputs the estimated val‑
ues for the 10 genes obtained from the GRM regression analysis. The lower 
the value of Pr >|t|, the higher the involvement of the gene abundance on 
the total phenotypic variance. 

Additional file 13: Table S11. Description of the SNPs included in the 
SNP panel. Chromosome, position, SNP ID and analysis from which the 
SNP was extracted.
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