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Abstract

Backgrounds—Aside from Gleason score few factors accurately identify the subset of prostate 

cancer (PCa) patients at high risk for metastatic progression. We hypothesized that copy number 

alterations (CNAs), assessed using CpG methylation probes on Illumina Infinium® Human 

Methylation450 (HM450K) BeadChip arrays, could identify primary prostate tumors with 

potential to develop metastatic progression.

Methods—Epigenome-wide DNA methylation profiling was performed in surgically resected 

primary tumor tissues from two cohorts of PCa patients with clinically localized disease who 

underwent radical prostatectomy (RP) as primary therapy and were followed prospectively for at 

least five years: 1) a Fred Hutchinson (FH) Cancer Research Center-based cohort (n= 323 

patients); and 2) an Eastern Virginia (EV) Medical School-based cohort (n= 78 patients). CNAs 
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were identified using the R package ChAMP. Metastasis was confirmed by positive bone scan, 

MRI, CT or biopsy, and death certificates confirmed cause of death.

Results—We detected 15 recurrent CNAs were associated with metastasis in the FH cohort and 

replicated in the EV cohort (p< 0.05) without adjusting for Gleason score in the model. Eleven of 

the recurrent CNAs were associated with metastatic progression in the FH cohort and validated in 

the EV cohort (p<0.05) when adjusting for Gleason score.

Conclusions—This study shows that CNAs can be reliably detected from HM450K-based DNA 

methylation data.

There are 11 recurrent CNAs showing association with metastatic-lethal events following RP and 

improving prediction over Gleason score. Genes affected by these CNAs may functionally relate 

to tumor aggressiveness and metastatic progression.

Introduction

Prostate cancer (PCa) is the second most common cause of cancer-related deaths in 

American men. It is estimated by the American Cancer Society that in 2020, there will be 

about 191,930 new cases of PCa, and about 33,330 deaths from the disease [1]. Although 

localized PCa is highly curable by definitive therapy such as radical prostatectomy (RP) or 

radiation therapy (RT), a subset of the patients who receive RP or RT as their primary 

treatment will experience disease relapse. Studies show that among patients who undergo 

RP, about 15% and 35% of them subsequently develop biochemical recurrence (BCR) 

within 5 years and 10 years after surgery, respectively; furthermore, about 35% of the 

patients who experience BCR will eventually develop metastatic disease [2–4]. Due to the 

biologically and clinically heterogeneous nature of PCa, current practice is to stratify risk 

guided by Gleason score, grade group, tumor stage, PSA level, PSA density, and number of 

positive cores [5]. This still leads to some intermediate risk patients being over-treated for 

indolent disease and some men who are under-treated for aggressive disease [6–8]. In the 

current study we consider PCa that recurred in a metastatic and/or lethal form as 

“aggressive.” Ideally, intensive treatment should be given only to patients who will develop 

aggressive disease and in whom treatment will prevent these adverse outcomes. Thus, 

prognostic biomarkers that can improve upon existing risk stratification methods and better 

identify patients at risk of developing aggressive disease are greatly needed [9].

Recent genome-wide studies have resulted in the identification of somatic DNA CNAs in 

both primary PCa [10,11] and advanced PCa tissues [12,13] that occur at a sufficient 

frequency to be used as biomarkers. The most frequently detected CNAs in primary tumors 

include amplifications of oncogenes such as MYC (8q24.21, 10%−40%), deletions of tumor 

suppressor genes such as NKX3–1 (8q21.2, 40%−70%), PTEN (10q23.31, 10%−40%), 

CDKN1B (12q13.1, 20%−30%), RB1 (13q14.2, 30%−50%), and TP53 (17p13.1, 20%

−30%), while the landscape of genomic alterations for advanced metastatic PCa is usually 

characterized by high copy amplifications of AR in patients that are resistant to castration-

based therapy [14].

Investigation of the association between potential CNA-based biomarkers and clinical 

outcomes in PCa patients has been the focus of recent investigations. To date, most studies 

Wang et al. Page 2

Prostate Cancer Prostatic Dis. Author manuscript; available in PMC 2020 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



have focused on biochemical (i.e., PSA) recurrence as the clinical outcome as it is the most 

common outcome event following RP [15–18]. Metastatic and/or lethal progression is a 

more serious clinical outcome than BCR. However, the relationship between CNAs and 

metastatic-lethal events has only been reported in a few studies [19–21]. Metastatic-lethal 

events are difficult to observe in patients with localized tumors treated by RP due to the long 

progression time. One study of RP patients estimated that the median time to BCR was less 

than 5 years; the median time to development of clinical metastasis after BCR was 8 years; 

and, after development of metastatic disease, the median time to death was 5 years [2]. 

Despite the small sample size and limited number of outcome events, Liu et al. successfully 

confirmed a significant association of MYC gain or CNAs at PTEN and/or MYC with PCa-

specific mortality following RP [20].

While microarray-based technologies such as comparative genomic hybridization (CGH) 

arrays and SNP arrays are usually the standard approach for CNA profiling, the Illumina 

Infinium® Methylation BeadChip assays can also detect CNA because they both assess the 

amount of DNA at a site [22,23]. Kwee et al. studied 27 samples derived from lymphoid 

tumors, and showed that the Illumina Infinium® Human Methylation27 BeadChip, the 

predecessor of HM450K, was able to estimate CNAs; and, the results were consistent with 

those obtained using the Affymetrix 10K SNP array, especially for large genomic segments 

(size > 10MB) [24]. Feber et al. showed that the HM450K could be used to accurately assess 

CNAs to the same degree of reliability and sensitivity as standard SNP array platforms, such 

as the Affymetrix SNP 6.0 or Illumina CytoSNP arrays on bladder cancer and glioblastoma 

multiforme tumor samples from the TCGA data portal [22]. In a more recent benchmark 

study, Chao et al. showed that HM450K-based CNA detection achieves a sensitivity similar 

to results obtained from competing SNP microarray platforms [25]. In this study we applied 

the method originally developed by Feber and colleagues [22] to detect CNAs using 

HM450K methylation data.

In this study we used HM450K data to identify CNAs and initially examined their 

association with metastatic-lethal recurrence in a FH-based cohort of patients (n= 323). 

Another nested case-control dataset from EV (n= 78) was used for validation. A number of 

studies have been carried out to develop biomarker panels for predicting metastatic-lethal 

events using these two datasets, either based on gene expression [26,27] or DNA 

methylation [28,29]. In our study, we first calibrated the HM450K-based CNA detection 

method implemented in the R package ChAMP using the TCGA prostate cancer dataset, 

which has both HM450K and SNP 6.0 array data that are typically used for CNA detection. 

We then applied the calibrated method to HM450K data in the FH and EV datasets to 

evaluate the potential association of recurrent CNAs with metastatic-lethal progression.

Materials and methods

Study populations

We used data from two independent study populations diagnosed with clinically localized 

adenocarcinoma of the prostate and treated with RP. The first cohort includes 479 European-

American PCa patients previously enrolled in population-based studies conducted at the 

Fred Hutchinson Cancer Research Center (FH) [30,31]. Patients in the first study were 
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diagnosed between January 1993 and December 1996, while the patients in the second study 

were diagnosed between January 2002 and December 2005. Gleason score, PSA at 

diagnosis, and tumor stage were collected from the Seattle-Puget Sound Surveillance, 

Epidemiology, and End Results Program cancer registry. Vital status and underlying cause of 

death were also obtained from the cancer registry. PCa outcomes were determined from 

prospectively collected information from follow-up surveys that were completed by patients 

in 2004–2005, 2010–2011 and 2015–2016, review of medical records, and/or physician 

follow-up as needed. Metastatic progression was confirmed by a positive bone scan, MRI, 

CT or biopsy. Prostate cancer-specific deaths were confirmed by review of death certificates. 

Patients who developed metastases or died from PCa were combined into a metastatic-lethal 

category. These 479 patients had a mean follow-up time of 11.4 years. Among these 

patients, 295 had no evidence of recurrence, 108 had BCR only, and 28 patients developed 

metastatic-lethal events. Forty-eight patients who were missing follow-up or were ineligible 

for this analysis were excluded. The FH Institutional Review Board approved the study and 

all participants signed informed consent statements.

The second study population used for validation includes 84 European-American patients 

treated at Eastern Virginia Medical School (EV). The group includes men who experienced 

disease progression to metastatic or lethal PCa (n= 32) and patients with no evidence of 

recurrence for five or more years after surgery (n= 46) who were diagnosed during the same 

time period (1992–2009). Metastatic-lethal events were identified the same way as described 

in the FH cohort. The patients in the EV dataset had an average follow-up period of 9.0 

years.

CONSORT diagrams of FH and EV studies are shown in Figure 1.

Tumor tissue sample preparation and DNA extraction

Formalin-fixed paraffin-embedded prostate tumor tissue blocks were obtained from RP 

specimens and used to make hematoxalin and eosin stained slides, which were reviewed by 

pathologists to confirm the presence and location of adenocarcinoma. For each patient, two 

1-mm tumor tissue cores from the dominant lesion that were enriched with ≥75% tumor 

cells were taken for DNA purification. Tumor adjacent benign samples from 20 patients in 

FH and 10 patients in EV were also obtained. The RecoverAll Total Nucleic Acid Isolation 

Kit (Ambion/Applied Biosiences, Austin, TX) was used to extract DNA, which was then 

quantified with PicoGreen, aliquoted onto 96-well plates and shipped to Illumina (Illumina, 

Inc., San Diego, CA) for DNA methylation profiling.

DNA methylation profiling

The EZ DNA Methylation Kit (Zymo Research, Irvine, CA) was used to bisulfite convert all 

the DNA samples. Controls on the array were used to track the bisulfite conversion 

efficiency. The Infinium® HumanMethylation450 BeadChip (Illumina) was used to measure 

epigenome-wide methylation using beads with target-specific probes designed to interrogate 

individual CpG sites (>485,000) [32]. Samples from the FH cohort were assayed as one 

batch (8 plates) and the EV samples were assayed as a second batch (2 plates). Across the 

96-well plates, blind duplicate (FH, n = 16; EV, n = 7) and replicate (FH, n = 2; EV, n = 3) 
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samples placed on all plates were incorporated for each cohort. Correlation in terms of DNA 

methylation levels for duplicate/replicate samples in the FH and EV cohorts were all great 

than 0.96. We also evaluated the DNA methylation levels of a few pairs of tumor samples 

from different tissue cores (FH, n=3; EV, n=2); correlations between each pair of samples 

were all greater than 0.95. All plates also contained Illumina controls and negative controls. 

PCa outcome events were randomly distributed across plates, and laboratory personnel were 

blinded to the location of duplicate and replicate samples. The DNA methylation data were 

stored in the database of Genotypes and Phenotypes (dbGaP) (study accession: 

phs001921.v1.p1).

CNA detection

The R package ChAMP [33,34] was used to profile CNAs using raw data (idat files). Default 

parameter settings were used to run ChAMP, which first applies a number of QC filtering 

steps on the data: it removes failed samples with more than 5% CpG sites having a detection 

p-value >0.05; a QC plot including beta distributions from all the samples was generated and 

used to find samples that deviated significantly from others and which may not be of good 

quality (e.g., incomplete bisulfite conversion); it removes probes that (a) have a beadcount 

<3 in at least 5% of samples, (b) are non-CpG probes, (c) overlap with SNPs, (d) align to 

multiple locations, and (e) are on the X or Y chromosome. ChAMP then adjusts for batch 

effects on the methylation intensity of the remaining probes using COMBAT, and further 

performs quantile normalization on the intensity data. For each tumor sample, it computes 

the log2 ratio of CpG intensity to the mean CpG intensity of normal control samples, which 

are a group of normal samples or tumor adjacent benign samples. CNA segments for each 

tumor sample are then generated by using the circular binary segmentation (CBS) algorithm 

from the R package DNAcopy [35] on the log2 ratio data, with the parameter α (significance 

level for the test to accept change-points) setting as 0.001.

Recurrent CNA detection

Recurrent CNAs (RCNAs) are regions of the genome that are significantly amplified or 

deleted across a set of samples. We considered RCNAs as candidate regions of interest 

(ROI) whose CNAs can be used to predict a clinical outcome (e.g., no recurrence vs. 

metastatic-lethal progression). We used GISTIC2.0 [36] to detect RCNA regions on tumor 

samples of the FH cohort. For a tumor sample, GISTIC2.0 quantifies the CNA, or copy 

number change, in a region by taking the difference of the median copy number within the 

region and the median copy number of the whole genome. GISTIC2.0 measures both the 

frequency and the magnitude of the CNA in each tumor sample and identifies RCNA regions 

that have a statistically higher frequency of CNA over background aberrations on the 

population level. GISTIC2.0 detects both arm level regions and focal regions, and these 

regions are classified as either amplified regions or deleted regions. Default parameters were 

applied to detect RCNA using GISTIC2.0. For an amplified RCNA region, if a tumor sample 

has a copy-number-change greater than the cutoff (0.1), GISTIC2.0 sets its CNA in this 

region as 1, and 0 otherwise. For a deleted RCNA region, if a tumor sample has a copy 

number change less than the GISTIC2.0 cutoff (−0.1), GISTIC2.0 sets its CNA in this region 

as 1, and 0 otherwise. Thus, CNA of a tumor sample in each studied region is quantified as a 

binary variable. Focal RCNA regions with a residual q-value less than 0.25 and arm-level 
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regions with a q-value less than 0.05 were considered candidates, according to the default 

setting of GISTIC2.0.

RCNAs associated with metastatic-lethal outcomes

We computed the association between the detected RCNA regions and patient outcomes 

(i.e., no recurrence vs. metastatic-lethal progression) using a logistic regression model. We 

evaluated the association between the metastatic-lethal outcome and a number of clinical 

variables, including Gleason score, age at diagnosis, diagnostic PSA level, and pathological 

tumor stage using Chi-square tests. Gleason score, PSA, and tumor stage were found to be 

significantly associated with the outcome (p-value <0.05). Gleason score is the variable most 

strongly associated with the outcome of interest, and further inclusion of other clinical 

variables did not improve upon Gleason score alone (p-value <0.05, likelihood ratio test); 

therefore we only included Gleason score as a covariate in the model. For each RCNA 

region discovered in the FH dataset, we conducted two sets of association analyses; one 

assessed the association directly based on RCNA, and the other quantified the association 

considering Gleason score as well. The FDR cutoff of 0.2 was applied to control for multiple 

comparisons, and the remaining RCNA regions were used as the RCNAs detected in the FH 

dataset. We applied the same association analysis on the EV dataset to validate RCNAs 

based on a significance level α = 0.05 and the same direction of effect.

For each validated RCNA, we computed area under the curve (AUC) and partial AUC 

(pAUC, 95% specificity) to evaluate its performance for predicting metastatic-lethal 

progression. P-values for AUC and pAUC were computed using 2000 stratified bootstrap 

replicates using the R package pRoC [37]. Likelihood ratio test (LRT) was used to compare 

a model fit with Gleason score only and a model fit with Gleason score and a validated 

RCNA.

Results

Patient characteristics

Selected characteristics of the PCa patients are shown in Table 1. The age at diagnosis for 

patients with metastatic-lethal events was similar to that of patients with no recurrence, 

while patients with metastatic-lethal progression were more likely to have higher Gleason 

scores, regional stage disease, and higher diagnostic PSA levels.

Benchmarking the HM450K-based CNA detection method

The TCGA PRAD data were used to calibrate the CNA detection method, including both 

DNA methylation raw intensity data (level 1) and copy number segmentation (level 3) from 

494 primary tumor samples based on Affymetix SNP 6.0 array data, and DNA methylation 

raw intensity data from 50 tumor adjacent benign samples.

The SNP 6.0 array data and the HM450K methylation array data from 494 TCGA primary 

PCa samples were used to evaluate the performance of the methylation array-based CNA 

detection method. We used ChAMP to detect CNAs for each tumor sample on DNA 

methylation raw intensity data. The methylation array-derived CNA profiles were compared 
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to the SNP 6.0 array-derived copy number segments (level 3 data) downloaded from the 

TCGA data portal in the same tumor samples as the benchmark. We checked how many SNP 

6.0 segments could be recovered by HM450K segments, where each SNP 6.0 segment 

overlapped with a HM450K segment for at least half of its length. A lot of small segments 

appeared in the HM450K results, which are probably technical artifacts due to unique probe 

design of the methylation array.

To remove the potential artifact CNAs detected in HM450K data, we conducted a number of 

analyses by removing short segments with the length less than the thresholds of 0, 25KB, 

50KB, 75KB, and 100KB, and evaluated the proportions of recovered segments and artifact 

segments. The results are shown in Figure 2. By applying the cutoff of 25KB, 92% of 

artifact segments were removed and at the same time 84% and 99% of recovered segments 

in terms of segments number and length were retained in the remaining segments. Further 

increasing the threshold would not remove many more artifact segments and would further 

reduce the number of recovered segments. We thereafter removed short segments (<25 KB) 

in our analyses to detect CNAs using HM450K data.

Detection of RCNAs associated with metastatic-lethal events

We first detected CNA segments on the raw methylation intensity data of 323 tumor 

samples, including 295 patients with no recurrence and 28 patients with metastatic-lethal 

outcomes, from the FH dataset using ChAMP. Twenty adjacent benign samples were used as 

normal controls. We then defined RCNA regions using GISTIC2.0. at the population level 

on all the tumor samples.

At the focal level (i.e., the length of a RCNA is less than 95% of the chromosome arm it 

resides in), we detected 106 amplified RCNA regions (Focal1-Focal106, Supplementary 

Table 1) and 67 deleted RCNA regions (Focal107-Focal173, Supplementary Table 1) among 

all the tumor samples. The obtained amplification regions cover 445 MB across all 

autosomal chromosomes (~3000 MB) except chr9 and chr21, with the 25th, 50th, and 75th 

percentiles as 77 KB, 141 KB, and 347 KB, respectively. The deletion regions cover 1051 

MB across all autosomal chromosomes except chr18, with 25th, 50th, and 75th percentiles 

as 400 KB, 1.8 MB, and 24.2 MB, respectively. More than 10,600 genes reside in these 

regions, including genes found to be frequently mutated in PCa, such as SPOP, TP53, PTEN, 
HRAS, ATM, CDKN1B, NKX3–1, PIK3CA, BRCA1, and BRCA2. The amplification and 

deletion regions are shown in Figure 3, and a description of these focal RCNAs is provided 

in Supplementary Table 1.

At chromosomal arm-level, ten arms (3q, 4q, 5p, 5q, 6p, 6q, 7p, 7q, 8p, and 8q) were 

detected as amplification arms; nine arms (8p, 8q, 13q, 16p, 16q, 18q, 19p, 19q, and 22q) 

were detected as deletion arms.

We performed two sets of association analyses between RCNAs and patient outcome. The 

first one is to study which RCNAs are directly associated with the outcome, and the second 

one is to study which RCNAs are associated with the outcome adjusting for Gleason score. 

The former analysis aims to discover RCNAs that are associated with the progression 

outcome regardless of Gleason score. These RCNAs may uncover novel mechanisms of PCa 
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metastatic-lethal progression, and they can be used to predict the outcomes when Gleason 

score is not available. The latter is to assess the added predictability on top of Gleason score, 

as Gleason score is the best clinical variable for determining PCa metastatic potential in our 

study, we are most interested in identifying RCNAs that improve the prognostic 

discrimination of patients beyond that provided by Gleason score. The numbers of RCNAs 

found in the RCNA detection and association analyses are summarized in Table 2.

The first analysis identified 66 RCNAs, including 34 focal amplifications, 27 focal deletions, 

1 arm with amplifications (3q) and 4 arms with deletions (13q, 16p, 16q, and 18q) with FDR 

<0.2 in the FH dataset. Of these regions, 3 focal amplification regions, 11 focal deletion 

regions, and 2 arm deletions (16p and 16q) were validated in the EV dataset (p-value <0.05). 

Among these regions, a short one (Focal165) was part of another region (Focal166). Because 

we are more interested in independent RCNAs, this short region was removed from 

downstream analysis. As a result, 3 focal amplifications, 10 focal deletions, and 2 arm 

deletions (16p and 16q) remained, as shown in Table 3. These confirmed 15 regions were 

further evaluated as the RCNAs associated with metastatic-lethal progression (Table 3). The 

focal deletion CNA (Focal160) in the p arm of chromosome 16 was found to have a 

moderate correlation (~0.6) with the arm level deletion 16p based on the two datasets. 

Similarly, Focal161-Focal164 on the q arm of chromosome 16 were all found to have a 

moderate correlation (0.38–0.66) with the arm level deletion 16q based on the two datasets. 

In addition to the metastatic-lethal endpoint, we also studied BCR and PCa-specific death in 

the FH dataset to verify if CNAs in the validated regions were also associated with these 

additional clinical outcomes. Eight focal regions (Focal21, Focal129, Focal143, Focal144, 

Focal161, Focal163, Focal164, and Focal166) were found to have significant association (p-

value <0.05) with BCR (Supplementary Table 1). Furthermore, the cases with CNAs tend to 

have a worse PCa-specific survival than the cases without CNAs (p-value <0.05), as shown 

in Supplementary Figure 1 None of the identified CNAs overlap with the CpGs selected in 

the DNA methylation panel [28,29], and the correlations between CNAs and these CpGs 

were all low (<0.36) in the FH dataset.

The second analysis detected 33 RCNAs, including 15 focal amplifications, 15 focal 

deletions, 1 arm with amplification (3q) and 2 arms with deletions (16p and 16q) with FDR 

<0.2 in the FH dataset. Of these regions, two focal amplification regions, 7 focal deletion 

regions, and 2 arm deletions (16p and 16q) were validated in the EV dataset. The remaining 

11 regions were all listed in Table 4, Figures 4A and 4B, and were included in Table 3 as 

well. These regions were further evaluated as the RCNAs associated with metastatic-lethal 

progression after accounting for Gleason score. For each validated RCNA, we built three 

logistic regression models using the FH dataset; one used only the CNA marker as a 

predictor of outcome, one used only Gleason score, and the other used a combination of the 

CNA marker and Gleason score. These trained models were applied to predict metastatic-

lethal events in the EV dataset (Table 4 and Figure 4C). AUC and pAUC were used to assess 

the prediction performance of these models. For the Gleason score alone model, the AUC= 

0.8 and pAUC= 0.0084. The inclusion of each RCNA in a model with Gleason score 

increased the AUCs, which ranged from 0.81–0.87, and Focal161 has the best AUC 

performance among all 11 regions. Four RCNAs (Focal160, Focal161, 16p and 16q) in 

chromosome 16 were found to significantly improve the AUC (at the significance level of 
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0.05) of the Gleason score model, and 3 RCNAs (Focal160, 16p, and 16q) in chromosome 

16 were found to significantly improve the pAUC (at the significance level of 0.05). We also 

used LRT to compare the prediction performance of the two models (i.e., Gleason score 

alone, and the combined model including RCNA). All regions have significant p-values, 

which confirms that these regions are complimentary to Gleason score for predicting 

metastatic-lethal outcomes. We further built another model including Gleason score and all 

the validated RCNAs to predict patient outcomes. The AUC further increased to 0.89 (p-

value=0.017) as shown in Figure 4D. However, the model may have the overfitting issue as 

EV data has been used to validate the RCNA associations. The development of a CNA 

biomarker model requires another independent dataset. We also evaluated if these validated 

RCNAs can add to the National Comprehensive Cancer Network (NCCN) risk group factor 

to predict patient outcomes. The NCCN risk group classification is mainly determined by 

Gleason score, PSA level, and tumor stage. We accordingly classified all the cases into the 

following three risk groups: cases with local stage and PSA level <10 ng/ml, and Gleason 

score <= 6 were assigned to a low-risk group; cases with regional stage, or Gleason score 

>7, or PSA > 20 ng/ml were assigned to a high-risk group; and all other cases were assigned 

to an intermediate-risk group. As shown in Supplementary Figure 2, AUC equals to 0.77 

when only the risk group factor is used as the predictor variable; the addition of each 

individual RCNA into the model increases the AUC in most of the models, in the range of 

0.79~0.83. If all RCNAs are included in the model, the AUC increases to 0.87 (p-value= 

0.05), which indicates these RCNAs can substantially improve the prediction of patient 

outcomes beyond the risk group factor.

Discussion

In this study we conducted a comprehensive CNA analysis using HM450 DNA methylation 

data to detect and validate somatic RCNAs associated with metastatic-lethal outcomes in 

men diagnosed with clinically localized PCa. Our Seattle-based cohort is one of the largest 

methylome studies for assessing progression in men treated for localized stage disease. 

Previously, gene expression [26,27] and epigenetic markers [28,29] for the prediction of 

cancer aggressiveness have been developed in this cohort of PCa patients. The current work 

aimed to explore the possibility of using DNA methylation data to infer CNAs and, if 

feasible, investigate the associations between CNAs and metastatic-lethal outcomes. We 

believe that we are the first group to use methylome data to analyze CNAs in PCa. 

Comparing the CNAs generated by the DNA methylation-derived method and the existing 

ones generated on Affymetix SNP 6.0 arrays for TCGA PRAD samples, we showed that it is 

feasible to call CNAs using DNA methylation data, and CNAs evaluated from the epigenetic 

data can independently predict adverse patient outcomes. We identified 15 RCNAs that 

predicted tumor aggressiveness. Four of them were not detected in previous CNA studies, 

including Focal143 (12p13.31) in chromosome 12, Focal160 (16p12.1), Focal163 (16q23.1), 

and Focal164 (16q23.3) in chromosome 16. These novel findings may help us to understand 

the mechanisms of tumor progression in PCa. More interestingly, 11 of the CNAs (Table 4) 

improved upon Gleason score for the prediction of outcome events. These CNAs could be 

used to develop an optimal CNA marker panel to predict these outcomes. Although for the 

majority of the individual validated CNAs the increment of prediction performance in terms 
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of AUC appears to be limited, combining these CNAs in a marker panel substantially 

improved AUC performance.

High throughput array platforms such as SNP arrays and CGH arrays have been extensively 

used to detect CNA. CNA can also be inferred using genome-wide DNA methylation data 

based on methylation arrays including HM450K. Feber et al. demonstrated satisfactory 

concordance in CNAs detected by HM450K and by SNP arrays: over 94% and 75% 

agreement were observed, respectively, for large genomic rearrangements (>10 MB) and 

focal genomic alterations (<1 MB) [22]. Despite the good concordance in detected CNAs 

between methylation arrays and SNP arrays, there are substantial differences between the 

designs of the two platforms. For example, the genomic probe distributions are quite 

different in the two arrays: the probes on the SNP 6.0 array are evenly spaced across the 

whole human genome while the probes on the HM450K array are gene-centric. The majority 

(~95%) of CpG probes are within 2 kb for 95% of the known genes and, on average, there 

are >9 probes per gene [23]. The unique probe design of the HM450K array makes the 

methylation-derived CNA profiles more susceptible to technical artifacts. We evaluated the 

methylation-derived CNAs using the TCGA PRAD data and SNP array-derived CNAs, 

which were used as the benchmark. At the individual CNA level, we found good 

concordance between the two sets of results: 81% of the benchmark segments were detected 

by the methylation-derived method. However, many small, probably artifact segments were 

generated by the methylation-derived method. We therefore decided to remove those small 

segments (with length <25 KB) before detecting RCNA. Our study found that, by careful 

calibration, HM450K methylation data could be utilized to detect CNAs, so that both CNAs 

and DNA methylation levels can be measured in a single assay in a timely and cost-effective 

manner.

In this study we detected 15 RCNAs associated with the metastatic-lethal events in PCa, and 

11 of them were associated with the outcomes adjusting for Gleason score. Several of the 

detected regions had been discovered in previous studies, and a lot of them contain genes 

contributing to metastatic-lethal progression of PCa. The amplification region Focal18 

(62.3MB-118.9MB, 3p12.1) contains ATP6V1A, which was reported to promote invasion 

and metastasis in prostate cancer [38]; and the CNA is positively correlated with gene 

expression in the FH dataset (p-value= 2.64e-4). The amplification region Focal21 

(90.09MB-179.67MB, 3p12.1) contains 508 genes, including GSK3B, which was 

demonstrated as a positive regulator in AR transactivation and prostate cancer growth [39]. 

The amplification region Focal61 (135.7MB-135.8MB; 8q24.22) contains 3 genes, including 

MIR30D. This gene was previously found to be overexpressed in PCa and associated with 

biochemical recurrence [40], and the gene was reported to regulate androgen receptor 

signaling in PCa [41]. The deletion region Focal118 (1B-25.75MB, 4p16.2) contains 

CTBP1, a gene previously reported to regulate the expression of tumor suppressors and 

genes involved in cell death, and was found to be over-expressed in metastatic prostate 

cancer [42]. This CNA was found to be negatively correlated with CTBP1 gene expression 

in the FH dataset (p-value= 0.013). The region also includes PPP2R2C; loss of the gene was 

found to be associated with increased prostate cancer-specific mortality [43]. The deletion 

region Focal129 was detected in chromosome 8 (1.77MB-41.9MB, 8p11.23). Parts of the 

deletion region were previously reported in the literature, including chr8: 
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20.11MB-27.67MB [11], chr8: 15.40MB-15.41MB [13], and chr8: 21.99MB-42.01MB [10]. 

Among the 304 genes in the region, EPHX2 gene expression was negatively associated with 

its CNA in the FH dataset (p-value= 8.48e-7); the gene was previously reported to be 

correlated with AR activity and was identified as a therapeutic target with biomarker 

potential for PCa [44], which was confirmed in our study. EPHX2 gene expression was 

negatively correlated with metastatic-lethal outcomes (p-value= 0.014) in the FH dataset. 

The deletion region Focal144 (12.77–12.9MB, 12p13.1) was included in a wider region 

(5.7MB-17.6MB) detected by Taylor et al. [10], and the region contains CDKN1B, which 

was found to be frequently down-regulated and associated with poorer prognosis in prostate 

cancer [45]. The deletion region Focal161 (58.33MB-58.55MB;16q21) contains NDRG4, a 

tumor suppressor and prognostic marker of gastric cancer [46]. The deletion region Focal162 

(72.05MB-72.15MB; 16q22.2) was identified as one of the most recurrently aberrant 

deletion regions found in the PCa patient cohort evaluated by Lalonde and colleagues [17]. 

DHODH is among the five genes residing in the region, and there was a significant positive 

correlation between the CNA and gene expression in the FH dataset (p-value= 5.23e-6). Its 

protein product is an enzyme required for de novo pyrimidine synthesis, which is an 

essential link between the enhanced mitochondrial bioenergetics and aberrant proliferation 

in transformed prostate epithelial cells [47]. The deletion region Focal166 (1B-17.7MB 

spans 5 cytobands,17p13.3–17p11.2) includes the tumor suppressor gene TP53. In addition, 

PELP1 in the region was found to have a significant correlation between the CNA and gene 

expression level in the FH dataset (p-value= 1.05e-7), and it plays a central role in 

nonandrogenic activation of the AR in PCa [48]. Part of the region (7.50MB-7.59MB, 

17p13.1) was detected in the TCGA and Taylor et al. studies [10,11]. For arm-level RCNA 

regions, deletion of 16q was reported in a few studies [11,13]; deletion of 16p was also 

reported in a prior study by Hieronymus and coworkers [21].

Many efforts have been taken to investigate biomarkers to predict metastatic-lethal 

progression in patients initially diagnosed with clinically localized PCa. Earlier studies have 

been carried out to find biomarkers of metastatic-lethal progression using the same datasets 

used here. Twenty three gene transcripts [26] and eight CpG sites [28] were discovered in 

the FH dataset and validated in the EV dataset. Further validation has been completed for 

these biomarkers, leading to development of a 5-CpG DNA methylation score [29] and a 

four gene expression score [27]. In our current analyses, the 11 validated RCNAs in Table 4 

had individual AUCs ranging between 0.81–0.87. Compared to the gene expression and 

methylation biomarkers, some RCNAs encompass a larger number of genes; two focal 

RCNAs (Focal21 and Focal129) were found to encompass more than 250 genes. In addition, 

we detected two arm level events (16p and 16q). These RCNAs might be more robust in 

predicting clinical outcomes.

Several RCNAs predicting clinical outcomes when adjusting for Gleason score (Table 4) are 

in chromosome 16, including 3 focal deletions (Focal160:16p12.1, Focal161:16q21, and 

Focal163:16q23.1) and 2 arm-level deletions (16p and 16q). Part of these hot spot deletion 

areas (in 16q) were identified by Kuth et al., and 16q deletion length was found to be 

strongly linked to PCa progression [49]. In another study, Osman et al. suggested that the 

long arm of chromosome 16 (16q) might harbor tumor suppressor genes involved in PCa 

progression [50]. We confirmed in this study that deletions in chromosome 16 may play an 
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important role in PCa metastatic-lethal progression, and the findings justify future research 

to identify potential tumor suppressor genes located on chromosome 16.

There are a number of limitations of this study. A major limitation is the paucity of patients 

who eventually developed metastatic-lethal outcomes. However, metastatic-lethal outcome 

events are rare in PCa patients diagnosed with localized tumors and treated surgically; 

therefore we used a cohort with long-term follow-up (mean=11.4 years) to accrue the 

outcomes. To our knowledge, our FH cohort is one of the best resources for studying 

primary tumor biomarkers in relation to prognosis of localized PCa patients. Moreover, 

when inferring copy numbers from DNA methylation data, some potential confounding 

factors such as tumor cell fraction and genome ploidy were not considered to call CNAs, in 

part because the CpG probes were not designed for calling allele specific copy numbers. To 

the best of our knowledge, there is no method available to call CNAs on DNA methylation 

data considering these factors.

The use of DNA methylation array (HM450K) data may result in artifacts when calling 

CNAs. For example, DNA methylation is measured using bisulfite sequencing, which relies 

on the conversion of every single unmethylated cytosine residue to uracil. Incomplete 

conversion can cause incorrect interpretation of unconverted unmethylated cytosines as 

methylated cytosines and would generate false-positive results when determining 

methylation status at CpG dinucleotides. In this study we used ChAMP, which includes a 

number of QC steps to remove samples of low quality. One of these QC steps is specifically 

used to remove samples with the incomplete bisulfite conversion problem by plotting beta 

distributions from all the samples. Furthermore, when calling CNAs, ChAMP actually 

compares the DNA methylation on the studied tumor samples with a group of normal 

samples from the same batch of samples processed; this step should further remove the 

potential effect of incomplete sulfite conversion. Another potential problem is the low 

genome-wide coverage (~2%) of total CpG sites in HM450K. However, it should not be a 

major issue in the current analysis since we were not focused on detecting very short CNA 

regions (e.g., less than 1kB). We compared the CNAs generated from the DNA methylation-

based technology and CNAs generated using an existing method based on SNP array data 

(from TCGA PRAD) in our benchmark study. These two sets of results showed a relatively 

high concordance (~81%). Other researchers have also shown that the DNA methylation-

based method can achieve comparable performance with the existing SNP microarray-based 

methods [24, 25].

There are several strengths of this study. We searched for RCNAs associated with clinical 

outcomes based on a well-characterized population cohort, and the findings were validated 

in an independent dataset. Patients involved in the discovery and validation datasets had 

long-term follow-up to accrue metastatic-lethal outcomes in men diagnosed with localized 

tumors. To minimize the platform/batch variability, we used the same platform (HM450K) 

and the same downstream analysis procedures for the discovery (FH) and validation (EV) 

datasets. Potential batch effects within each dataset were removed using the COMBAT 
algorithm included in the R package ChAMP, and results were confirmed by the high 

correlation between the DNA methylation levels of duplicates/replicates across plates that 

were incorporated for both cohorts. The potential bias introduced by tumor heterogeneity 
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was well controlled by careful selection of tissue cores from the dominant lesion that was 

enriched with ≥75% tumor cells. Future studies will be needed to test the best combination 

of these CNA biomarkers for their association with PCa outcomes using an independent 

patient cohort.

None of the validated RCNAs overlap with any of the gene expression biomarkers [26] or 

DNA methylation biomarkers [28] previously found to predict metastatic-lethal events in the 

FH and EV datasets, and the correlation between the CNAs and the other types of 

biomarkers were generally low (e.g., the magnitudes of correlation were less than 0.39 based 

on the FH dataset). Thus, the detected CNAs are independent from other types of biomarkers 

and may be complimentary for predicting metastatic-lethal progression in patients diagnosed 

and treated for clinically localized PCa. Future studies may consider integrating these 

different types of somatic signals to further improve the prediction performance.

Supplementary Material
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Figure 1. 
CONSORT diagrams. A) FH study, B) EV study
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Figure 2. 
Tuning of cutoffs for the HM450K-based CNA detection method. The elbow point appears 

at 25KB.
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Figure 3. 
RCNA regions detected by GISTIC2.0 on the FH dataset.
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Figure 4. 
The validated 11 RCNAs (adjusting for Gleason score).

A) CNAs detected in the FH dataset

B) CNAs confirmed in the EV dataset

C) ROC curves for predicting metastatic-lethal prostate cancer based on the EV dataset. 

Curves are shown for each validated region: CNA alone, Gleason score (GL) alone, and 

Gleason score plus the CNA combined (GL+CNA )

D) ROC curves for predicting metastatic-lethal prostate cancer based on the EV dataset. 

Three curves are shown for all the CNAs (CNAs), Gleason score (GL) alone, and Gleason 

score plus all the CNAs (GL+CNAs)
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Table 2.

The number of RCNAs found in the RCNA detection and association analyses

Focal-level Arm-level

Deletion Amplification Deletion Amplification

#RCNA detected in FH 67 106 10 9

#RCNA association discovered in FH 27, 15 34, 15 4, 2 1, 1

#RCNA association validated in EV 10, 7 3, 2 2, 2 0, 0

The number before a comma represents the association result without adjusting for Gleason score, the number after a comma represents the 
association result adjusting for Gleason
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