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Abstract

Hepatocellular carcinoma (HCC) is prevalent worldwide. Among the various therapeutic options, 

transarterial chemoembolization (TACE) can be applied to the tumor vascular network by 

restricting the nutrients and oxygen supply to the tumor. Unique morphological properties of this 

network may provide predictive information about future therapeutic responses, which would be 

significant for decision making during treatment planning. The extraction of morphological 

features from the tumor vascular network depicted in abdominal contrast-enhanced ultrasound 

(CEUS) images faces several challenges, such as organ motion, limited resolution caused by 

clutter signal, and segmentation of the vascular structures at multiple scales. In this study, we 

present an image processing and analysis approach for the prediction of HCC response to TACE 

treatment using clinical CEUS images and known pathological responses. This method focuses on 

addressing the challenges of CEUS by incorporating a two-stage motion correction strategy, clutter 

signal removal, vessel enhancement at multiple scales, and machine learning for predictive 

modeling. The morphological features, namely, number of vessels (NV), number of bifurcations 

(NB), vessel to tissue ratio (VR), mean vessel length, tortuosity, and diameter from tumor 

architecture were quantified from CEUS images of 36 HCC patients before TACE treatment. Our 

analysis revealed that NV, NB, and VR are the dominant features for the prediction of long term 

TACE response. The model obtained an accuracy of 86% with a sensitivity and specificity of 89% 

and 82%, respectively. Reliable prediction of the TACE therapy response using CEUS-derived 

image features may help to provide personalized therapy planning, which will ultimately improve 

patient outcomes.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most prevalent cancer worldwide (Altekruse et 

al. 2009) and the third most common cause of cancer mortality (Kim and El-Serag 2019). 

Liver function and the tumor location and stage are considered when planning treatment 

options, such as surgical resection, transplantation, locoregional treatment, or systemic 

therapy (Brown et al. 2012). Patients with unresectable tumors are often candidates for a 

locoregional treatment option including drug-eluting bead transarterial chemoembolization 

(DEB-TACE or TACE) or transarterial radioembolization (TARE), which is not embolic. In 

the TACE procedure, polyvinyl alcohol beads or ethiodol are used to deliver 

chemotherapeutic agents into the tumor angiogenic network via a catheter placed in the 

tumor-feeding hepatic artery (Yamada et al. 1995). After the embolization, the beads start 

releasing the chemotherapeutic drug slowly into the tumor vasculature (Kloeckner et al. 

2010). Successful treatment is defined by the complete occlusion of the tumor vasculature, 

but up to 65–75% of tumors show residual blood flow, and in this case, repeat TACE or 

alternative therapies are required (Shaw et al. 2015).

Monitoring TACE therapy response is performed with contrast-enhanced magnetic 

resonance imaging (CE-MRI) or with contrast-enhanced computed tomography (CECT) 

(Brown et al. 2012). The standard recommended time for the follow-up imaging is 4 to 6 

weeks because both imaging modalities have limitations assessing the residual blood flow or 

lack thereof before this time point (Brown et al. 2012; Kloeckner et al. 2010; Shaw et al. 

2015; Yan et al. 2002). Contrast-enhanced ultrasound (CEUS) is a low cost alternative to 

CECT and CE-MRI, and provides accurate evaluations of residual blood flow at 1 to 2 

weeks post TACE treatment qualitatively (Shaw et al. 2015) and quantitatively (Averkiou et 

al. 2020; Nam et al. 2018). Quantifications of TACE therapy response using CEUS are 

performed with blood perfusion parameters that provide functional information about the 

blood flow dynamics after the TACE treatment.

Structural information from the architecture of the tumor angiogenic network can be 

characterized by their morphological features (Hoyt et al. 2015). These morphological 

features have also been shown as biomarkers for early response to anticancer therapy for 

different tumor models (Eisenbrey et al. 2011; Gessner et al. 2012; Ghosh et al. 2019; Hoyt 

et al. 2012; Lin et al. 2017; Özdemir and Hoyt 2019; Rao et al. 2016; Saini and Hoyt 2014; 

Shelton et al. 2015). However, a more efficient HCC management would benefit from the 

information about future TACE response at the time of the treatment planning phase (in 

which case percutaneous ablation or TARE may be opted for as an alternative). Hence, a 

current clinical challenge is to determine which patients will respond to TACE as effective 

delivery of the embolic material may be influenced by the tumor vascular supply.

We hypothesize that CEUS image-derived tumor vascular morphology features may provide 

predictive information for efficient TACE therapy planning and HCC patient management. 

Challenges for improved quantification of tumor vascular morphology in abdominal imaging 

include the high amount of motion artifacts that limit direct quantification of the structural 

information (Oezdemir et al. 2019a) and the tissue signal, i.e. clutter signal, which limits the 

vascular resolution reconstructed by the ultrasound (US) contrast agent (microbubble, MB) 
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signal (Hoyt et al. 2015; Mauldin et al. 2011a). Another restriction is the lost visualization of 

small vessels in the tumor vasculature when focusing only on large vessels or vice versa 

during the vessel segmentation process (Oezdemir et al. 2019b). Finally, an automated 

image processing pipeline is useful for reproducible results and clinical translation. Herein 

we investigate the potential use of abdominal CEUS and advanced image processing 

algorithms for predicting HCC response to TACE treatment.

Materials and Methods

Ultrasound Imaging

A retrospective analysis of CEUS images of human HCC was performed (N = 36). Data was 

acquired as part of an ongoing IRB approved multi-center trial (NCT# 02764801) in which 

all participants provided informed consent. All US examinations were completed using a 

Logiq E9 scanner equipped with a C1–6-D transducer (GE Healthcare, Wauwatosa, WI). 

Subjects received a bolus injection of 0.2 to 0.3 ml of a MB contrast agent (Definity, 

Lantheus Medical Imaging, N Billerica, MA) followed by a 10 ml saline flush. CEUS 

imaging was performed using a dual imaging mode, enabling side-by-side visualization of 

the grayscale B-mode US and CEUS images at a rate of 8 to 9 frames per second. A low 

mechanical index (< 0.1) was used to avoid MB destruction during the US imaging sessions. 

A nonlinear harmonic imaging mode was used for improved MB visualization (transmit at 2 

MHz, receive at 4 MHz) and gain settings were adjusted to minimize nonlinear signals prior 

to contrast injection. The focal zone was placed just below the approximate depth of the 

lesion to maximize the generation of nonlinear signals during CEUS imaging. The 

approximate tumor mid-line was imaged until homogenous liver enhancement was achieved 

(approximately 40 to 45 seconds post-injection), followed by imaging sweeps through the 

tumor. Patients underwent a total of three separate CEUS exams. In this study, we acquired 

only the pre-therapeutic baseline measurements from each subject. As a reference standard, 

treatment response was defined as incomplete (i.e. requiring retreatment) based on (in order 

of preference when available) a) pathological examination of explanted livers demonstrating 

live tumor; b) tumor enhancement seen with CT or MR and confirmed via angiography 

during retreatment; c) interval tumor growth on 6 month follow-up CE-CT/MRI; or d) 

asymmetrical or nodular tumor enhancement on CE-MRI/CT on 6 month follow-up. 

Complete treatment response was determined using pathological examination of explanted 

livers when available, and a complete lack of enhancement and tumor size reduction on CE-

MRI/CT at 6 months in patients who did not undergo transplant. Table I shows the patient’s 

demographics including the tumor size, location as well as the TACE treatment information. 

All patients were treated with a single session with CEUS data collected before retreatment 

was initiated.

Image Processing

A custom MATLAB (MathWorks, Inc., Natick, MA) software was developed to pre-process 

the images and to extract the vascular morphology features. Fig. 1 illustrates the proposed 

image processing and analysis pipeline. First, we applied a two-stage motion correction 

method to align the frames from the dynamic CEUS sequence. Following that, a singular 

value filter (SVF) was applied to remove the tissue signal, and a multiscale vessel 
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enhancement filter was used as a pre-processing step before segmentation. After centerline 

detection, relevant morphological features were extracted. Finally, a distance weighted 

discrimination method was used to train and evaluate the vascular morphological features as 

TACE therapy response predictors in patients with HCC.

To delineate the tumor area, a region of interest (ROI) was drawn manually by a trained 

sonographer with over five years’ experience in CEUS and who also conducted the US 

examinations. The quality of co-registered B-mode US and CEUS sequences was degraded 

due to patient’s normal respiratory, cardiac physiology, and US transducer movement 

(Harput et al. 2018; Oezdemir et al. 2019a). According to the image acquisition protocol, 

any motion after about 40 seconds (the first 355 frames) were eliminated as the probe was 

rotated and resulted in out-of-plane motions. The remaining B-mode US images were used 

to estimate the in-plane tissue motion. Since the co-registered CEUS images contained more 

visible MB motion, which was relevant for the further processing steps, the tissue motion 

was estimated on the B-mode US image sequence. The first frame was selected as reference 

frame based on the assumption that the best visualization of the tumor was collected at the 

beginning of the acquisition. Following that, affine and non-rigid motion estimation methods 

were used to compute the displacements of the B-mode US images from the reference. In 

brief, the affine transformations compensated the global motion, and free-form deformations 

adjusted the motion on local regions in CEUS images using a limited memory Broyden 

Fletcher Goldfarb Shanno (L-BFGS) optimizer (Kroon 2011; Rueckert et al. 1999). 

According to the combined transformations estimated from the B-mode US images:

T x, y = Tglobal x, y + T local x, y (1)

where x and y are the pixel coordinates, the corresponding CEUS images were aligned with 

the reference frame (Harput et al. 2018; Oezdemir et al. 2019a).

The tissue clutter signal was removed using a SVF (Mauldin et al. 2011b). SVF is a 

principal component analysis (PCA) based filter using singular value decomposition (SVD). 

It forms a small windowed matrix over all the frames (a temporal kernel), which reduces the 

computation time and memory consumption for SVD. The temporal kernel helps to 

incorporate more local information by separating the three dominate US signals, namely, 

from the tissue, MB contrast agent, and noise (Demené et al. 2015). Removing the tissue 

artifacts from the images increases the contrast-to-tissue (CNR) ratio. After SVF, all of the 

frames were merged using the maximum intensity projection (MIP) technique whereby the 

final image has the maximum intensity values throughout consecutive frames of the image 

sequence at each pixel location (Forsberg et al. 2011).

To visualize the tumor vascular network in greater detail, the tubular structures of the MIP 

were enhanced using a multiscale vessel enhancement filter. This method has been used in 

magnetic resonance and computed tomography (CT) angiography to increase the diagnostic 

quality (Frangi et al. 1998). It uses the second fundamental form from differential geometry, 

which allows approximating an image locally by its second-order Taylor expansion. The first 

and second-order derivatives of the image in the Taylor expansion provide a directional 

change in intensity values and curvature information of the image (Gonzalez and Woods 
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2018). Specifically, the eigenvectors of the Hessian matrix give the amount of intensity 

variations. Tubular structures are detected as structures with high variations in the 

longitudinal direction and low variations in cross-sectional direction, i.e., the highest 

eigenvalues and its orthogonal counterpart at each pixel, respectively. Derivatives of the 

image are provided by the convolutions with the derivatives of Gaussian kernels, while 

multiscale enhancement is achieved by different sigma (the width of the kernel) values of 

these Gaussians. A vesselness function Vo(γ) results in higher values for tubular structures 

in 2D and minimizes the noise:

V o(γ) =
0

exp − RB2
2β2

if λ2 > 0

1 − exp − s2

2c2
(2)

RB =
λ1
λ2

, S = ∑j = 1
2 λj2

where λ1,2 are eigenvalues from the Hessian matrix of the image, RB is for identification of 

blob-like or tubular patterns, S is the definition of the structureness, γ is used for the 

different scales of Gaussian kernels, β and c are the regularization parameters for adjusting 

filter sensitivity. With this, thicker vessels are detected by kernels with a large sigma, while 

thinner vessels are detected by kernels with a small sigma in the scale selection process.

Using the same clinical US system and settings used for patient data collection, a flow 

phantom of known vessel dimensions was used to calibrate the custom software for the scale 

range selection in a controlled environment. Although this scale selection process can be 

optimized for thicker vessels, finding a lower bound for the thinner vessels was only 

possible with the risk of including some noise or removing some desired vessel signal. 

Hence, this lower limit was assessed qualitatively by the amount of background suppression. 

After the scale selection process, a multiscale image with enhanced vascular structures was 

created.

Morphological Feature Extraction

To use morphological image operations, vessels from the multiscale image were segmented 

using an adaptive thresholding method (Bradley and Roth 2007). This method first creates 

an integral image to compute the average value of the neighboring pixels. The binary image 

is created by the comparison of the current pixel value with this average. The foreground and 

background pixels from the binary image were used to compute the morphological features 

of tumor vasculature. First, the vessel-to-tissue ratio (VR) was estimated (Hoyt et al. 2015).

The centerlines of the segmented vessels were extracted using a parallel thinning algorithm 

(Zhang and Suen 1984) as a simplified version of the tumor vascular network. This method 

keeps the same digital connectivity patterns and the topology of the vascular structures by 

modifying 8-connected skeletons and retaining diagonal lines as well as 2 × 2 squares (Lam 

et al. 1992). As shown in Fig. 2, the nodes and edges of the skeletonized network was 

considered as bifurcations (or branching points) and individual vessel segments, 
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respectively. Accordingly, the number of bifurcations (NB) was found by counting each 

node of the network, and the number of vessels (NV) was the edge count of the network. As 

introduced in our previous work (Özdemir and Hoyt 2019), the distance transform was used 

to estimate vessel diameters at each pixel on the centerline as the Euclidian distance between 

the centerline pixel and the closest edge pixel of the regarded tubular structure (vessel edge). 

A mean vessel diameter for the entire tumor was then computed by averaging all of the 

mean diameters from individual vessel segments. Similarly, the mean vessel length (VL) and 

vessel tortuosity (VT) metrics were computed by averaging over all of the vessel segments 

(Hoyt et al. 2015). Note VT as metric value is zero only for straight vessel segments.

Feature Selection and Model Assessment

The predictability of HCC response to TACE treatment was evaluated using a distance 

weighted discrimination method (DWD) (Marron et al. 2007). This employs an improved 

machine learning method for statistical analysis of high-dimension low-sample size data. 

Similar to support vector machines (SVM), DWD discriminates the data into two classes but 

different from SVM; DWD avoids data piling and increases the generalizability of the 

model. The small sample size of our dataset is the rationale of choosing the DWD as the 

classification algorithm.

All of the data points were labeled with one of the two classes, i.e., complete and incomplete 

response to prepare the training data (James et al. 2013). The leave one out cross-validation 

method was used to have a reliable accuracy (Hastie et al. 2009). For this, the sample (N = 

36) was divided into a construction (N = 35) and a validation (N = 1) sub-datasets for each 

patient data (Stone 1974). Thus, 36 different models were trained separately with 35 

patient’s data and validated on one exam. In the end, the average accuracy of all 36 cases 

was reported as the final accuracy. To investigate the contributions of the six extracted 

features from tumor vasculature for the prediction of the TACE response, two models were 

trained with a different set of features. The first model used all of the features, while the 

second model used only the most discriminative features, which was assessed visually by the 

pair plots of features, i.e. the most correlated features were excluded. Both models were 

tuned using a polynomial kernel with different values for the hyper-parameters and the best 

performing model was chosen from the largest values of accuracy and interrater reliability 

statistics (kappa). The data were centered and scaled in a pre-processing step before each 

training. All computations and data analyses were performed using a statistical software 

package (R Foundation for Statistical Computing, Vienna, Austria) (Kuhn 2008; R core team 

2013).

Results

CEUS image-derived vascular morphological features were used to evaluate HCC response 

to TACE treatment in 36 patients. According to the CT, MRI, and pathology outcomes, 19 

patients had a complete response, and the other 17 had an incomplete response. Fig. 3 shows 

the two-step motion correction results using two representative patients’ data with complete 

and incomplete response, respectively. Starting from a single B-mode US image showing the 

anatomical structures, two MIPs of the initial dynamic B-mode US and CEUS image 
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sequence have a challenging view of the tumor. Because MIPs are created using the 

maximum intensity value of each frame for each pixel location. Thus, the MIPs without any 

filtering have intensity saturations, e.g. bright pixels. Here, the raw results after MIP step 

were presented directly without any gain compensation for a comparison with the results 

after motion correction process. After the correction of the in-plane motion, the abdominal 

structures and the tumor vasculature are more visible in the MIP. These representative US 

images demonstrate the need for motion correction in the image processing pipeline to 

improve tumor visibility before starting with the feature extraction.

The effect of clutter signal removal is illustrated in Fig. 4. The presence of the tissue signal 

can complicate vessel detection. Removing the tissue signal increased the CNR as depicted 

in the paired images. These SVF outputs improve the results of the multiscale vessel 

enhancement filter in the next step. The morphological image processing results summarized 

in three steps for each of the representative cases, is depicted in Fig. 5. First, the results from 

the multiscale vessel enhancement filter is overlaid on the SVF results. The enlarged ROIs 

depict the binary image before spatial morphological filters like opening and closing. The 

enlarged ROIs also represent the centerlines detected from the binary vasculature. The 

simplified tumor network topology (centerlines) indicates the vascular routes for effective 

drug delivery, which is crucial for effective embolization. Fig. 6 and Fig. 7 present cases of 

HCC from individual patients for complete responders and incomplete responders, 

respectively. The colors indicate the vessel diameters. Here, the difference in tumor vascular 

complexity for the complete and incomplete response groups can be assessed qualitatively. 

A larger number of vessels and bifurcations contribute more to the chaotic visualizations of 

the tumor vascular networks which was observed more in incomplete responders group.

CEUS derived morphological features were used to assess the correlated and discriminative 

features qualitatively for complete and incomplete response patients. As highlighted in Fig. 

8, the weakest feature was the VD parameter compared to all other features. Training with 

all of the features achieved only a 52% accuracy while training with the feature set where 

VD was excluded achieved an accuracy of 72% and training with the dominant features (NV, 

NB, and VR) achieved the best overall accuracy of 86%. As informed by the pair plot and 

confirmed by the accuracy, the dominant features, namely, NV, NB, and VR, were selected 

to train and tune the final machine learning model. As listed in Table II, this final model 

achieved a validation accuracy of 86% (95% CI [0.70, 0.95]) and a kappa statistic of 72%. A 

sensitivity and specificity of 89% and 82%, respectively, were obtained. Table III details the 

confusion matrix for the model performance in terms of individual predictions. Overall, 

these performance metrics showed that our model was able to make reliable pre-therapeutic 

HCC response to TACE predictions.

Discussion

The strength of the proposed image processing and analysis method is that it is based on the 

patient specific geometry of their tumor vascular network while addressing the image 

processing challenges, such as motion artifacts, tissue signal, and multi-scale segmentation 

in abdominal CEUS imaging before parameterization. This enables automated pre-

processing for each patient and a reliable prediction of the TACE therapy response. 
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Reproducible quantifications of HCC vascular networks depicted in CEUS images and the 

prediction of pre-therapeutic TACE response, can improve customized treatment strategies 

in personalized medicine.

Aggressive tumors are known to have chaotic angiogenic networks (Weidner et al. 1991) 

with more tortuous (Gessner et al. 2012; Lin et al. 2017; Rao et al. 2016) and dense 

vasculature (Hoyt et al. 2015). The complexity of the tumor vascular network may affect the 

arterial delivery of the drug-eluting beads during TACE treatment. Thus, quantification of 

the tumor angiogenic network may provide crucial information for physicians during 

treatment planning. The NV, NB and VR parameters were shown to be the most effective 

features for predicting HCC response to TACE. The more bifurcations in the angiogenic 

network may result in more embolization targets.

If it is believed that the intra-arterial therapies will not provide adequate treatment response, 

alternative locoregional therapies such as ablation or radiation may be employed. In this 

study, CEUS image-derived morphological features of the HCC vascular network were able 

to predict the eventual TACE response. The preliminary results indicate that liver tumors 

with less complex vascular networks have a higher potential for a complete response to 

TACE therapy. This may be partially attributed to the fact that tumors with more developed 

vascular patterns may have multiple feeding sources, requiring multiple TACE treatments for 

complete embolization. These tumors may be more amenable to TARE, which requires 

localized deposit of radiation containing beads but not complete embolization of the tumor 

vasculature.

Using MRI as a preoperative conventional, image features and texture analysis have been 

shown to predict tumor response to TACE treatment (Zhang et al. 2019). Texture features 

from CT images have also been shown to be potential predictors for identifying patients who 

are not suitable for TACE treatment (Cai et al. 2019; Park et al. 2017; Yu et al. 2018). In a 

more recent study, it was shown that CT-derived image features can predict the response of 

TACE using a residual convolutional neural network with up to 85% accuracy (Peng et al. 

2020). Another recent study aimed to establish the feasibility of an artificial intelligence–

based radiomics strategy for predicting TACE response (Liu et al. 2020). To date none of 

these approaches have resulted in clinical adoption.

CEUS imaging can be used to help monitor tumor response to systemic drug treatment 

(Hoyt et al. 2015; Nam et al. 2018). Advanced image analysis of breast tumor vascular 

networks depicted in clinical CEUS images showed both a strong correlation between 

functional and structural tumor parameters as well as to the post-therapeutic monitoring 

capabilities of CEUS image-derived morphological features (Hoyt et al. 2015). This study 

introduced a method for quantification of unique vascular morphological features while the 

motion artifacts caused by patient, organ, or transducer motion were neglected during the 

image processing. Motion artifacts can negatively impact the accuracy during quantification 

of vascular morphological features. In a recent preclinical study, a simpler morphological 

feature called the vascular network length was used (Theek et al. 2018). This parameter was 

shown to be a feasible metric for describing tumor vascular morphology from CEUS images 

with the support of the other features, such as first- order statistics, functional, textural, and 
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wavelet-based features. This study segmented the tumor vasculature by intensity 

thresholding without addressing the potential lost visualization of the smaller vessels when 

focused on larger vessels only. Segmentation at only one scale can also affect the 

quantification of vascular morphology. Our method addressed both of these challenges and 

helped improve the overall CEUS image quantification process.

Showing the feasibility of morphological feature extraction from HCC tumor vasculature 

and the ability of assessing the future TACE response, this study is limited by its small 

sample size. Before introducing to the clinical practice, the approach presented in this paper 

needs to be extensively validated using a large sample size and data from different sites.

Conclusion

A novel CEUS image processing and analysis method was developed that both extracts the 

morphological features from the tumor vascular network and predicts HCC response to 

TACE treatment. Introduction of a reliable method for predicting a TACE response may help 

provide more effective therapeutic planning and more personalized patient strategies.
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Figure 1: 
Image processing and analysis pipeline for prediction of transarterial chemotherapy (TACE) 

response for an individual patient with hepatocellular carcinoma (HCC). The contrast-

enhanced ultrasound (CEUS) image sequence was aligned using the first frame as reference. 

Tissue signal was removed, and vasculature was enhanced at multiple scales before 

segmentation. Using morphological operations, tumor microvascular features were 

extracted. A distance-weighted discriminator was trained using the CEUS image-derived 

morphological features and leave-one-out validation.

Oezdemir et al. Page 12

Ultrasound Med Biol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Schematic for the definition of select morphological features. The simplified tumor 

angiogenic network from centerlines of the tubular structures contain vessels with branching 

points or nodes (A). Individual vessel segments, edges are counted after the removal of the 

branching point. (B), (C), and (D) denote individual vessels with gradually increased 

tortuosity and different vessel length.
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Figure 3: 
Representative ultrasound (US) results from patients with HCC determined to have either a 

complete (top) or incomplete (bottom) response to TACE treatment. As shown from left to 

right are the B-mode US image, maximum intensity projection (MIP) of the original B-mode 

US, CEUS image, and MIP of the motion corrected CEUS image sequence.
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Figure 4: 
Representative results after spatiotemporal filtering of the CEUS images from patients with 

HCC determined to have either a complete (top) or incomplete (bottom) response to TACE 

treatment.
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Figure 5: 
Morphological operations after application of multiscale vessel enhancement in (A) and (D), 

the result of spatial filtering and binarization in (B) and (E) , and the centerline detection in 

(C) and (F) for the representative complete and incomplete response patients, respectively.
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Figure 6: 
US images from patients with HCC that exhibited a complete response to TACE treatment. 

Microvascular morphological structures are overlaid on a single B-mode US image 

(reference frame). Color indicates the vessel diameter measurements from red (high) to blue 

(low).
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Figure 7: 
US images from patients with HCC that exhibited an incomplete response to TACE 

treatment. Microvascular morphological structures are overlaid on a single B-mode US 

image. Color indicates the vessel diameter measurements from red (high) to blue (low). Note 

that tumors are relatively large and have a more chaotic microvascular structure compared to 

patient tumors that exhibit a complete response to TACE.

Oezdemir et al. Page 18

Ultrasound Med Biol. Author manuscript; available in PMC 2021 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: 
Visual assessment of morphological features from patients that were determined to have 

undergone either a complete or incomplete response TACE. Number of vessels (NV), 

number of branching points (NB), vessel-to-tissue ratio (VR), mean vessel length (VL), 

mean vessel tortuosity (VT), and mean vessel diameter (VD).
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TABLE I.

PATIENT INFO: SEX, BODY MASS INDEX (BMI), AGE, TUMOR DIMENSION, TUMOR LOCATION, 

RECEIVED TREATMENT (LIPIODOL(C-TACE) VS. DEBBOX)), AND TRANSARTERIAL 

CHEMOEMBOLIZATION (TACE) RESPONSE RESULTS

Subject
number

Sex BMI
(kg/m2)

Age Largest tumor
dimension (cm)

Tumor
location

Received
treatment

TACE
response

1 M 35.3 63 2.0 S.gm.6 c-TACE Complete

2 M 22.1 71 7.1 Segm ent7 c-TACE Incomplete

3 M 21.0 52 4.2 Segment 8 DEB-TACE Complete

4 M 39.2 44 2.4 Segment 8 c-TACE Complete

5 M 31.9 68 2.3 Segment 7 DEB-TACE Complete

6 M 28.1 62 _.° Segment 2 c-TACE Complete

7 M 41.8 42 5.5 Segment 4 DEB-TACE Incomplete

8 M 24.0 48 4.0 Segment 3 DEB-TACE Incomplete

9 M 30.0 69 4.1 Segment 2 DEB-TACE Incomplete

10 F 27.3 47 2.5 Segment 5 DEB-TACE Incomplete

11 M 26.5 70 18 Segment 7 DEB-TACE Incomplete

12 M 33.2 60 2.4 Segment 8 DEB-TACE Complete

13 M 23.7 67 2.8 Segment 6 DEB-TACE Incomplete

14 M 27.3 8 2.4 Segment 8 DEB-TACE Complete

15 M 27.5 62 2.1 Segment 2 / 3 DEB-TACE Complete

16 F 37.7 ,4 2.5 Segment 7 DEB-TACE Complete

17 M 29.0 56 2.6 Segment 2 DEB-TACE Complete

18 M ‘4.0 56 1.8 Segment 3 DEB-TACE + c-TACE Complete

19 M 23.9 54 3.0 Segment 8 DEB-TACE + c-TACE Incomplete

20 M 28.7 67 2.6 Segment 4A c-TACE Incomplete

21 M 26.2 69 6.3 Segment 8 DEB-TACE + c-TACE Incomplete

22 M 29.5 65 1.5 Segment 6 DEB-TACE + c-TACE Complete

23 M NA 62 3.5 Segment 6 DEB-TACE Complete

24 M 19.7 56 NA Segment 2 DEB-TACE + c-TACE Complete

25 M 25.9 66 3.8 Segment 5 DEB-TACE Incomplete

26 F 22.4 72 5.9 Segment 7 DEB-TACE + c-TACE Incomplete

27 M 31.4 60 8.1 Segment 2 DEB-TACE Incomplete

28 F 27.7 71 3.8 Segment 4 DEB-TACE Incomplete

29 M 31.9 74 2.4 Segment 8 DEB-TACE + c-TACE Complete

30 M 25.8 66 1.3 Segment 8 DEB-TACE + c-TACE Complete

31 M 39.0 72 7.2 Segment 7 DEB-TACE + c-TACE Incomplete

32 M 23.9 69 8.4 Segment 6 DEB-TACE + c-TACE Incomplete

33 M 31.0 64 2.9 Segment 6 DEB-TACE + c-TACE Complete

34 F NA 65 2.8 Segment 4B DEB-TACE Complete

35 M 25.0 66 1.7 Segment 8 c-TACE Complete

36 F 32.0 62 3.0 Segment 8 DEB-TACE Incomplete
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TABLE II.

MODEL PERFORMANCE METRICS

Model Trained with Features NV, NB, and VR

Accuracy 86 %

Kappa 72 %

Sensitivity 89 %

Specifity 82 %

%95 CI* 0.705 – 0.953

*
CI = Confidence Interval

NV = Number of vessels, NB = Number of bifurcations,

VR = Vessel-to-tissue ratio
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TABLE III.

LEAVE-ONE-OUT CROSS-VALIDATION RESULTS

Predictions/True Response Incomplete Complete

Incomplete 14 2

Complete 3 17
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