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ABSTRACT Plasmids are autonomously replicating sequences that help cells adapt to
diverse stresses. Theta plasmids are the most frequent plasmid class in enterobacteria.
They co-opt two host replication mechanisms: replication at oriC, a DnaA-dependent
pathway leading to replisome assembly (theta class A), and replication fork restart, a PriA-
dependent pathway leading to primosome assembly through primer extension and D-loop
formation (theta classes B, C, and D). To ensure autonomy from the host’s replication and
to facilitate copy number regulation, theta plasmids have unique mechanisms of replication
initiation at the plasmid origin of replication (ori). Tight plasmid copy number regulation is
essential because of the major and direct impact plasmid gene dosage has on gene
expression. The timing of plasmid replication and segregation are also critical for opti-
mizing plasmid gene expression. Therefore, we propose that plasmid replication needs to
be understood in its biological context, where complex origins of replication (redundant
origins, mosaic and cointegrated replicons), plasmid segregation, and toxin-antitoxin sys-
tems are often present. Highlighting their tight functional integration with ori function, we
show that both partition and toxin-antitoxin systems tend to be encoded in close physical
proximity to the ori in a large collection of Escherichia coli plasmids. We also propose that
adaptation of plasmids to their host optimizes their contribution to the host’s fitness while
restricting access to broad genetic diversity, and we argue that this trade-off between
adaptation to host and access to genetic diversity is likely a determinant factor shaping
the distribution of replicons in populations of enterobacteria.

INTRODUCTION
Plasmids are autonomously replicating sequences. They are found across all
kingdoms of life but are particularly abundant in prokaryotes (1). They typically
carry nonessential genes that have adaptive value under specific stresses such as
heavy metal exposure, antibiotics, or adapting to a host (virulence genes) (2, 3).

Here, we review the mechanism of plasmid replication known as theta, which
is by far the predominant type in Enterobacteriaceae. This prokaryotic family
groups a number of related genera (Escherichia, Shigella, Salmonella, Yersinia)
that share the intestinal tract as their central ecological niche and that have
been extensively studied due to their clinical relevance (4, 5).
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Enterobacterial plasmids share similar features. Nearly all
of them can be transferred between strains in one way or
another, a process known as horizontal gene transfer
(HGT). This allows plasmids to serve as platforms for the
exchange of genetic material, for capturing new adaptive
genes from the environmental microbial gene pool, and
for shuffling and spreading these genes among pathogens
(3, 6, 7). There are three main mechanisms of HGT,
namely, cell-to-cell contact and formation of a bridge
(conjugation), direct uptake from the environment
(transformation), and through bacteriophages (transduc-
tion) (8). Conjugation is the predominant mechanism in
Gram-negative bacteria. It involves copying the plasmid
DNA, relaxing it, and moving the DNA through a type IV
secretion system to a recipient cell in an ATP-dependent
fashion (reviewed in references 3, 7, and 9). The majority
of enterobacterial plasmids carry sets of conjugation
genes, although these are not always active or complete
(10). Some virulence plasmids do not have a conjugation
machinery but can be transferred along with a conjugative
plasmid, which acts as a helper; this process is known as
plasmid mobilization (10). Transduction is also frequent
in enterobacteria (11). It occurs when a bacteriophage
packages bacterial genetic material along with its own
genetic material and infects another bacterium (general-
ized transduction) or when a phage that has integrated
into the bacterial chromosome is improperly excised and
packages bacterial DNA (specialized transduction) (12).

Here, we present our current mechanistic understanding
of theta plasmid replication and its regulation. We also
present concepts that are emerging from genomic stud-
ies, which help place the replication of these plasmids in
its broader biological context. Given that plasmids iso-
lated from a variety of Enterobacteriaceae share similar
features (5), we use virulence plasmids in extraintestinal
pathogenic Escherichia coli (ExPEC) as representative of
enterobacteria.

PLASMID REPLICATION INITIATION AT ORIGINS
OF REPLICATION
Plasmid replication starts at a specific location known as
the plasmid origin of replication, or ori. The origin of
replication contains nucleotide sequence motifs that are
recognized in trans by the replication machinery. This
machinery typically involves a combination of plasmid
and host elements. Since borrowing genes from the
host minimizes the metabolic cost of plasmid mainte-
nance, plasmid-encoded replicative elements are typically

restricted to replication initiation, with downstream steps
frequently relying exclusively on host proteins. Having
plasmid-specific mechanisms of replication initiation
ensures autonomy from the host and facilitates the reg-
ulation of plasmid copy number by providing specific
targets for regulation. Plasmid replication initiation
involves plasmid-encoded replication proteins (Reps)
and/or plasmid-specific primers. Even these plasmid
replication initiation factors are often assisted by host
proteins (see below).

Host proteins participating in plasmid DNA synthesis are
part of the machinery that replicates the chromosome at
oriC (recently reviewed in references 8 and 13–15) and/or
that restart replication following replication fork collapse
(reviewed in references 16–19). These include proteins
facilitating the melting of the DNA duplex (DnaA),
helicases (PriA, DnaB), proteins that catalyze primer
synthesis (DnaG) and primer extension (Pol I, Pol III
holoenzyme), proteins that process primers and gaps
(Pol I, ligase), proteins that control the local supercoiling
status of DNA (topoisomerases), and proteins that bind
and stabilize single-stranded DNA (ssDNA) (SSB). Note
that replication proceeds in the 5′ to 3′ direction. The
synchronous replication of leading and lagging strands
involves two core Pol III enzymes, with the enzyme
replicating the leading strand doing so continuously and
the enzyme replicating the lagging strand doing so dis-
continuously, i.e., in segments. The Pol III core enzymes
in the Pol III holoenzyme are joined by two τ (tau)
subunits and assisted by β units that act as mobile sliding
clamps, which ensures the coordination and processivity
of the replication in the two strands.

MECHANISMS OF PLASMID REPLICATION
Replication initiation determines the mechanics of plas-
mid replication. Within theta plasmids, we can distinguish
two broad mechanisms of replication initiation: oriC-like
(which parallels replication initiation at oriC) and PriA-
mediated (which is similar to replication restart after
replication fork collapse). The mechanisms involved in
these two categories of plasmid replication (as well as those
of nontheta plasmids) are systematically compared in
Table 1 and discussed in detail below.

oriC-like plasmids correspond to class A theta plasmid
replication. PriA-mediated plasmids correspond to theta
classes B, C, and D. Both categories converge at the DnaB
loading step and rely on the hosts’ Pol III holoenzyme to
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complete the replication of both strands. Thus, theta
plasmids are characterized by coordinated leading- and
lagging-strand replication, where lagging-strand replica-
tion is discontinuous. This leads to the generation of
bubbles in the early stages of replication that resemble the
Greek letter θ (theta) under the electron microscope,
which gives the name to this type of plasmid replication.

oriC Chromosomal Replication Initiation
DnaA is an AAA+-family ATPase that is central for
replication initiation in the chromosome. In this capacity,
DnaA has three roles: melting duplex DNA at oriC,
recruiting the replisome through DnaB helicase, and
controlling the timing of replication initiation.

DnaA binds DnaA boxes, 9-nucleotide (nt) motifs found
in the vicinity of oriC that have high affinity for DnaA.
Lower-affinity motifs (with small changes to the con-
sensus sequence) are also present, and these are only
recognized by DnaA-ATP. Cooperative oligomerization
of DnaA occurs when both low- and high-affinity DnaA
motifs are bound and leads to the formation of a nucle-
oprotein helical structure, which generates torsional
forces that open up the DNA in an adjacent, ATP-rich
area called the DUE, for DNA unwinding element (20,
21). The opening of replication origins by DnaA-ATP
occurs by a direct stretching mechanism, similar to other
nucleic acid-dependent AAA+ systems (22). The con-
tinued DnaA oligomerization in the top strand of the
exposed ssDNA and SSB binding to the bottom strand
keeps the DNA open (23, 24). DnaA filaments on ssDNA
are stabilized by an origin element composed of repeated
trinucleotide motifs (25). DnaB is loaded on the bottom/
lower strand first, possibly by direct interaction with
DnaA; DnaC loads DnaB on the top/upper strand in-
vaded by DnaA molecules (26, 27). The order of helicase
loading is important, providing the necessary orientation
for the head-to-head loading of the helicase (28). DnaB,
in turn, recruits DnaG, which is the primase. Primase
activity leads to the release of DnaC and to the recruit-
ment of the β-clamp loader and β-clamp and of the Pol
III core (one per each strand). Once the replisome has
been loaded, replication proceeds bidirectionally until the
two forks meet and resolve. The terminus region where
the two forks generally meet, which is antipodal to oriC,
is flanked by a series of 20-nt-long replication termina-
tion (Ter) signals that act as direction-dependent arrest
sites for fork progression, where forks are allowed to
enter but not leave (29, 30). This direction-dependent
arrest ensures that if one of the replication forks is

delayed, the two forks still meet and resolve in the ter-
minus region of the chromosome. The mechanism con-
ferring directionality to the fork arrest has not been
completely elucidated but involves DnaB-induced strand
separation and asymmetric contacts between a specific
terminator protein (Tus) and its cognate Ter sequence,
leading to a highly stable “locked” complex (31).

The specificity of DnaA-ATP for low-affinity DnaA sites
acts as a mechanism to control the timing of replication
initiation (20, 32). Following replication, DnaA-ATP
moves from oriC to chromosomal titration sites such as
datA (preference for DnaA-ATP) until the intrinsic
ATPase activity of DnaA is stimulated by a component of
the replisome (Hda) (33–35). DnaA is then recharged to
DnaA-ATP through new DnaA synthesis, by relocation
to DnaA reactivation sequences, or through contact with
acidic membrane phospholipids (35, 36). Two nucleoid-
associated proteins (NAPs), FIS and IHF, and Dam
methylation also help coordinate the timing of replica-
tion initiation because DNA bending by FIS and IHF and
binding of hemimethylated DNA by SeqA prevent ex-
tension of the DNA filament until the cell is ready for a
new round of replication (reviewed in reference 36).

oriC-Like Plasmid Replication Initiation
Similar to chromosomal replication at oriC, oriC-like
plasmid replication initiation involves recognition of a
sequence motif by a replication initiation protein. In this
case, however, the replication initiation protein (Rep) is
plasmid-encoded. Reps are generally named with letters
of the alphabet (e.g., RepA, RepB, RepE, etc.), but these
names are arbitrary, i.e., two Reps with the same name
being in different plasmids does not generally mean that
the two Reps are phylogenetically related. Methods for
typing plasmids based on sequence homology are dis-
cussed further below.

The role of Reps in class A theta replication initiation is
summarized in Fig. 1. Class A theta replicons typically
include a replication initiator, DnaA boxes upstream or
downstream of the Rep, iterons, and an AT-rich DUE.
As an example, Fig. 1 shows the arrangement found in
plasmid R2K, which belongs to the IncP compatibility
group. Sites for binding of NAPs (such as IHF) or for
methylation by Dam methylase are frequently present as
well. Reps cooperatively bind iterons until those iterons
are saturated. Next, the DnaB helicase is recruited through
Rep, with a variable involvement of DnaA binding to
adjacent DnaA boxes, leading to open complex formation.
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Despite clear mechanistic similarities with oriC, Rep
function in these plasmids appears to be only partially
redundant with that of DnaA. Some Reps have been
shown to bind DnaA (37–39), and DnaA boxes are fre-
quently found in plasmid origins of replication (40–42),
suggesting some level of cooperation between the plas-
mid and the chromosome replication machineries.
Compared to DnaA, plasmid Rep proteins in IncP plas-
mids (which are the ones that have been most thoroughly
studied) also have important functional differences; for a
side-by-side comparison, see Table 2. Both IncP Reps and
DnaA cooperatively oligomerize upon binding specific

repeats, which creates torsional forces leading to the
melting of the DNA duplex nearby and to the formation
of an open complex. However, while IncP plasmid Rep
monomers bind DNA through winged helix domains,
DnaA does so through a different domain (helix-turn-
helix [HTH]). The cognate binding sites for Reps are
unrelated to DnaA boxes: they are direct repeats of about
20 nt in length known as iterons (43–45). Iterons are
intrinsically bent (8, 46), and their spacing matches the
helical periodicity of the DNA double helix (47), con-
sistent with the formation of a helical oligonucleoprotein
structure, but the existence of such a structure has not

Figure 1 Role of replication initiation proteins in initiation in class A theta plasmid replication (based on references 43 and 97). Class A theta 
replicons typically include a replication initiator gene: rep (rectangle), DnaA boxes upstream or downstream of the Rep (square), iterons (arrow 
heads), and an AT-rich DNA unwinding element (DUE, oval). Sites for binding of nucleoid associated-proteins (such as IHF) or for methylation 
by Dam methylase are also frequently present as well but not shown. oriV of the RK2 plasmid (which belongs to the IncP compatibility group) is 
shown as an example. RK2’s replication initiator is TrfA. The trfA gene is under the control of a strong promoter. Transcription produces two 
products (a longer and a shorter one) that in this figure are considered largely redundant. During plasmid origin recognition (phase 1), replication 
initiation proteins (in their monomeric forms) cooperatively bind iterons until those iterons are saturated. The formation of an open complex 
(phase 2) involves unwinding of the DUE and continued binding of the replication initiator into the bottom strand of ssDNA; the rest of the 
bottom strand of ssDNA and the top strand are bound by SSB, which is a tetramer. In the case of RK2, the plasmid encodes its own SSB, which is 
under the control of the same promoter as the replication initiator gene (trfA). DnaA enhances/stabilizes the formation of the TrfA-mediated 
open complex and assists with the recruitment of DnaBC. Finally, the longer form of TrfA also assists in strand-specific replisome assembly in a 
DnaA-independent manner via direct interaction with the β clamp and through a sequence-specific interaction with one strand of the plasmid 
origin DUE (8, 136).
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been demonstrated for Reps (8). Another important
difference is that Rep binding of iterons does not require
ATP (48, 49); this is unlike DnaA, which has to be in the
ATP-bound state to bind high-affinity sites. Finally, while
DnaA is monomeric, IncP Reps can form dimers, a
mechanism that is critical for the regulation of plasmid
copy numbers (see below).

PriA-Mediated Replication Fork Restart
Primosome (PriA-mediated replisome) assembly is a
pathway specializing in replication fork restart (19). PriA
is recruited by free 3′ ends representing the nascent
leading-strand DNA close to the branch junction, which
is the landmark of stalled DNA replication forks (16, 17,
19). Three-way junctions can also be found when a third
strand pairs to one of the main strands in the melted
double helix, displacing the other complementary main
strand. If the third strand is RNA, this structure is called
an R-loop; if it is DNA (for example, as a result of strand
invasion during recombination or as a result of primer
extension), the structure is called a D-loop. A stalled fork
can also produce a large single-stranded DNA gap, in
which lagging-strand DNA synthesis has proceeded past
the nascent leading strand. These large ssDNA gaps ap-
pear to be the preferred substrate of a PriA homologue,
PriC (50). PriA recognition is mediated by a small

binding pocket at the N-terminal domain. This directs
the proper positioning of the helicase domain of PriA on
the double-stranded DNA (51). Primosome assembly
involves two additional proteins (PriB and DnaT) that
form a PriA-PriB-DnaT-DNA quaternary complex that
loads the DnaB/C complex onto the lagging strand.

The PriA pathway of replication initiation was originally
identified in DnaA-deficient mutants and described as
stable DNA replication (SDR) (52). SDR can be achieved
in at least three different ways: (i) increased R-loop for-
mation (the processing of R-loops by RNaseE or by
RNaseH leads to the formation of a free 3′-OH that can be
used for replication restart, leading to constitutive SDR
[cSDR] [53–55]), (ii) increased recombination, a phe-
nomenon known as inducible SDR (iSDR) (in this case, the
generation of a free 3′-OH involves exonuclease processing
of the invading strand), and (iii) formation of 3′ flaps after
replication fork collision in replication termination (Ter)
sites [RecG SDR] [reviewed in references 30 and 53]).

R-loops have become the focus of increased attention due
to their role in generating genetic instability in cancer and
in neurodegenerative disease as well as their role pro-
ducing genetic variation during somatic hypermutation
(56–58). In prokaryotes, unscheduled R-loop formation
can be highly deleterious, causing transcription blocks and

Table 2 Comparison between DnaA and theta A Rep-mediated replication initiationa

Feature DnaA Rep References
Structural domains HTH domain Winged helix domain 143, 144

DNA cognate site DnaA box Iterons 8, 43

Number of nucleotides bound 3 3 22, 144, 145

DNA melting AT-rich DUE AT-rich DUE 14, 20, 21, 146

Can bind within single-stranded region of
melted DUE

Yes Yes 22, 145, 147

ATP binding to replication initiator required
for DNA melting

Yes, used to regulate
the timing

No, instead timing regulated by transcriptional
autoregulation, monomer concentration and
activation, and handcuffing

48, 49, 148

Presence of high- and low-affinity binding
motifs in the ori

Yes, role in controlling
oligomerization

No 20, 32

Melting assisted by NAPS; DnaA binding to
origin of replication enhanced by the presence
of NAPS IHF and HU

Yes Sometimes 46, 149–151

Role in recruitment of replisome Yes Yes 26, 28, 49, 103,
136, 144, 152

Role in transcriptional autoregulation No Sometimes 44, 153

Formation of dimers in solution No Yesb 44, 153, 154
aLargely based on reference 8.
bpAMbeta1 is the exception (72).
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inhibiting elongation (59–61). During transcription, the
DNA duplex is transiently opened to allow access of the
RNA polymerase (RNAP) to the template, and a short 8-
to 10-bp-long RNA:DNA hybrid is generated upon initi-
ation of RNA synthesis (62). As the RNAPmoves forward,
the formation of R-loops is prevented because the size of
this RNA loop is maintained by the displacement of the
nascent RNA via an RNA exit channel and by the re-
annealing of the upstream DNA strands (53). Coupling
transcription to translation and factor-dependent tran-
scription termination are additional mechanisms pre-
venting the hybridization of nascent transcripts with DNA
in E. coli (62–64). However, increased R-loop formation
can be observed in genetic backgrounds favoring negative
supercoiling due to decreased topoisomerase I activity or
increased gyrase activity, in strains that are deficient in
RNaseH, or in strains harboring point mutations in RNAP
that favor R-loop formation (reviewed in reference 53).
Unscheduled R-loops may also form when the RNA po-
lymerase falls off (a process that can be facilitated by DksA
[65]) or as a result of RNaseE-mediated cleavage and fa-
cilitated rotation of the transcript (63).

Three classes of theta plasmid replication depend on
PriA-dependent replisome assembly: class B, which
corresponds to ColE1-like plasmids, class C, which cor-
responds to ColE2 and ColE3 plasmids, and class D,
which corresponds to pAMβ1 and other large, low-copy
streptococcal plasmids (reviewed in reference 66). All
three classes recruit PriA via R-loop formation, leading
to replicon assembly on the lagging strand. Despite
assembling a potentially bidirectional replication fork,
replication is unidirectional because these replicons have
replication blocks on the 5′ end (67, 68).

Class B theta plasmid replication is illustrated in Fig. 2.
These origins of replication encode an RNA transcript
(RNAII) that acts as the third strand in a melted duplex
DNA, generating an R-loop. The formation of this R-
loop is guided by a G-rich sequence in the ori DNA that
pairs with a C-rich stretch in the transcript. Two hairpin
structures further downstream in the preprimer are also
important functional elements for R-loop formation,
preprimer processing, and extension (reviewed in refer-
ence 66). Following its complete transcription, the
preprimer RNA in this R-loop is processed by RNaseH to
generate a free 3′-OH terminus that is extended by DNA
polymerase I (Pol I). RNaseH processing requires the
transcript to be in the right conformation and orienta-
tion. Pol I extension of the RNA primer further opens the

duplex and reveals a hairpin structure in the lagging
strand that can serve as a primosome assembly signal
(pas). Primosome assembly initiates the coordinated
replication of both strands by Pol III, although there is
some evidence that Pol I can functionally replace Pol III
(69). The mutation footprint produced by error-prone
Pol replication also suggests that when the replisome
finishes replicating the leading strand, it leaves a gap of
approximately 500 nucleotides on the lagging strand that
is filled in by Pol I (69). The formation of the R-loop is the
only essential step in this process. In the absence of both
RNaseH and Pol I, replication initiation is still possible in
class B theta plasmids, albeit at reduced efficiency (70).

Class C (ColE2 and ColE3) plasmids encode a Rep
(RepA) protein that has a dual function as replication
initiation factor and as a primase. The primase produces
a unique primer: ppApGpA (71). This primer is extended
by Pol I, recruiting the replisome through the primosome
assembly pathway, as seen in ColE1. Given that, in this
case, the primer is produced by a plasmid-encoded Rep,
the cis ori sequence required for replication initiation is
minimal, only 32 to 33 nt (68).

In class D theta plasmids, replication is initiated by
processing of a long transcript, but in this case, the tran-
script is at the same time the mRNA encoding for a rep-
lication initiator factor (RepE in the case of pAMβ1). RepE
assists with duplex melting (72), but it does not appear to
be involved with the recruitment of the replisome, because
(similar to ColE1) replisome recruitment involves exten-
sion by Pol I of a transcript, leading to D-loop formation,
and uncovering of a cryptic pas site, leading to primosome
assembly (73). Two unique features of type D theta plas-
mid replication are that the Rep (RepE) has an active role
in primer generation, either by pausing transcription or by
processing the transcript (74) and that Pol I progression is
arrested at two sites:∼190 nt and∼230 bp downstream of
the RNA-DNA switch, respectively. The arrest likely
assists with the switch from Pol I to Pol III and appears to
be mediated by a plasmid-encoded topoisomerase I-like
enzyme (first site) (75) and by a collision with the plas-
mid-encoded site-specific resolvase, Resβ, bound to its
resolution site (second site) (76).

Nontheta Plasmid Replication
Two nontheta types of plasmid replication initiation rely
on signals in the plasmid ori sequence forming higher-
order secondary structures that are recognized by Reps.
The two types are strand displacement and rolling-circle
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replication. These two alternative types of plasmid rep-
lication differ from theta plasmid replication in two ad-
ditional key aspects: (i) lagging-strand synthesis is
decoupled from leading-strand synthesis, and (ii) lag-
ging-strand synthesis is continuous.

In the case of strand displacement, replication initiation
is mediated by RepC, which (similar to class A theta

plasmids) binds cognate iteron sequences and melts an
adjacent DUE. In this case, though, DUE melting is
assisted by a plasmid-encoded helicase, RepA, and
exposes two initiation signals known as single-strand
initiation (ssi) sites. There is one site on each strand. Each
ssi forms a hairpin. The base of this hairpin is recognized
by a plasmid-encoded primase, RepB, which generates a
primer. Note that RepB is the only primase used here;

Figure 2 For replication initiation, the ori transcript RNAII acts as the third strand in a melted duplex DNA, generating an R-loop, guided by
G-rich sequences in the ori DNA that pair with C-rich sequences in the transcript; other hairpin structures further downstream in the preprimer
are also important for R-loop formation, preprimer processing, and extension (reviewed in reference 66). Processing of the R-loop terminus by
RNaseH generates a free 3′-OH terminus. RNAII needs to be in the right conformation and orientation for processing by RNaseH. The 3′-OH
terminus generated by RNaseH processing is extended by DNA polymerase I (Pol I), further opening the duplex and revealing a hairpin structure
in the lagging strand that can serve as a primosome assembly signal (pas). PriA-mediated replisome assembly starts the coordinated replication of
both strands by Pol III, although there is some evidence that Pol I can functionally replace Pol III (69). For antisense RNA regulation, as it is being
transcribed from promoter P2 in the sense direction, the preprimer (RNAII) forms three symmetrical stem-loop structures (stem-loops 1, 2, and 3
[SL1, SL2, and SL3]). A small and short-lived antisense transcript (RNAI) that is transcribed from a promoter going in the opposite direction also
forms these three stem-loops. The RNAII nascent transcript and the antisense RNAI contact each other through the 6- to 7-nt loop portion of
their respective stem-loops. This pairing makes the preprimer incompetent for R-loop formation, thus blocking replication initiation (reviewed in
references 66, 92, and 93). The half-life of RNAI is short because it contains RNase E recognition sites. Preprimer transcripts larger than 200 nt
long are refractory of RNAI-induced inhibition because they form an alternate stem-loop (SL4) by pairing two sequence areas of the transcript
(α and β), further reducing the effective half-life of RNAI. This short half-life ensures that RNAI-mediated suppression of replication initiation is
reflective of plasmid copy number.
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this is unlike theta C plasmids, which have a primase that
initiates replication and then switch to DnaG. This
primer is extended by Pol III, forming a D-loop (reviewed
in references 77 and 78). Strand-displacement plasmids
are unique in the number of replication enzymes they
encode in addition to replication initiation, which allows
these plasmids to function in a wide range of hosts (see
“Broader Biological Context: Host Range” below).

In the case of rolling-circle replication (reviewed in ref-
erence 79), replication of the two strands is completely
asynchronous. Leading-strand replication starts at the
double-strand origin (dso), which has a hairpin cruci-
form structure. The dso is recognized by a plasmid ini-
tiation factor (RepC), which nicks this structure,
generating a 3′-OH terminus at the nick site. This 3′-OH
is extended by Pol III. RepC also catalyzes the final trans-
esterification step that joins the 5′ end generated by
replication and the 3′ end generated in the cleavage site,
sealing the replicated leading strand and producing a
single-strand intermediate. The presence of a circular
single-strand intermediate is a hallmark of this class of
plasmid. Lagging-strand synthesis starts at a single-
strand origin (sso) with the generation of a primer by the
host primase DnaG. This primer is extended by Pol III,
apparently without the need for a helicase because the
template is single-stranded.

SEQUENCE-BASED CLASSIFICATION OF PLASMID
REPLICONS
Replicons can also be classified according to sequence
homology. The first sequence-related classification meth-
od grouped replicons based on incompatibility, i.e., on the
observation that when two low-copy-number plasmids
cannot be distinguished by one or more maintenance
systems, the two plasmids are randomly partitioned into
daughter cells, leading to the loss of one of them (80). Five
compatibility groups were initially defined in E. coli
according to conjugation experiments in E. coli (81).
These 5 compatibility groups were later expanded to 23.

Detection of sequence homology based on primers for
regions that are unique to each plasmid group was later
developed; these methods are collectively known as PCR-
based replicon typing, or PBRT (82). The target for the
diagnostic primers in enterobacteria is listed in Table 3
(column 3). PBRT was consistent with the original
conjugation-based scheme and has become the most
commonly used technique for plasmid typing in

Enterobacteriaceae (28 incompatibility [Inc] groups).
More recently, PBRT has been extended to Pseudomonas
(14 Inc groups) and Staphylococcus (18 Inc groups).
Table 3 summarizes the Inc groups found in Entero-
bacteriaceae, listing their shared associated biological
traits and some specific plasmids belonging to each of
these groups. Note that there is a direct correspondence
between some Pseudomonas and enterobacterium Inc
groups (noted in column 1).

A set of mobility (MOB) genes, which are relaxases in-
volved in conjugation, have been used as an alternative
for replicon typing (83). Even though this method
excludes nonconjugative plasmids, it produces higher
granularity and is consistent with the PBRT method, as
each Inc type corresponds to relaxases of a single MOB
superfamily. For the remainder of the review, we are
going to refer exclusively to the PBRT classification.

REGULATION OF PLASMID REPLICATION
Plasmid replication initiation is subject to tight regulation
because plasmid copy number determines the plasmid
gene dosage present at any given time in the cell, which in
turn has a direct impact on the level of expression of all the
genes encoded in the plasmid. Indeed, unlike transcrip-
tion, which allows for gene- or operon-specific regulation
through individual promoters, gene dosage consistently
impacts the expression of all the genes encoded in the
plasmid (84). Thus, tight control of steady-state plasmid
copy number is critical, particularly with plasmids ex-
pressing a large number of adaptive genes. The timing of
plasmid replication and plasmid segregation should also
be critical for optimizing a plasmid’s adaptive value due to
their impact on plasmid gene dosage.

Plasmid copy number is mainly regulated through con-
trol of replication initiation by mechanisms that are
sensitive to the abundance of plasmid copy number rel-
ative to cell volume (43, 44, 85). Having multiple origins
of replication and/or multiple replicons can provide ad-
ditional versatility in the control of plasmid copy number
(see below).

The regulation of replication initiation in class A theta
plasmids is illustrated in Fig. 3. It is based on several
factors: (i) Rep proteins are limiting and can be targeted
by proteases, (ii) Rep proteins may need to be in an ac-
tivated monomeric form to bind their target iteron se-
quences, a process that can be facilitated by chaperones,
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Table 3 Inc plasmid classification and associated biological traits

PBRT group
(corresponding
Pseudomonas
PBRT in
parenthesis)

Examplesa Targets for
PCR-based
replicon
typing (82)

Plasmid
copy
number
(10)

Size
range
(kb)
(10)

Host range (5, 10) HGT (10) Additional notes

IncP (IncP-1) RK2 (1α)
R751 (1β)
pJP4
pQK54
pKJK5
RP1
RP4
R68
R18

Iterons 5–7 70–275 Broad Conjugative Environmental: found in
manure, soils, water treatment
plants
Extremely stable

IncHI1 R27 Low 75–400 Broad Conjugative HI1A/B multireplicon,
frequently also IncFIA/B,
occasionally also IncX1

IncHI2 R478 Low 75–400 Broad Conjugative Usually IncF-compatible

IncFIA F Iterons Low 45–200 Enterobacteriaceae Conjugative Multireplicon plasmid with
combinations of FIA/B, FII,
and FrepB
Most frequent in human
(North and South America)
and animal (Asia) sources

IncFIB repA

IncFII R1
NR-1
R6-5

repA2

IncFrepB RNAI/repA

IncN N3
pCU1
R46

repA Low 30–70 Broad
(relative)

Conjugative Animal-associated
environments
Often colocalized with IncF

IncA/C
(IncP-3)

RA1,
pRMH760

repA Low 18–230 Narrow Conjugative

IncL pK01-34
R471
pEL60

repA, repB,
repC

Low 60-90 Broad Conjugative Highly conserved, sharing the
majority of their genes.
Important role in dissemination
of β-lactamases

IncR pKP1780 repB 40–160 Broad Mobilizable

IncY P1
pMCR-1-
P3

repA Low 90–140 Prophage

IncQ (IncP-4) RSF1010
IncP-4
R1162
R300B

Medium
(4–12
copies/
cell)

8–14 Broad Mobilizable Lacks partitioning or
plasmid stability system

IncW R388
R7K
pSa
pVX2

repA Low <40 Broad Conjugative
Smallest
conjugative
plasmid;
can act as
helper for
ColE and
IncQ

ColE ColE-like ori Variable
(1–20
copies/
cell)

6–40 Narrow Mobilizable Produce colicins, proteins
produced by certain strains of
E. coli lethal for related strains
Associated with the spread of
qnrS1, qnrB19

aPartially based on reference 97.
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(iii) Rep proteins often bind iterons in their own pro-
moter, sterically hindering transcription by the RNA po-
lymerase, and (iv) once bound to their target iterons, Rep
proteins can mediate the coupling of plasmid origins from
different plasmids, blocking replication initiation (a pro-
cess known as handcuffing).

A variation on Rep autoregulation as a mechanism for
control of plasmid copy number has been described for
IncP plasmid RK2. The promoter for its rep protein
(TrfA) is controlled by two plasmid-encoded regulators,
KorA and KorB, which bind to sites that overlap with the
trfA promoter sequence. Cooperatively, they suppress

Figure 3 Replication initiator proteins as negative regulators of replication. The rate of replication is determined by the concentration of free
(non-Rep-bound) iterons, which is determined by both plasmid copy number and cell volume. Given the cooperative interactions involved in
saturating iterons, this regulatory mechanism is ultrasensitive to plasmid copy number and switch-like. Generic class A theta replicon structure:
rep gene (rectangle), DnaA boxes, which can be found upstream or downstream of the Rep (squares), iterons (arrowheads), and an AT-rich DNA
unwinding element (DUE, oval). (A) Replication initiator proteins (Reps) when the plasmid copy number is low. Reps (blue circles) are expressed
from strong promoters and tend to be in their monomeric (active) form; in some cases, the activation of these monomers needs to be facilitated
by chaperones (purple stars). Reps are also sensitive to protease activity (green ovals). Active monomers bind iterons until saturation; in
some cases, additional clusters of iterons are present to decrease the level of Rep available, further tightening plasmid copy number control (86).
(B) Replication initiator proteins when plasmid copy number is high. High Rep protein expression resulting from a high plasmid copy number
favors the dimeric form of Rep. The symmetrical conformation of the dimeric form matches inverted iterons found in the promoter of rep genes.
This results in a binding affinity for the promoter that is higher than that of the RNA polymerase, blocking rep transcription (137). Tran-
scriptional autorepression by Reps is seen in IncFIA, IncN, and IncP plasmids and is also consistent with the structure of replicons from other
groups, such as IncHI1 and IncY, although in the case of IncN and IncY, the iterons that overlap with the Rep promoter are not inverted (43, 138).
Rep dimers can also bridge Rep-bound iteron arrays, one of the proposed mechanisms of handcuffing (see panel C3). (C) Different handcuffing
mechanisms. Once iteron-bound Rep arrays form, they can couple two different plasmids, a reaction in trans known as plasmid handcuffing that
blocks ori melting by steric hindrance (139). Three mechanisms that pair different plasmids through iteron-bound replication initiation proteins
have been proposed (43). From left to right: direct dimerization of the iteron-bound initiators (proposed for the plasmid RK6 [140]), direct
interaction between arrays of iteron-bound monomers, associated with a Rep conformational change induced by iteron binding (proposed for the
plasmid pPS10 [141]), and bridging via dimer formation (proposed for RK2 [139]). Chaperones counteract handcuffing by facilitating the
dissociation of dimers to monomers or by increasing monomer-to-dimer ratios (139, 142).
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TrfA expression about 1,000-fold (86). So, in this case,
instead of the rep itself, regulation is mediated by two
other plasmid-encoded proteins.

Dimerization, illustrated in Fig. 3B, has been best studied
in IncP (R2K, R6K, PS10) plasmids. The increased syn-
thesis of Rep associated with high plasmid copy number
shifts the equilibrium between the monomer and dimer
Rep form toward the dimeric form, which is not com-
petent for iteron binding, thus suppressing replication
initiation (43). Chaperones such as ClpB or Dnak/DnaJ/
GroE control the conversion from dimer to monomer
and also the activation of monomers (44). Proteases such
as ClpAP control the level of active monomers as well
(87). In RK2, the activity of specific proteases against
TrfA is modulated by binding to iterons, and the effects
can go in either direction; i.e., iteron binding can increase
or decrease initiator sensitivity to proteases depending on
the specific protease (88).

High plasmid copy number can also lead to handcuffing,
i.e., to the formation of bridges coupling plasmid origins
from different plasmids via iteron-bound Reps. This
bridge formation blocks replication initiation. In this
case, replication rate is more directly linked to iteron
abundance than to levels of Rep expression. Three plas-
mid-coupling mechanisms have been proposed and are
illustrated in Fig. 3C. These are: dimerization of iteron-
bound initiators (RK6), direct interaction between arrays
of iteron-bound monomers (pPS10), and dimer forma-
tion bridging iteron-bound monomers (RK2) (43).

Another group of plasmids use RNAI (short and highly
structured antisense transcripts) for regulation. The
pairing of these antisense RNAs allows the precise tar-
geting of specific areas of the transcript to block trans-
lation or to induce conformational changes in the
transcript. These antisense transcripts have a short half-
life, which is critical to enable tight regulation of repli-
cation initiation, due to the presence of RNaseE cleavage
sites (89). Antisense plasmid copy number appears to be
an example of parallel evolution because it is observed in
three groups of plasmids with different replication
mechanisms and because in each case the suppression of
replication initiation occurs by different mechanisms as
well. We explain them in greater detail below.

Several class A theta plasmids, including I-complex (IncI,
IncK, IncBO) and IncL plasmids, have a Rep whose start
codon overlaps with the stop codon of a short leader

peptide immediately upstream. Translation and correct
termination of the leader peptide facilitate the formation
of a pseudoknot between two short (8-nt) complemen-
tary sequences of leader sequence that is necessary for
Rep translation. RNAI blocks the translation of the leader
peptide by sterically hindering ribosomes attempting to
initiate translation of the leader peptide, therefore
suppressing the translation of the Rep as well (90, 91).

In class B (ColE1-like) theta plasmids, a short-lived an-
tisense RNAI and its complementary RNAII preprimer
target sequence form three symmetrical stem-loop struc-
tures that contact each other through the 6- to 7-nt loop
portion of their respective stem-loops (Fig. 2). The 5′ end
of RNAI (known as antitail) nucleates the hybridization
between the two RNAs to form an RNA duplex. This
pairing induces conformational changes in the preprimer
that make the preprimer incompetent for R-loop forma-
tion, thus blocking replication initiation (reviewed in
references 66, 92, and 93). Preprimer transcripts larger
than 200 nt are refractory of RNAI-induced inhibition,
further reducing the effective half-life of RNAI.

In class C (ColE2) theta plasmids, RNAI targets the 5′
untranslated region of the rep transcript, possibly in-
ducing conformational changes in the preprimer that
block its translation (94).

BROADER BIOLOGICAL CONTEXT: HOST RANGE
The vast majority of plasmids found in Entero-
bacteriaceae are conjugative or at least mobilizable (Table
3, column 7). This means that the ability of a plasmid to
replicate in a range of phylogenetically distant organisms
(exhibiting broad host range, or BHR) can be beneficial
in the long term because it allows a wider access to the
available gene pool.

Factors conferring BHR properties have thus been the
object of increased scrutiny (1, 95, 96). It turns out that
plasmids have to meet a surprisingly large number of
requirements to be able to replicate in different hosts.
These requirements include the compatibility between
plasmids and a variety of host replication factors, as well
as the compatibility of plasmid replication initiation and
transcriptional regulatory circuitry across hosts (84, 97).

BHR appears to be clearly advantageous under some
conditions, as some plasmid replication strategies appear
to have evolved to maximize host range. These include the
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evolution of DnaA-independent replication-initiation
factors (some Reps, RNA primers, and nicks) and of
plasmid-encoded replication factors (primases, helicases,
topoisomerases, polymerases, resolvases), which decreases
the dependency of these plasmids on adequate interaction
with host-specific factors. The acquisition/evolution of
plasmid-encoded replication factors is clearly the strategy
adopted by IncQ plasmids, which carry their own primase
and helicase (77, 78) and have an extraordinarily broad
host range that includes Alpha-, Beta-, Gamma-, and
Deltaproteobacteria and Cyanobacteria.

Another strategy is versatility, i.e., the availability of re-
dundant mechanisms of replication that allow function-
ality in different hosts. This includes the presence of
multiple origins of replication and of multiple replication
initiators and decreases the plasmid’s dependence on host
factor compatibility. IncN plasmids, for example, have
three origins of replication, oriB, oriS, and oriV. oriB
functions as the main origin of replication because it has
the iterons that bind RepA; however, in the absence of
these iterons, Pol I can still initiate replication at oriV
(98). In the absence of oriV, oriS can still start replica-
tion (99). Another example is the IncP compatibility
group R6K plasmid, which also has three origins of
replication: α, β, and γ. γ appears to be the post-
mobilization ori (which requires rapid amplification),
while α and β primarily support vegetative replication,
with a lower replication rate (100). An example of re-

dundancy in replication initiation factors is TrfA (the
Rep protein in IncP plasmids), which is expressed in two
different versions resulting from the alternate translation
of a single transcript using separate in-frame translation
start sites. In E. coli, both forms of TrfA can initiate
plasmid replication, whereas in Pseudomonas, only the
longer form is active because it is not dependent on DnaA
(101, 102). More recently, mutants adapted to a nonna-
tive species were shown to accumulate mutations at the N
terminus of the long form of TrfA, again pointing to this
form of TrfA as critical for extending host range (103).

On the other hand, the complex mechanisms of regula-
tion of plasmid maintenance and the strong genetic evi-
dence of plasmid adaptation to its host point to strong
selective pressures restricting plasmid host range. The
latter include analysis of G+C content and codon usage
and even evidence of host-specific evolution of single-
strand origin motifs (1, 95, 104). Thus, it seems that ad-
aptation of plasmids to their host is generally necessary to
optimize their contribution to the host’s fitness but that
this adaptation restricts access to broad genetic diversity.

Figure 4 shows the distribution of plasmid replicons in
233 random ExPEC samples collected at the University of
Washington hospital between 2009 and 2012 (105). We
found that the three most abundant replicons (IncF, IncI-
complex, and ColE) correspond to narrow-host-range
(NHR) plasmids, with observed frequencies of 66%,

Figure 4 Replicon representation in ExPEC whole genomic shotgun sequences reported by the University of Washington (105). Only 233 of the
reported sequences were included in this analysis because of strict quality control standards. (A) Pie chart representation of the replicons
identified. The replicons are ordered clockwise from most to least abundant: IncF (n = 180), IncI complex (n = 44), ColE (n = 14), IncY (n = 13),
IncN (n = 8), IncP (n = 8), IncAC (n = 2), IncR (n = 2), and incL/M (n = 1). IncF denotes the presence of at least one of the following replicons:
IncFIA, IncFIB, IncFII, or IncFrepB. The Inc-I complex includes IncI1 (n = 17), IncK (n = 17), and IncBO (n = 10). Note that the number of
replicons (n = 272) is greater than the number of samples included (n = 233) because, often, multiple replicons can be found in the same sample.
(B) Representation of IncF replicons, which are largely mosaic combinations of IncFIA, IncFIB, IncFII, or IncFrepB. Again, these replicons are
ordered clockwise from most to least abundant: IB II repB (49.4%), IA IB II repB (22.8%), IA II repB (8.3%), II repB (6.7%), IA IB (5.6%), IA IB
repB (2.2%), IA (1.7%), IB repB (1.1%), repB (1.1%), IA repB (0.6%), and IB (0.6%). Note that these combinations may be found in different
plasmids; we are only showing combinations present in the same cell. Note also that we are observing a rapid sequence divergence for IncFII
replicons (not shown). Therefore, frequently, IncFII may not have been an exact match for our diagnostic sequence, producing false negatives.
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16%, and 5%, respectively. BHR plasmids (IncN, IncP,
IncL/M, and IncQ), by contrast, were infrequent: 3%, 3%,
0.5%, and <0.5%, respectively. This snapshot is consistent
with previous studies reporting IncF plasmids as one of
the most prevalent incompatibility types (10, 106) and
IncQ as “rarely detected” in Enterobacteriaceae (10). The
observed distribution of NHR and BHR plasmids in
ExPEC supports the proposed tradeoff between adaptive
value for the host and access to genetic diversity. This
hypothesis predicts a strong representation of NHR plas-
mids because they are optimally suited to their hosts and
therefore tend to have a stronger positive effect on fitness.
This model also predicts the retention of BHR plasmids at
low frequency, driven by the benefit of broadening genetic
diversity available to the population as a whole.

Figure 4B shows the distribution of IncF replicons in
samples that have at least one IncF replicon. Of all IncF
samples, only 4% have a single replicon. The replicon
mosaicism of IncF plasmids is well established (3, 107).
The factors driving this mosaicism are not clear. Part of it
appears to be specialization reminiscent of that of R6K,
with IncFII likely involved in establishment following
conjugation and IncFIA as the primary replicon sup-
porting vegetative growth (reviewed in reference 3). The
frequent linkage between IncFIA and IncFrepB may be
driven by expanding the compatibility range to allow
different IncF plasmids to stably coexist in host cells, as
the presence of two compatible replicons overrides the
incompatibility between individual replicons (107, 108).
As the fraction of genetic diversity carried by one type of
NHR plasmid (IncF plasmids in this case) increases,
there should be increasing selective pressure for the stable
acquisition of multiple variants of these plasmids in the

cell. In this scenario, the availability of expanded com-
patibility should provide mosaic replicon plasmids such
as IncF or IncHI1 with a selective advantage.

Figure 5 shows the distribution of replicons per sample,
which for host cells with at least one replicon follows
roughly a normal distribution centered around an aver-
age of 3.28 per sample. This high average is driven by the
abundance of mosaic IncF plasmids; if we lump all IncF
replicons in one category, the average goes down to 1.2,
highlighting both the strong representation of IncF
plasmids in our strains (Fig. 4A) and the mosaic nature of
these replicons (Fig. 4B).

BROADER BIOLOGICAL CONTEXT: PLASMID
MAINTENANCE
Given that plasmid replication initiation determines the
plasmid gene dosage present at any given time in the cell,
which in turn has a direct impact on the level of expres-
sion of all the genes in the plasmid, controlling plasmid
copy number is critical for optimizing a plasmid’s adaptive
value for the host. Controlling the timing of replication
initiation and plasmid segregation should be important as
well, as these processes also have an impact on gene
dosage. Therefore, regulation of plasmid replication needs
to be understood in the broader context of plasmid
maintenance, including control of plasmid segregation
through partition (par) systems and post-segregational
counterselection through toxin-antitoxin (TA) plasmid
addiction systems.

The presence of multiple versions of these functional
elements adds further complexity. This includes alternate
origins of replication within a single replicon as in the
cases of IncP and IncN plasmids discussed above (96, 99),
mosaic replicons such as IncF and IncHI1 (3, 109), and
examples of cointegrated replicons (110–112) and of
multiple par (113, 114) and/or TA systems (115, 116)
coexisting in the same plasmid. We believe that all these
systems are tightly interconnected, maintaining the del-
icate balance between optimizing the adaptive value of
the plasmids and access to genetic diversity.

TA systems counterselect plasmid-free cells through post-
segregational killing or growth inhibition of plasmid-
free cells. According to their mechanism of action and
regulation, TA systems can be classified into six types
(types I through VI). They typically consist of two
elements: a stable protein that targets essential cellular

Figure 5 The distribution of replicon number per clinical sample is
shown as a bar graph. The average number of replicons for samples
that have at least one plasmid is 3.26. If all IncF replicons are con-
sidered as a single category, the average number goes down to 1.2.
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processes (the toxin) and short-lived protein or an un-
translated antisense RNA species inhibiting the toxin ac-
tivity (the antitoxin). Antitoxins are more labile than
toxins because they are degraded more efficiently by host
enzymes. Loss of the antitoxin when the plasmid is no
longer present allows the toxin to reach or act on its target,
causing death or growth restriction in the cell (for com-
prehensive reviews, see references 117 and 118). More
recently, additional roles for TA systems have been rec-
ognized, including adaptation to intracellular environ-
ments, stress response (induction of persistent state and of
programmed cell death), and postrecombinational killing
(117, 119).

Most TA systems found in plasmids correspond to types
II and III, with type II being the most abundant in vir-
ulence plasmids (5). Type II TA systems have been cat-
egorized into eight superfamilies: RelBE, MazEF, VapBC,
CcdAB, ParDE, HigAB, HipBA, and Phd-Doc (120). In
these TA systems, both the toxin and the antitoxin are
proteins. The toxin usually consists of two distinct do-
mains: a DNA-binding domain at the amino-terminus
and a toxin-interacting domain at the carboxy-terminus.
The antitoxin binds the toxin, forming a protein complex
that results in toxin sequestration and inactivation.

Partition (par) systems are found in replicons of above 25
kb and ensure that all daughter cells receive at least one
plasmid following segregation. Par systems may also be
needed to counteract plasmid eviction toward nucleoid
edges (121). These systems have three components: a
motor protein, a centromere-like specific DNA sequence,
and a DNA-binding protein that oligomerizes and serves
as an adaptor to connect the motor with the centromere
(reviewed in reference 122). The two main types found in
plasmids differ in the mode of action of their motor
proteins. Type I par systems, such as parABS and sopAB,
have Walker-type ATPases as motor proteins that form
dynamic gradients in the cell that pull plasmids along. In
contrast, type II systems, such as parMRC and stbAB,
have actin-like motor proteins that push plasmids apart
as they oligomerize. Most plasmids of above 180 kb carry
ParAB systems, so type I par systems appear to be better
suited for large plasmids (121).

CLUSTERING OF PLASMID MAINTENANCE ELEMENTS
Functionally related elements tend to cluster together as a
way to facilitate their stable coregulation/cross-talk (2,
123, 124). This is particularly important in plasmids,

which undergo a very high rate of recombination and
could then lose elements that are needed (125). With this
in mind, we looked for protein functional domains (using
the PFAM database [126]) that are consistently found
within a 10-kb window centered on the PCR amplicon
used for PBRT classification in 761 fully assembled E. coli
genomic sequences available in NCBI as of April 2019.
We defined “consistently” as seen in >75% of the isolates
for one or more of the Inc groups. The results are shown
in Fig. 6, which shows protein family (PFAM) repre-
sentation compiled using color-coding, with darker
colors representing a higher prevalence of protein fami-
lies within each Inc group. Inc groups were arranged by
similarity using a hierarchical clustering algorithm and
were grouped into five functional categories: replication
initiation, plasmid maintenance, environmental stress
protection, conjugation/mobilization, and other factors.

IncFIA replicons stand out for the presence of plasmid
maintenance systems associated with the ori. We find a
consistent association between the IncFIA ori and genes
encoding ParB, ParBc, and another segregation-related
PFAM (centromere-binding protein HTH domain). The
association of IncF with plasmid par genes is well es-
tablished (3, 127). IncFIA is also consistently associated
with the CcdA/CcdB TA (type II) system. F-like plasmids
have been reported to carry at least one representative of
the various subfamilies of type II TA systems (3). The
location of ccdAB genes adjacent to the origin of repli-
cation of the F plasmids has been previously reported and
thought to enhance IncFIA replicon stability by coupling
plasmid replication to host cell division (128).

Notably, our clustering of consistently represented
PFAM groups in Fig. 6 identified three clusters that in-
clude Inc replicons that share functional commonalities,
highlighting the functional connection between replicons
and TA and segregation systems that are found in close
physical proximity.

Cluster I includes IncFIA, IncFIB, and IncN. These three
replicons share a homologous Rep, although their regu-
latory mechanisms show considerable divergence (95).
They also share the presence of a phage integrase in the
vicinity of ori. Y-family polymerase UmuDC is close to the
ori at some frequency in these three incompatibility types
(as well as in IncP and IncHI1). This polymerase may
provide increased genetic diversity (129) and/or protection
from DNA damage (130, 131), although how its associa-
tion with ori is relevant to its functionality is not known.
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Cluster II comprises IncL, IncFII, and IncFrepB
replicons. These replicons are all regulated by RNAI
suppression of leader peptide translation, with the pre-
sence of a pseudoknot (85, 90, 91). IncFII, IncFrepB, and
IncL share rolling-circle replication regulatory protein
repB, which is likely associated with conjugation.

Cluster III includes IncHI1A, IncR, and incY, which share
a homologous Rep (95). ParAB (type I partition system) is
consistently associated with the ori in these three in-
compatibility groups. In addition, IncR plasmids have

ParBc close to their plasmid ori, and IncHI1A plasmids
have a type II par gene. ParB-type proteins have recently
been recognized as a new class of CTP hydrolases that
act as molecular switches. During plasmid segregation,
these proteins work in concert with ParA and the pro-
karyotic SMC/condensin complex, mediating centromere
condensation into kinetochore-like structures (132, 133).

In contrast, IncP, IncHI2, and IncA/C have unique
PFAM ori profiles. IncA/C stands out for the low density
of PFAMs consistently found in the vicinity of the ori.

Figure 6 PFAM representation in the vicinity of plasmid replicons. Completely assembled E. coli plasmid sequences obtained from NCBI as of
April 2019 were grouped by Inc type based on the diagnostic PCR amplicons for the PBRT system (82). Within each incompatibility group, we
looked for PFAMmatches within a 10-kb window centered around the diagnostic PCR amplicons. PFAM protein families present in at least 75%
of the samples in at least one Inc group were identified and mapped to individual open reading frames. These PFAMs were also identified in other
Inc groups. These PFAM representation data were compiled into a matrix and plotted using color-coding, with darker colors representing a
higher prevalence of protein families within each Inc group. Inc groups are arranged by similarity using a hierarchical clustering algorithm for
PFAMs. Note that the percentage can be higher than 100% in the case of duplications or if two domains are found in the same ORF. PFAMs are
listed in the y axis, grouped in the following color-coded functional categories. Replication initiation-related PFAMs (orange): m5C methylase
(PF00145), initiator replication protein (PF01051), and IncFII RepA protein family (PF02387). Plasmid maintenance PFAMs (light blue): PemK
endoribonuclease toxin (PF01845) ParB-like nuclease domain (PF02195), StnA protein (PF06406), post-segregation TA CcdA (PF07362), ParB
family (PF08775), ParA AAA+ and HT domains (PF13614 PF18607), centromere-binding protein HTH domain (PF18090). Environmental
stress protection PFAMs (light gray): MerR family regulatory protein (PF00376), heavy metal-associated domain (PF00403), EamA-like
transporter family (PF00892), mercuric transport protein (PF02411), tetracycline repressor family (PF02909 PF00440), MerC mercury resistance
protein (PF03203), major facilitator superfamily (PF07690), MerR (PF09278), impB/mucB/samB Y family polymerase (PF13438, PF11799).
Conjugation/mobilization PFAMs (green): phage integrase family (PF00589), ProQ/FINO family (PF04352), replication regulatory protein repB
(PF10723), TraC_F_IV F pilus assembly (PF11130), DDE domain found in transposases (PF13610). Other PFAMs (white): EAL domain
(PF00563), phosphoadenosine phosphosulfate reductase family (PF01507), DUF1281 (PF06924), bacterial IgE domain (PF12245), bacterial IgE-
like domain (group3) (PF13750), DUF4165 (PF13752), ferredoxin-like domain in Api92-like protein (PF18406).
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IncP is very enriched for genes involved in protection
from environmental stress (8 of the 9 consistent ori-
proximal PFAMs). This is consistent with the association
of this plasmid compatibility group with bacteria isolated
from manure, soils, and water treatment plants (134,
135).

CONCLUDING REMARKS
The plasmid gene content, level and timing of gene ex-
pression, and DNA sequence (G+C content, codon usage,
etc.) need to be adjusted to the host for a given plasmid to
have maximal adaptive impact. This selective pressure
favoring adaptation tends to narrow plasmid host range
and conflicts with the need for access to a broader pool of
genetic diversity. Here, we argue that the trade-off be-
tween these two selective forces likely shapes the distri-
bution of replicons in populations of enterobacteria
based on two considerations: (i) a predominance of NHR
plasmids in the population of ExPEC, supporting the
adaptive value of these plasmids, coupled with a low but
consistent prevalence of BHR plasmids, suggesting that
expanded access to genetic diversity is important, and (ii)
the success of NHR mosaic replicon plasmids such as
IncF or IncHI1, which maximizes adaptive value while
moderately increasing access to genetic diversity by
making these plasmids compatible with other plasmids of
the same Inc group.

We also argue that, given its critical importance for
modulation of plasmid gene expression, the regulation of
plasmid replication needs to be understood broadly. This
includes the presence of redundant origins of replication,
of mosaic and cointegrated replicons, of plasmid segre-
gation systems, and of TA systems. The reason is that all
these elements control not only plasmid copy number at
steady state but also variations in plasmid copy number
relative to the host’s cell cycle, the presence of additional
plasmids, and the physiological state of the host cell.
Highlighting their tight functional integration with ori
function, all these elements are frequently found in close
proximity to the plasmid ori.
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