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Abstract

The aim of this study was to develop and validate a simulation platform that generates photon-

counting CT images of voxelized phantoms with detailed modeling of manufacturer-specific 

components including the geometry and physics of the x-ray source, source filtrations, anti-scatter 

grids, and photon-counting detectors. The simulator generates projection images accounting for 

both primary and scattered photons using a computational phantom, scanner configuration, and 

imaging settings. Beam hardening artifacts are corrected using a spectrum and threshold 

dependent water correction algorithm. Physical and computational versions of a clinical phantom 

(ACR) were used for validation purposes. The physical phantom was imaged using a research 

prototype photon-counting CT (Siemens Healthcare) with standard (macro) mode, at four dose 

levels and with two energy thresholds. The computational phantom was imaged with the 

developed simulator with the same parameters and settings used in the actual acquisition. Images 

from both the real and simulated acquisitions were reconstructed using a reconstruction software 

(FreeCT). Primary image quality metrics such as noise magnitude, noise ratio, noise correlation 

coefficients, noise power spectrum, CT number, in-plane modulation transfer function, and slice 

sensitivity profiles were extracted from both real and simulated data and compared. The simulator 

was further evaluated for imaging contrast materials (bismuth, iodine, and gadolinium) at three 

concentration levels and six energy thresholds. Qualitatively, the simulated images showed similar 

appearance to the real ones. Quantitatively, the average relative error in image quality 

measurements were all less than 4% across all the measurements. The developed simulator will 

enable systematic optimization and evaluation of the emerging photon-counting computed 

tomography technology.
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1. Introduction

Over the past several decades, computed tomography (CT) imaging has been extensively 

advanced to improve patient outcome by providing higher image quality at lower radiation 

risk. These developments include spiral imaging, multi-row detectors, higher rotation speed, 

dual-energy systems, and novel reconstruction algorithms.

A recent technological development in CT is the use of photon-counting detectors (PCD) 

[1–5], replacing conventional energy-integrating detectors (EID). PCDs are energy-sensitive 

detectors that directly convert an x-ray photon to electrical signal proportional to its energy 

[1]. Compared with EID-CT, recent studies on prototype PCD-CT systems have shown 

superior performance in terms of image noise, spatial resolution, contrast to noise ratio 

(CNR), artifacts, and material decomposition [6–15].

To bring the PCD-CT into clinical practice and to further enhance its performance, this 

technology still needs comprehensive assessments and application-based optimizations. 

These evaluations, ideally, need large scale application-based trials on actual patient images. 

However, such trials are challenging, considering the limited numbers of prototype PCD-CT 

scanners and the often-unknown ground-truth in the patient images. In addition, protocol 

optimization needs repetitive trials with multiple acquisitions at various imaging conditions. 

This is impractical in the context of patient trials due to radiation safety concerns and costs.

These challenges can be overcome by utilizing virtual clinical trials (VCTs), where an 

imaging experiment is performed using representative computational human and imaging 

models. VCTs are widely developed and utilized in x-ray-based imaging [16–24]. The utility 

of VCTs in PCD-CT is currently limited due to the lack of a standalone CT simulator that 

can generate PCD-CT images of computational phantoms with realistic considerations of a 

particular PCD-CT system.

We have recently developed and validated an EID-CT simulator, called DukeSim, that 

simulates vendor-specific EID-CT images [25]. Building upon our previous work, the 

purpose of this study was to extend DukeSim to simulate realistic PCD-CT images of 

voxelized computational phantoms while accounting for manufacturer-specific components 

including the geometry and physics of the x-ray source, filters, anti-scatter grids, and 

photon-counting detectors.

2. Materials and methods

The framework for the DukeSim PCD-CT simulator is shown in figure 1. In summary, the 

procedure is divided into three parts: (1) inputs, (2) simulations, and (3) processing. The 

inputs include the computational phantoms, information regarding the scanner geometry and 

physics, and the PCD model. The simulations consist of calculating primary signal, scatter 

signal, and the final projection images. The last step performs the data pre-processing and 

reconstruction. The following sections further explain the details of these steps.
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2.1. Computational phantoms

The simulator works with voxelized phantoms with each structure set to a unique integer 

corresponding to material definitions in a material file. The density and elemental 

composition for each material are defined based on ICRU Report 46 [26]. A given phantom 

is read by the simulator and the poly-energetic linear attenuation coefficients of all the 

materials in the phantom are computed using tables generated from the xraylib package [27].

2.2. Scanner and protocol configurations

The scanner configuration can be setup with a user-defined focal spot size, tube photon flux 

spectrum (function of kV), tube current (mA), bowtie filter, beam collimation, focal spot 

wobbles (also known as flying focal spots), source to detector distance, source to isocenter 

distance, anti-scatter grids, detector size, number of detector rows and columns, detector 

energy thresholds, number of projections per rotation, scan range, rotation speed, and pitch. 

A parameter file is setup to specify these variables.

2.3. Photon-counting detector model

The simulator expects a detector response model of a prototype PCD [28–30] including the 

average, noise variance, and noise covariance (in case of multiple energy thresholds) signals 

of an incident photon hitting the detector. The implementation of the detector model in 

calculating the projection images is explained in the following sections.

2.4. Primary signal

Using a ray-tracing strategy, the simulator tracks the primary photons starting from the 

source towards each detector element. For each detector (i, j), at the projection angle α, the 

primary signal Npr, is calculated using the Beer-Lambert law,

Npr(E, i, j, α) = 1
K ∑

k = 1

K
N0(E, i, j, α)

× exp −∑
m

μ(E, m, k)l(i, j, α, m, k)
(1)

where N0 is the number of photons at the source (post-bowtie filter), μ is the poly-energetic 

linear attenuation coefficient of material m (calculated using [28)), and l is the intersection 

length of the source-to-detector ray with the voxels of material m. To account for the finite 

sizes of the focal spot and detector elements, the ray-tracer calculates the intersection length 

K times, uniformly sampling the area of the focal spot and the detector elements. The effects 

of the bowtie filter (controlling N0) are modeled by attenuating the source spectrum through 

a bowtie filter with known geometry and material.

Using the PCD response model for a set of n energy thresholds, the primary count at each 

detector is estimated with a multivariate Gaussian variable with a mean vector of

M(pr)1 × n = ∑
E

Npr(E) . R E, tn 1 × n, (2)
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and the covariance matrix of

K(pr)n × n =

⋱ … … ⋮
⋮ ⋱ … ⋮
⋮ Cov(pr)v, w ⋱ ⋮
… … … ⋱

,

Cov(pr)v, w = ∑
E

Npr(E) . Cov E, tv, tw . (3)

Here, R(E, tn) is the probability of an incident photon at energy bin of E being detected at 

the energy threshold of tn. Cov(E, tv, tw) is the covariance between the signals recorded at 

the energy thresholds of tv and tw for an incident photon at the energy bin E. The R(E, t) and 

Cov(E, tv, tw) used in this study were based on a MC simulation of a cadmium telluride 

(CdTe) detector with 5.86 g cm−3 density and 1.6 mm thickness. This MC simulation 

calculated the expected values and covariance matrix considering the x-ray effects (K escape 

and K reabsorption) and the electronic effects (charge sharing and electronic noise). Figure 2 

shows an example of the model at the energy thresholds of 25 and 75 keV. More details on 

derivation of this detector model can be found in [28].

2.5. Scatter signal

Since the ray-tracing module does not account for the scattered x-ray interactions, a MC tool 

based on the MCGPU framework [31] is used to estimate the scatter signal. The MC tool 

measures the scattered photons, Nsc(E, i, j, α), while rejecting the ones absorbed in the anti-

scatter grids. The rejection is done using a rejection range distribution (provided by the 

manufacturer in this study and can also be measured empirically).

Similar to the primary signal, the scatter signal is estimated with a multivariate gaussian 

variable with the mean vector of

M(sc)1 × n = ∑
E

Nsc(E) . R E, tn , (4)

and the covariance matrix of

K(sc)n × n =

⋱ … … ⋮
⋮ ⋱ … ⋮
⋮ Cov(sc)v, w ⋱ ⋮
… … … ⋱

,

Cov(sc)v, w = ∑
E

Nsc(E) . Cov E, tv, tw , (5)

where R(E, t) and Cov(E, tv, tw) are the same detector response values discussed in the 

previous section.
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The MC output for the scatter simulation has fluctuation due to the finite number of 

simulated histories. This effect can be reduced by simulating a large number of histories, but 

that is computationally expensive. Therefore, those fluctuations are smoothed using an 

established smoothing scatter kernel [32]. Similar to how clinical scanners typically suppress 

the effects of scatter, the estimated scatter signals are corrected by measuring the scatter in a 

row outside the collimation and subtracting it from the other rows [33].

2.6. Projection images

To add noise to the detector signals, a correlated multivariate Gaussian random number 

generator is used with the mean vector of M(tot) = M(pr) + M(sc) and covariance matrix of 

K(tot) = K(pr) + K(sc).

Similar to clinical CT scans, the final simulated projection images for each energy threshold 

are computed as S(t) = − log
Nt

N0, t
, where Nt is the noisy and detector signal at the energy 

threshold of t, and N0 is the air scan in that threshold (detector unattenuated signal). For 

each energy bin (between two thresholds of t1 and t2), the projection images are calculated 

as Sbin t1, t2 = − log
Nt1 − Nt2

N0, t1 − N0, t2
.

2.7. Beam hardening artifact correction

The simulator reduces the beam hardening effects, caused by the poly-energetic nature of the 

source spectrum, by applying a polynomial water correction [34]

SBHC = ∑
p = 0

p = 3
bp(j, t, kV )Sp, (6)

where the polynomial coefficients of bp are calculated applying the fit of poly-energetic 

detector signals (of water with different diameters) to ideal mono-energetic ones. The 

coefficients are uniquely derived for different detector channels, energy thresholds (or 

energy bins), source spectrums, and bowtie filters.

2.8. Computational considerations

As discussed in [25], simulations of CT projection images are computationally expensive. 

The simulator loads a high-resolution voxelized phantom (sub-mm voxel size) and calculates 

projection signals for tens of thousands of detectors, thousands of projections per rotation, 

and multiple rotations, across hundreds of energy bins. This can be even more challenging in 

PCD simulations, where each detector can have multiple signals (multiple energy 

thresholds). To make the program computationally efficient, it was written in C++ and 

linked it to the NVIDIA CUDA libraries to calculate the independent measurements in 

parallel (e.g., the intersection path lengths for different detector elements and projection 

angles), using multiple graphical processing units (GPUs).
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2.9. Validation

A validation study was done to evaluate the realism of the PCD-CT simulator by comparing 

the image quality of simulated PCD-CT data with real data acquired using an actual 

prototype scanner.

A physical CT ACR phantom was imaged with macro mode (0.5 mm detector size and 32 × 

0.5 mm beam collimation) at four different dose levels (36, 72, 144, 216 mAs, 

corresponding to 4, 8, 16, and 24 mGy), 0.5 second of rotation time, body mode (with 

Siemens standard ‘body’ bowtie filter), a tube voltage of 140 kV, pitch of 1.0, and energy 

thresholds of 25 and 75 keV using a research prototype PCD-CT scanner (Siemens 

Healthcare, Germany) [35, 36] at the National Institutes of Health Clinical Center.

The simulator was setup to mimic the geometry and physics of the research prototype PCD-

CT scanner (information was provided by the manufacturer), including spectrum, bowtie 

filter, focal spot size and positions, anti-scatter grids, and the detector model. A 

computational model of the ACR phantom was imaged using the developed PCD-CT 

simulator, with similar imaging conditions used in the actual scans. In the simulations, focal 

spot and detector elements were uniformly sub-sampled 4 times (total of 16) to approximate 

their finite sizes.

Both the real and simulated projection images were reconstructed with a weighted filtered 

back-projection algorithm using an open source reconstruction software, FreeCT [37] with 

the ‘Medium’ kernel. All the reconstructed images had 512 × 512 in-plane pixels, 215 mm 

reconstruction field of view, and 1.5 mm slice thickness.

The simulated and real images were compared with each other in terms of fundamental 

image quality metrics: noise magnitude, noise ratio (between energy thresholds), noise 

correlation coefficients (between energy thresholds), noise power spectrum (NPS), CT 

number, in-plane modulation transfer function (MTF), and slice sensitivity profile.

The noise measurements were done in the uniform sections of the phantom. The noise 

ensemble was sampled by placing squared regions of interests (ROIs, 25 mm in size) 50 mm 

away from the image center. All the noise measurements were done in 11 consecutive slices 

where the average image of those slices was subtracted to avoid deterministic signals in the 

noise calculations.

For each energy threshold and energy bin, the noise magnitude was calculated as the 

standard deviation, measured and averaged across all the ROIs. The noise ratio was 

calculated by dividing the 25 keV noise magnitude by the 75 keV noise magnitude. The 

correlation coefficient, CC, between the thresholds 25 and 75 keV, were measured as

CC25, 75

= 1
Q ∑

q = 0

1 = Q avg ROIq, 25 − avg ROIq, 25 . ROIq, 75 − avg ROIq, 75
std ROIq, 25 . std ROIq, 75

, (7)

where Q is the number of ROIs (8 in this study). The NPS was measured using the algorithm 

explained in [38] with the same ROIs as used for noise magnitude measurements.
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The in-plane MTF was measured in the edges of the high-contrast inserts (Air and Bone) 

using the algorithm explained in [38]. The z-resolution was evaluated measuring slice 

sensitivity profiles of the two tungsten carbide beads (0.28 mm in diameter) available in the 

ACR phantom. For measuring these pro-files, both real and simulated projection images 

were reconstructed with a slice thickness of 0.5 mm and overlaps of 0.1 mm. ROIs were 

placed around the tungsten bead and the maximum value was measured in each slice. The 

profile was normalized to the range of [0, 1] and plotted as a function of ‘z’ position.

The simulator was further evaluated in terms of its utility in material quantification studies. 

A simulation was done by replicating a previous study [39] where multiple concentrations of 

bismuth (5, 10, 15 mg ml−1), iodine (4, 8, 16 mg ml−1), and gadolinium (4, 8, 16 mg ml−1) 

were imaged at multiple energy thresholds with lower threshold of 20 keV and upper 

thresholds of 50, 60, 70, 80, 90 keV. The real images were acquired at 140 kV and ‘sharp’ 

mode (0.25 mm detector size for low-energy threshold and 0.5 mm detector size for high-

energy threshold with 48 × 0.25 mm beam collimation), pitch of 1.0, using the prototype 

PCD-CT scanner (Siemens Healthcare, Germany), at the National Institutes of Health 

Clinical Center.

The simulation was setup to mimic the same scanner settings and contrast materials used in 

that study [39]. The linear attenuation coefficients were calculated using the xraylib package 

[27] and the elemental compositions for each material at each concentration levels. Both real 

and simulated images were reconstructed using the FreeCT [37] reconstruction software and 

the ‘Medium’ kernel. All the reconstructed images had 512 × 512 in-plane pixels, a 215 mm 

reconstruction field of view, and a 1.5 mm slice thickness. The CT values were recorded for 

all contrast vials in the real and simulated images and compared against each other.

3. Results

Figure 3 shows real and simulated PCD-CT images at 25 and 75 keV energy thresholds and 

the ‘25–75 keV’ energy bin. ‘Threshold’ images only reflect photons beyond an energy 

threshold, and ‘bin’ images reflect photons between two energy thresholds. With this 

definition, the ‘75 keV’ threshold images and the ‘75–140 keV’ bin images (140 is the tube 

voltage used in this study) are equivalent and thus, in this paper we referred to them as ‘75 

keV’ threshold images terms.

Qualitatively, the simulated and real images had similar appearances. In the lower threshold 

images, the images were less noisy because more photons are counted compared to the 

higher thresholds. The CT numbers extracted from both real and simulated cases are 

tabulated in table 1. Overall, the CT numbers in the simulated images are very close to real 

data with similar trends (changes in HU as a function of energy thresholds and bins). Minor 

discrepancies may be attributed to possible minor differences in the actual and simulated 

density values or minor unknown physical processes not explicitly modeled by the 

simulation. Figure 4 shows the noise magnitude, noise ratio, and noise correlation coefficient 

of the real and simulated images at the 4 dose levels. Results demonstrated that the 

simulated images had a noise magnitude similar to real images with 1.28 ± 3.6%, 3.03 ± 

1.36%, and 0.44 ± 3.12% relative errors for 25 keV, 75 keV, and the ‘25–75 keV’ bin, 
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respectively. For noise ratio, the error between real and simulations was −1.73 ± 2.26%. The 

correlation coefficient results demonstrate the existing correlation between the threshold 

images and the realistic modeling of this effect in the simulations with the relative error of 

−2.94 ± 2.13%. In the real data, a slight increase occurred in the noise ratio and correlation 

coefficient, suggesting slight non-linear effects (like dead-time losses) happening in the high 

dose regime.

Figure 5 shows a comparison of the NPS curves for the real and simulated images. The 

simulations compare favorably to the real data, demonstrating that the noise texture in the 

simulations are similar to the noise texture in the real images. The relative errors for the 

average frequency of NPS curves were 4.08 ± 2.57%, 1.56 ± 1.09%, and 2.95 ± 2.01% for 

25 keV, 75 keV, and the ‘25–75 keV’ bin, respectively.

Figure 6 shows the in-plane MTF measurements for both real and simulated images. MTF 

curves show close agreements between the real and simulated images with relative errors in 

the half-value frequency listed in table 2.

Figure 7 shows the slice sensitivity profiles for both real and simulated images, measured at 

the center and off-center of the phantom. The plots demonstrate that the real and simulated 

images have close z-resolution profiles with relative errors of 1.39% (at the center) and 

−0.73% (at the off-center) in terms of the full-width-at-half-maximum (FWHM). For both 

real and simulated cases, the FWHM was approximately 2 mm which is wider than typically 

expected for images with 0.5 mm slice thicknesses. This was due to the windmill artifact 

being present around the high contrast object (‘tungsten’) for both real and simulated 

images. More advanced reconstruction algorithms and more sampling in the z-direction 

(e.g., flying focal spots) would reduce the FHWM.

Figure 8 shows the average CT numbers for the three contrast agents at three concentration 

levels and six energy thresholds and corresponding energy bins for the real data and the 

simulations. The results demonstrate close agreement between HU values of the simulated 

and real images. Notably, the changes in CT numbers as a function of energy threshold and 

energy bin were similar for both real and simulated images. In the threshold images, for both 

real and simulated images, CT values decreased as a function of energy thresholds for iodine 

and gadolinium whereas they slightly increased for bismuth. In the energy bin images, for 

both real and simulated data, CT values decreased as a function of upper energy threshold 

(lower energy threshold was set to 20 keV), with the bismuth and gadolinium having a peak 

at energy bin of’20–60 keV’.

The differences between the real and simulated images were 0.9 ± 10.2 HU (max = 17.6), 

13.0 ± 9.3 HU (max = 29.4), and 20.8 ± 10.0 HU (max = 41.0) for bismuth, iodine, and 

gadolinium, respectively. These differences correspond to relative errors of 0.10 ± 0.84 %, 

0.80 ± 0.57 %, and 1.89 ± 0.58% in the attenuation coefficient scale. Since the real and 

simulated results follow similar trends, these discrepancies could be due to potential minor 

differences between the concentrations of the real and simulated contrast agents or minor 

unknown physical processes not explicitly modeled by the simulation.
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Figure 9 shows PCCT images of a computational human model (XCAT phantom) with 

simulated lesions inserted in the lungs, imaged with the developed PCCT simulator. This 

demonstrates the simulator capability in imaging human models with intra-organ 

heterogeneities and its utility for future virtual clinical trials.

4. Discussion

The emerging and promising PCD-CT technology needs comprehensive evaluation and 

application-based optimizations to be widely used in the clinic. Realistic computer 

simulations can be utilized to speed up these assessments by performing relevant and large-

scale experiments using representative human models and PCD-CT imaging models. In this 

work, we developed and validated a PCD-CT simulator that is able to image voxelized 

phantoms with manufacturer-specific considerations of the scanner geometry, physics of the 

x-ray source, filters, anti-scatter grids, and photon-counting detectors. We showed that our 

developed simulator can generate PCD-CT images with noise, image contrast, and 

resolution features similar to a research prototype scanner across multiple dose levels and 

energy thresholds.

To evaluate the performance of the simulator, one needs to perform one-to-one experiments 

using the real scanner and the simulator, and compare the results against one another. As 

such, the ‘object’ being imaged should be exactly the same in both real and simulated 

acquisitions, so any difference between the real and simulated results would be reflective of 

the performance of the simulator. Therefore, in the context of validating a simulator, clinical 

‘patient’ images cannot be used as the exact ground truth of a given patient cannot be 

known. In this study, we thus deployed object of known ground truth as a basis to validate 

the accuracy of the simulator. Hinging on this first step, the simulator can be used to 

simulate imaging of computational phantoms with the confidence that the results would be 

reflective of images if such computational phantoms were physically imaged by the actual 

scanner.

Given a particular scanner configuration and detector model, the developed simulator is able 

to generate primary and scattered signals and model correlated noise for multiple energy 

thresholds. The developed simulator accounts for post-bowtie filter spectra, focal spot 

wobbles, finite sampling of the source and detector areas, detector response, and beam 

hardening correction. All of these features are developed in a modular way, so a user can 

adjust them based on a desired experiment. For example, if a new photon-counting detector 

is introduced, one can input the detector response model of that in the simulator and 

generate CT images for the particular detector. Or one can incorporate different bowtie filter 

models (e.g., with or without tin filters) depending on the study of interest.

Our simulator can be also used to optimize the imaging parameters and processing (such as 

spectrum, bowtie filter, focal spot wobbling, energy thresholds, detector sizes, beam 

hardening corrections, detector artifacts, reconstruction algorithm) in an application-specific 

manner.

Abadi et al. Page 9

Biomed Phys Eng Express. Author manuscript; available in PMC 2020 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The developed PCD-CT simulator is compatible with any given voxel phantom. This feature, 

not available in the surface-based simulators, would enable studying image quality using 

phantoms with sub millimeter voxel sizes (high-resolution) and intra-organ heterogeneities. 

Additionally, our simulation framework can be also used to validate the accuracy of the PCD 

response models against real data. For example, the detector response model used in this 

study, derived from (1), provided a realistic approximation of the detectors mean and 

variance (and covariance) in the range of 36 to 216 mAs dose levels.

This study had some limitations. The validations were done using a simplistic uniform 

phantom. While these validations are reflective of the accuracy of our simulator, they can be 

even stronger if they are done using physical heterogenous anthropomorphic phantoms (not 

currently available). Future work will pursue 3D printing of our recently developed 

anthropomorphic phantoms with the heterogenous intra-organs [40–42] for more extensive 

validations. The detector model used in this study did not account for pile-up effects which 

is a secondary effect for the phantom and conditions used in this study, as demonstrated in 

the validation results. Future work will be done to improve the accuracy of the detector 

model by incorporating pile-up effects.

The other limitation was that the validations were done using one PCD-CT mode and 

reconstructed with a manufacturer-generic reconstruction software. In a future study, using 

the modular nature of the simulator, we will model and validate our simulator against 

different PCD modes and scanners, and reconstruct them using manufacturer-specific 

reconstruction algorithms.

5. Conclusion

A realistic simulation platform for photon-counting CT paves the way towards evaluation 

and parameter optimizations of this promising technology. While not practical using 

expensive and ground truth-limited clinical trials, these studies can be explored using our 

developed photon-counting simulator, when combined with representative anthropomorphic 

phantoms.
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Figure 1. 
The framework of the developed PCD-CT simulator.
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Figure 2. 
The expectation, variance, and covariance values at energy thresholds of 25 and 75 keV, 

derived from a MC simulation [28].
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Figure 3. 
The real and simulated PCD images at 25 keV, 75 keV, and the bin between 25 and 75 keV. 

Two line profiles are shown comparing the intensity values. The images are shown with a 

window of 600 and level of 0 Hounsfield Units (HU), HU values were calculated setting the 

mass attenuation coefficient of water to be 0.0172 mm2 g−1.
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Figure 4. 
Noise magnitude (top left), noise ratio of 25 keV over 75 keV (top right), and noise 

correlation coefficient (bottom) measured at multiple dose levels for both real and simulated 

images.
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Figure 5. 
Noise power spectrum (NPS) measured in real (red) and simulated (blue) images at 25 keV 

(top-left), 75 keV (top-right), and 25–75 keV (bottom).
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Figure 6. 
Modulation transfer function measured in the ‘Air’ insert in the real (red) and simulated 

(blue) images at 25 keV (top-left), 75 keV (top-right), and 25–75 keV (bottom).
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Figure 7. 
Slice sensitivity profiles measured using the tungsten beads available in the center (left plot) 

and off-center (right plot) of the ACR phantom. Red plots are measured from the real data 

and blue plots are measured from simulations.
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Figure 8. 
Average CT numbers of Bismuth, Iodine, and Gadolinium contrast agents measured at 3 

concentration levels and 6 energy thresholds in both real (red) and simulated (blue) images. 

For the bin images, the lower threshold was 20 keV. To convert the attenuation values to HU, 

the mass attenuation coefficient of water was assumed to be 0.0172 mm2 g−1.
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Figure 9. 
Photon-counting images an XCAT phantom with some inserted lesions, imaged with the 

developed simulator at images at 25 (left) and 75 (right) keV. Images are shown with a 

window/level of −400/1400 HU.
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Table 2.

Percent relative error between real and simulated images in terms of in-plane MTF half-value frequency.

Air Bone

25 keV 3.01 ± 2.00% 4.45 ± 0.44%

75 keV 1.90 ± 2.44% 3.35 ± 2.12%

25–75 keV 3.32 ± 1.87% 4.47 ± 0.32%
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