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Abstract

Background: The androgen receptor (AR) is a key prostate cancer drug target. Suppression of 

AR signaling mediated by the full-length AR (AR-FL) is the therapeutic goal of all existing AR-

directed therapies. AR-targeting agents impart therapeutic benefit, but lead to AR aberrations that 

underlie disease progression and therapeutic resistance. Among the AR aberrations specific to 

castration-resistant prostate cancer (CRPC), AR variants (AR-Vs) have emerged as important 

indicators of disease progression and therapeutic resistance.

Methods: We conducted a systemic review of the literature focusing on recent laboratory studies 

on AR-Vs following our last review article published in 2016. Topics ranged from measurement 

and detection, molecular origin, regulation, genomic function, and preclinical therapeutic targeting 

of AR-Vs. We provide expert opinions and perspectives on these topics.

Results: Transcript sequences for 22 AR-Vs have been reported in the literature. Different AR-

Vs may arise through different mechanisms, and can be regulated by splicing factors and dictated 

by genomic rearrangements, but a low-androgen environment is a prerequisite for generation of 

AR-Vs. The unique transcript structures allowed development of in-situ and in-solution 

measurement and detection methods, including mRNA and protein detection, in both tissue and 

blood specimens. AR variant-7 (AR-V7) remains the main measurement target and the most 

extensively characterized AR-V. Although AR-V7 co-exists with AR-FL, genomic functions 

mediated by AR-V7 do not require the presence of AR-FL. The distinct cistromes and 

transcriptional programs directed by AR-V7 and their co-regulators are consistent with genomic 

features of progressive disease in a low-androgen environment. Preclinical development of AR-V-
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directed agents currently focuses on suppression of mRNA expression and protein degradation as 

well as targeting of the amino-terminal domain.

Conclusions: Current literature continues to support AR-Vs as biomarkers and therapeutic 

targets in prostate cancer. Laboratory investigations reveal both challenges and opportunities in 

targeting AR-Vs to overcome resistance to current AR-directed therapies.

I. Introduction

Prostate cancer is an androgen-dependent disease. Management of patients with advanced 

prostate cancer often involves androgen-deprivation therapies (ADT) established in 1941 1. 

Under ADT, castrate levels of androgens indicated by circulating testosterone (T) less than 

50ng/dL are achieved. Castration-resistant prostate cancer (CRPC) defines disease 

progression under castrate levels of T. In CRPC, expression level of the androgen receptor 

(AR) is often elevated, leading to AR activity under reduced androgen levels. In addition, the 

AR gene on the X chromosome may undergo genomic alterations including structural 

changes and point mutations. These CRPC-specific AR alterations provided a mechanistic 

explanation for continued dependence of CRPC on AR signaling 2–4. This important concept 

in CRPC biology has guided and resulted in successful clinical development of second-

generation AR-targeting therapies to treat CRPC, including agents that antagonize AR 

(enzalutamide, apalutamide, darolutamide) or further suppress extragonadal androgen 

synthesis (abiraterone, orteronel) 5–17. The next-generation AR antagonists bind to the AR 

ligand-binding domain (LBD) with higher affinity than first-generation anti-androgens 6,8, 

while abiraterone inhibits CYP17A1, a rate-limiting enzyme in the synthesis of adrenal and 

intra-tumoral androgens 5,7. Recently, clinical use of these next-generation AR-targeting 

therapies has been extended to castration-sensitive prostate cancer (CSPC) 9,18,19 and non-

metastatic CRPC (nmCRPC) 10–12,20–22.

Androgen receptor variants (AR-Vs) have mRNA sequences that are structurally different 

from the canonical full-length AR (AR-FL). A total of 22 AR-Vs have been cloned and 

reported in the literature (Figure 1). The majority of these AR-Vs lack the ligand-binding 

domain (LBD), the therapeutic target of all existing AR-targeting agents. In preclinical 

models, some but not all of these AR-Vs mediate constitutively active AR signaling, i.e., 

their activity is not dependent of the presence of androgens or AR-FL 23. Among the AR-Vs 

described to date, AR-V7 remains to be the most extensively evaluated and characterized, 

and several blood-based tests for AR-V7 have been developed (see companion review). 

General topics on AR-Vs have been reviewed extensively in the past 23–26. The intent of the 

current review is to provide a sequel to a previous review article published in 2016 24. 

Specifically, we will highlight recent preclinical studies covering topics ranging from 

measurement and detection, molecular origin, regulation, genomic function, and preclinical 

therapeutic targeting of AR-Vs. We will provide expert opinions and perspectives on these 

topics. Readers are directed to a companion review focusing on clinical studies related to 

AR-Vs.
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II. Advances in AR-V measurement and detection methods.

Accurate, reliable, and reproducible measurement of AR-Vs is a key requirement for 

inferring functional and clinical relevance. A variety of detection methods have been 

developed for the measurement of AR-Vs. These methods differ according to the method of 

sampling and specific measurement target. Some methods developed for blood-based AR-

V7 detection have been analytically validated and implemented for clinical use (see 

companion review).

Detection by CTC mRNA.

Blood-based detection of AR-V7 in the treatment setting was first reported in 2014 27. In 

this initial report, CTC enrichment was achieved by AdnaTest, followed by RT-PCR-based 

detection of AR-FL and AR-V7. Following analytical validation, a slightly modified version 

of the laboratory-developed test was implemented in a CLIA- and CAP-certified laboratory 

for clinical use 28,29, and another modified version was implemented as a clinical trial test 
30. The AdnaTest employs a simple workflow enabling fast turnaround time at low cost, but 

with the drawback of requiring sample processing within 24 hours of blood collection. 

Nevertheless, with careful management this drawback can be overcome. For example, a 

global biomarker selection trial was conducted by Tokai after implementing three central 

laboratories in three continents 30. A recent prospective study further validated the feasibility 

of conducting the test in the multi-institutional setting involving overnight shipping 13. 

While analytical and clinical validity are the two key requirements for clinical 

implementation, further improvement of the CTC-based test should take into consideration 

many factors that may also impede or facilitate clinical implementation, including cost and 

ease of use. Because the number of CTCs detected is always the limiting factor, new 

technologies to improve efficiency/sensitivity of CTC enrichment may further improve the 

test. For example, novel microfluidic apparatus or in vivo CTC collection methods were 

designed for CTC isolation and molecular analysis. Using negative depletion microfluidics 

(CTC-iChip) 31 (NCT01961843) or positive selection microfluidic chip (e.g., IsoFlux) 32, 

CTC mRNA analysis including analysis of AR-FL/AR-V7 were conducted with digital 

droplet PCR (ddPCR). An intravascular CTC collection rod with antibody-coated surface 

(CellCollector, Gilupy, Germany) 33–35, as well as antibody-coated magnetic wire designed 

for CTC collection directly from blood flow 36, may also help to address the limitation of 

low CTC numbers. With regard to the limitation posed by low amount of CTC RNA, 

multiplexing may be the solution. For example, a 27-gene panel (iGene panel) was tested 

with high-throughput qPCR on Biomark platform (Fluidigm, San Francisco, CA) from 

CRPC patients receiving docetaxel treatment 37. These technologies may be used for 

biomarker development, including the detection of AR-Vs. However, it is challenging to 

conduct direct comparison of various CTC-based mRNA detection platforms.

Detection in whole blood.

AR-Vs may be detected in whole blood without CTC enrichment. Using blood collection 

tube containing additives for the purpose of stabilizing intracellular RNA (e.g. PAXgene 

Blood RNA tube), total RNA from peripheral blood were prepared for AR-V7 detection 
38–41. However, mainly due to RNA contamination from large amount of leukocytes, the 
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tumor-cell origin of AR-V7 will need to be validated especially when the measured signals 

are low. In addition, it is important to note that measurement of AR-FL is no longer possible 

in whole blood samples because non-CTC cells such as regulatory T-cells and macrophages 

have low-level of AR expression 42,43.

Detection in exosomes.

Exosomal RNA from extracellular vesicles in plasma represents another source for AR-V 

detection. Using exosomes, AR-V7 was detected by ddPCR using TaqMan probe with high 

sensitivity (at 2 copies/mL blood) and shown to be a strong predictive marker for 

enzalutamide/abiraterone resistance in mCRPC patients 44. In another report, extracellular 

vehicles (EVs) from urine were used in detecting AR-V7 45. Again, studies designed to 

conduct head-to-head comparisons are important but challenging to implement in the 

treatment setting.

Tissue Detection by RISH.

PCR-based detection methods described above are in-solution methods that generally do not 

capture cellular heterogeneity and the morphological context in tumors. In-situ detection 

methods such as RNA in situ hybridization (RISH) and immunohistochemistry (IHC) (see 

below) have been developed. The use of RISH for AR-V7 detection was first reported in 

2014 27. Subsequently, different types of probes, including padlock probes, modified 

branched DNA probe, or junction-specific probes with enhanced sensitivity and specificity 

were developed to evaluate AR-FL and AR-Vs in FFPE tissue biopsy and isolated CTCs 
34,46–48. In these studies, higher AR-V7 levels were associated with poorer response to AR-

targeting therapies in mCRPC 47,48.

Tissue Detection by IHC.

Recent studies on in-situ detection of AR-V7 protein by IHC focused on newly developed 

and validated antibodies 48–53. Using matched CSPC and CRPC tissue samples, nuclear AR-

V7 protein detected by a rabbit AR-V7 monoclonal antibody (EPR15656; Abcam, 

Burlingame, CA) was associated with poor prognosis of CRPC patients after abiraterone or 

enzalutamide treatment 51. Following detailed characterization in clinical cohorts 13,49,54, 

the EPIC CTC AR-V7 IHC test (Epic Sciences, San Diego, CA) initially developed using 

the same anti-AR-V7 antibody was recently implemented for clinical use (see companion 

review). In tissue-based studies, the use of the RM7 (RevMab) antibody further established 

CRPC-specific expression AR-V7 48,50,55. Interestingly, AR-V7 protein expression was 

detected using this well-validated antibody in a subset of cells in small cell prostate 

carcinoma and some salivary ductal carcinoma specimens from untreated female patients 
52,56. These recent studies on AR-V7 protein expression further supported that AR-V7 

expression arises specifically in a low androgen environment.

Tissue Detection by NGS.

AR-Vs can be detected in clinical specimens by RNA-seq 27. In Antonarakis et al, two 

autopsy specimens from mCRPC patients with positive CTC AR-V7 underwent RNA-seq 

analysis. Using number of reads spanning the exon 3/cryptic exon (CE3) and exon 7/exon 8 
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junctions as surrogate expression values for AR-V7 and AR-FL, respectively, the AR-

V7/AR-FL ratios in the two samples were 25.8% (139/539) and 12.1% (151/1248), in line 

with AR-V7/AR-FL ratios (median 21%, range 1.8% to 208%) estimated from RT-PCR-

based CTC AR-V7 test reported in the same study. Using a slightly different method, the 

median AR-V7/AR-FL ratio from a larger-scale study of CRPC tissues was estimated at 

~5% 57. The lower % reported in tissue-based studies is expected and does not contradict 

with our initial report in unselected CRPC tissues 58 or the ratios reported in CTC AR-V7 

positive cases, because higher ratios reported in the Antonarakis study 27 excluded CTC-

AR-V7 negative cases (no ratios can be calculated in AR-V7 negative cases). In addition, 

RNA-seq in primary hormone naïve prostate cancers also detected AR-V7 at slightly lower 

AR-V7/AR-FL ratio 59. This is not unexpected either, as primary PC tissues are known to 

have low levels of AR-V7 detected by RT-PCR 58. However, we previously posited 24 that 

since AR-FL is also overexpressed in CRPC, a ratio of AR-V7/AR-FL at 10%, under the 

assumption of 10-fold overexpression of AR-FL in CRPC tissues, would bring the absolute 

level of AR-V7 equivalent to the level of AR-FL detected in primary hormone naïve prostate 

cancers tissues. This interpretation also explained why AR-V7 protein is not detected in 

primary tissues 50.

Recent AR-V studies using whole-genome sequencing.

Recent studies have used whole-genome NGS to examine AR for DNA structural alterations 

and RNA expression. Henzler et. al. 60 evaluated 30 soft tissue metastases from 15 rapid 

autopsies for AR structural changes and AR-V expression. In this study, diverse AR-

genomic structural rearrangements (AR-GSRs) including deletion, duplication, inversion 

and translocation were observed in 10/30 metastases (6/15 patients). This study discovered 

many novel AR-Vs driven by AR-GSR. Cloned AR-Vs are depicted in Figure 1. A pilot 

study by De Laere et. al. 61 applied NGS to CTC and cell-free DNA (cfDNA) from mCRPC 

patients. In this study, cfDNA was evaluated by low-pass whole-genome sequencing and 

targeted sequencing of 112 genes including all coding exons and non-repetitive intronic 

regions of AR, and expression levels of AR-FL and AR variant (AR-FL, AR45, AR-V1, 

AR-V2, AR-V3, AR-V5, and AR-V7) was interrogated by amplicon sequencing from 

multiplex junction–specific PCR using cDNA derived from CTCs. In 30 CTC samples from 

26 mCRPC patients, 15/26 (57.7%) patients were AR-V-positive with AR-V7 being the most 

frequently detected variant (12/15 patients), followed by AR-V3 (11/15), AR45 (10/15), 

AR-V9 (6/15), AR-V1 (5/15), AR-V2 (3/15), and AR-V5 (3/15). In this study, 50% (15/30) 

of cfDNA samples had an intra-AR structural variation, and 14 of these 15 samples were 

positive for AR-Vs. Within the small cohort of patients treated with abiraterone or 

enzalutamide, 15/26 (57.7%) were AR-V-positive, and positive patients were either resistant 

(13/15) or moderately responsive (2/15) to abiraterone or enzalutamide.

Kallio et. al. also applied targeted AR DNA-seq and RNA-seq to examine AR-Vs and other 

AR aberrations in CSPC, CRPC, mCRPC, BPH, and noncancerous tissues 62. AR-V3, AR-

V7, and AR-V9 were most frequently detected and co-expressed AR mRNA variants in 

mCRPC, and these variants were also detected in BPH and hormone-naïve primary tumors 

with lower abundance and frequency, although corresponding protein expression (in BPH 

and hormone-naïve samples) was not shown. AR mutations and copy number changes were 
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only detected in locally recurrent and metastatic CRPC specimens but not in untreated 

patients. Non-recurring AR-GSRs (i.e., breakpoints are unique to each sample) were also 

specifically detected in 5/30 mCRPC. In this study, no AR-GSR co-existed with AR 

missense mutations in mCRPC 62. In addition, no definitive association was found between 

these AR-GSRs and AR-Vs, in line with the finding by Henzler et al 60.

Due to limitation of short-read NGS sequencing by Illumina, the contribution of AR GSR to 

AR-V generation remains to be thoroughly investigated. To date, only one study used a long-

read sequencing method (PacBio sequencing platform) to characterize AR variants. In this 

prospective biomarker study (PROMOTE trial, NCT01953640), Kohli et. al. performed 

targeted AR RNA-seq, whole transcriptome sequence, and long-read sequencing of AR 3’ 

RACE (rapid amplification of cDNA ends) products in cell lines, patient-derived xenograft, 

and metastatic CRPC biopsy tissue samples 63. Expression of AR and AR-Vs was also 

measured by qRT-PCR in CTC samples. This study found that the 3’ UTR of AR-V9 

included cryptic exon 3 (CE3) of AR-V7, and high-level of baseline AR-V9 was associated 

with resistance to abiraterone 63.

III. Molecular origin and regulation of AR-V expression

It is well established that expression of AR-Vs are regulated by androgens 64–69. Since our 

last review in 2016 24, many studies have been published that are relevant to the topic of 

molecular origin and regulation of AR-V expression. We will summarize the current 

literature on this topic in three general categories: 1) studies focusing on the role of genomic 

alterations; 2) studies focusing on the role of RNA splicing; and 3) studies demonstrating the 

role of other co-factors and signaling pathways on regulating AR-V expression. The findings 

from studies focusing on splicing factors and related regulators are summarized in Figure 2. 

Readers are directed to a recent review 70 for further reading on the specific topic of AR-V 

regulation, the role of genomic structural alterations, and the requirement of low androgens 

for AR-V7 generation.

Role of genomic alterations.

AR genomic structural rearrangements (GSRs) underlie the generation of some of the AR-

Vs. As discussed in the section “Recent AR-V studies using whole-genome sequencing”, 

AR GSRs may also contribute to the generation of AR variants 60–63. In an interesting model 

proposed by Henzler el. al., successive structural alterations may occur on the same AR 

allele, leading to generation of AR-Vs. The study presented a case in which tumors from 

multiple metastatic sites in the same patient showed similar complex patterns of deletion and 

duplication within the AR LBD that explained the dominant expression of ARv567es 60. 

However, due to the limitation of short-read sequencing and the involvement of target 

enrichment, this model may need further validation with long-read genomic sequencing.

Role of RNA splicing.

Although CRPC-specific splicing factors involved in the process have not been definitively 

identified, studies focusing on factors that regulate AR splicing have identified several key 

factors related to the RNA spliceosome. On the basis of predicted intronic/exonic splicing 
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enhancer sequences in cryptic exon 3 (CE3) of the AR gene, ChIP and RNA-pull down 

assays were performed and identified U2AF65 (splicing factor U2AF 65 kDa subunit, aka 

U2AF2, U2 small nuclear RNA auxiliary factor 2) and ASF/SF2 (alternative splicing factor 

1/splicing factor 2) as two key factors mediating AR-V7 splicing 65. A general splicing 

factor HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1) was also reported to 

regulate AR-V7 expression in prostate cancer cells. Activation of NFκB2/p52 and c-Myc 

signaling resulted in recruitment of HNRNPA1 to the splice site of AR pre-mRNA to 

promote AR-V7 expression 71.

The ADT-induced lncRNA PCGEM1 (prostate cancer gene expression marker 1) was also 

implicated in AR-V7 generation. PCGEM1 regulates the binding of splice factors 

HNRNPA1 and U2AF65 to AR pre-mRNA 72. In addition, p54/nrb (nuclear RNA-binding 

protein, aka NONO, non-POU domain-containing octamer-binding protein), a nuclear 

protein with multiple functions in RNA splicing and gene regulation positively regulates 

PCGEM1 expression, as revealed by DNA-pull down assay using PCGEM1 gene promoter 

in prostate cancer cells 73. Suppression of p54/nrb by siRNA or a natural compound from 

cruciferous vegetables that interferes with p54/nrb-DNA binding resulted in reduced 

expression of PCGEM1 and AR-V7 73.

Natural spliceosome inhibitors, thailanstatins (TST-A or TST-D), were used to investigate 

the relationship between AR-V7 and splice factors SAP155 (spliceosome-associated protein 

155, aka SF3B1, splicing factor 3b subunit 1) and U2AF65. TSTs interrupts the interaction 

between U2AF65 and SAP155 leading to reduced binding to the polypyrimidine tract 

located between the branch point and the 3’ splice site, and consequentially reduced AR-V7 

expression 74.

AR-V7 may be regulated by Jumonji domain containing 1A (JMJD1A, aka KDM3A), a 

histone demethylase that removes the repressive H3K9 methylation marks (H3K9me1 or 

H3K9me2) 75. KDM3A also interacts with AR as an AR coactivator to regulate prostate 

cancer cell proliferation and survival by altering AR transcriptional program and elevating c-

Myc levels 76–78. KDM3A promotes alternative splicing of AR-V7 by binding to 

guanosine(G)-tract sequences in cryptic exon 3 (CE3) of the AR gene leading to recruitment 

of heterogeneous nuclear ribonucleoprotein F (HNRNPF) and other splice factors such as 

U2AF265 75.

DDX39 [DEAD (Asp-Glu-Ala-Asp) box polypeptide 39] is an ATP-dependent RNA 

helicase implicated in RNA splicing, mRNA export, and telomere structure integrity. Using a 

shRNA library focused on 88 spliceosome-related genes, DDX39B was found to be a 

regulator of AR-V7 expression 79. After Knockdown of DDX39B and its paralogue 

DDX39A in AR variant-expressed cells, the AR-V7 mRNA was selectively downregulated 
79.

LIN28 is an RNA-binding protein involved in AR and c-Myc signaling in prostate cancer. 

Overexpression of LIN28 in PCa cell lines resulted in increased AR splice variant 

expression and resistance to anti-androgens. Downregulation of LIN28 can re-sensitize PCa 

cells to enzalutamide treatment 80.

Lu et al. Page 7

Prostate Cancer Prostatic Dis. Author manuscript; available in PMC 2020 December 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 

(MALAT1) was also implicated in regulating AR-V7 activity. Using enzalutamide-resistant 

prostate cancer cell lines, AR-V7 and MALAT1 were both elevated when AR signaling is 

suppressed. AR negatively regulates MALAT1 by direct binding to AREs in the promoter of 

MALAT1. Increased MALAT1 during AR suppression by enzalutamide could elevate AR-

V7 transcription through interaction between MALAT1 and serine/arginine rich splicing 

factor 1 (SRSF1, aka ASF/SF2). CRPC progression in animal models was suppressed 

following MALAT1 knockdown 81.

Other co-factors regulating AR-V expression.

Protein kinase pathways may regulate AR-V expression. The most relevant is the AKT 

pathway, which modulates AR function and mediates survival signaling in CRPC. In a 

screen of kinase inhibitors involving a 145 small‐molecule compound library and a high-

throughput siRNA-kinome library, several kinases including Akt, Abl, and Src family 

kinases (SFK) were found to regulate AR-V7 mRNA expression and protein nuclear 

translocation. Following treatment of CWR22Rv1 cells with a Src/Abl dual kinase inhibitor 

PD180970, AR-V7 protein was decreased and cell proliferation inhibited in the absence of 

DHT. In the presence of DHT (when AR-FL is activated), the potency of PD180970 was 

decreased. Pre-treatment with AR-FL antagonist bicalutamide re-sensitized CWR22Rv1 

cells to PD180970 with a substantial EC50 drop (from 184.2 to 12.6 nM) in the presence of 

DHT 82, suggesting that PD180970 reduced AR-V7 protein level and CWR22Rv1 growth in 

AR-independent manner. Tyrosine kinases such as ACK1/TNK2 regulate AR gene 

transcription through epigenetic modification. ACK1/TNK2 phosphorylates histone H4 at 

tyrosine 88 upstream of the AR transcription start site, and treatment with an ACK1 

inhibitor (R)-9bMS reduced AR and AR-V7 levels and suppressed CRPC tumor growth 83.

Y-box-binding protein 1 (YB-1) is a transcription factor that binds Y-box (5′-ATTGG-3′), 

and also a RNA-binding protein involved in RNA splicing. In a study involving kinome 

arrays, Akt, RSK (ribosomal S6 kinase), ERK (extracellular signal-regulated kinases, p42/44 

MAPK) were found to phosphorylate YB-1 and affect AR-V7 expression 84. Treatment of 

CWR22Rv1 cells with kinase inhibitors against Akt, MEK (MAPK/ERK kinase, an 

upstream activator of MAPK/ERK) resulted in reduced levels of phosphorylated-YB-1, AR-

FL, and AR-V7. However, an inhibitor of RSK specifically downregulated AR-V7 but not 

AR-FL. How RSK/YB-1 signaling affects AR splicing remains largely uncharacterized 84.

The relationship of AKT signaling and prostate cancer was evaluated by a synthetic AKT 

inhibitor alkyl-lysophospholipid edelfosine (ET-18-O-CH3). Edelfosine interacts with lipid 

rafts on plasma membrane, and induce endoplasmic reticulum (ER) stress following 

inhibition of phosphatidylcholine biosynthesis. Treatment of LNCaP and VCaP cells with 

Edelfosine resulted in suppression of AR-V7 expression and cell apoptosis that was 

enhanced by ATF3 (activating transcription factor 3), a corepressor of AR 85.

Other nuclear receptors may regulate AR-FL/AR-V7 expression. For example, ROR-γ 
(RAR-related orphan receptor gamma) recruits nuclear receptor coactivator 1 and 3 

[NCOA1 and NCOA3, also known as steroid receptor coactivator (SRC)-1 and SRC-3] to an 

AR-ROR response element (RORE) to stimulate AR gene transcription 86. ROR-γ 
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antagonists suppress the expression of both AR and its variant AR-V7 in PCa cell lines and 

tumors 86. Given that many ROR-γ inhibitors are approved for treating autoimmune disease, 

it may be possible to repurpose these drugs to suppress AR-V7-driven prostate cancer.

Non-coding circular RNA (circRNA) or miRNA could also regulate AR-V7 expression. By 

in silico analysis, a circular RNA 17 (circRNA17, hsa_circ_0001427) was found to interact 

with microRNA 181c-5p (miR-181c-5p) leading to suppression of AR-V7 expression. By 

interacting with and stabilizing miR-181c-5p, circular RNA 17 increased the relative level of 

miR-181c-5p, which bound to the 3’UTR of AR-V7 transcript to downregulate AR-V7 

expression. Castration can suppress circRNA17 expression by inhibiting its host gene 

PDLIM5 (PDZ and LIM domain 5) expression via androgen response element (ARE) in the 

gene promoter. In this study, the level of circRNA17 was downregulated in clinical prostate 

cancer specimens especially in higher Gleason score prostate cancer specimens 87.

IV. Genomic functions mediated by AR-Vs.

As transcription factors, AR-Vs may mediate their downstream genomic functions by DNA 

binding and interaction with co-regulators following nuclear localization. While AR-FL and 

many AR-Vs may share common chromatin binding sites, genomic binding sites and 

transcriptional programs specific to AR-V7 have been reported 64,88–91. In studies relevant 

to this topic, it is critical to take into consideration a few premises: 1) AR-V7 protein 

expression is specific to CRPC and negatively regulated by androgen signaling mediated by 

AR-FL 64,68; 2) AR-V7 expression is often associated with a progressive phenotype under 

low androgen conditions 64,92; and 3) AR-V7 often co-exists with AR-FL, and whether AR-

V7/AR-FL forms heterodimer under low androgen conditions will affect interpretation of 

data 68,89,93–95.

Since our last review in 2016 24, a few important factors mediating downstream functional 

effects of AR-V7 have been characterized. Chen et. al. revealed diverse AR-V7 cistromes 

and transcriptomes in different CRPC cell lines and clinical specimens 89. Employing a 

high-resolution ChIP-exonuclease sequencing (ChIP-exo) approach using an AR-V7-

specific antibody, HOXB13 was found to co-localize with AR-V7 and function as an 

essential co-activator mediating AR-V7 function. By inhibiting HOXB13 in AR-V7-

expressing cells, the oncogenic function of AR-V7 was suppressed 89. These results 

implicated that HOXB13, which is very specifically expressed in tissues of prostatic origin, 

could be an alternative target in suppressing the development of AR-V7-driven CRPC. Cai 

et. al. used specific antibodies against either AR-FL or AR-V7 for ChIP-seq. In this study, 

15,162 out of a total of 17,409 binding sites were shared by both ARs, and only a small 

proportion of binding sites (about 12.8%, 2,221 out of 17,409 spots) were specifically bound 

by AR-V7. In these AR-V7-specific binding sites, ZFX (zinc finger protein X-linked) was 

found to exclusively colocalize with AR-V7. The AR-V7-specific binding sites are mainly 

located at the gene promoter and these AR-V7 targeted genes were mainly involved in 

MYC-bound genes or genes related to cell cycles and autophagy 88.
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V. Preclinical and early clinical development of agents targeting AR/AR-Vs

Given the availability of blood-based detection methods and the general poor prognosis of 

patients having positive CTC AR-V7 testing results, recent efforts have focused on 

development of agents that may overcome drug resistance and poor prognosis by targeting 

AR-V7. Several compounds with in vitro anti-AR-V7 activity have already been evaluated 

in clinical trials, while many others are in various stages of preclinical evaluation and 

development (see companion review). A comprehensive review of the current literature on 

possible preclinical agents and strategies returned many studies. Due to space limitations, we 

summarized these studies in Figure 3 and Table I (with references).

VI. Conclusions

Laboratory investigations and findings reported since 2016 continue to support AR-Vs as 

biomarkers and therapeutic targets in prostate cancer. These new findings further validate the 

importance of AR-Vs, AR-V7 in particular, in castration-resistant prostate cancer. 

Development of mature measurement methods have enabled detection of the AR-V targets 

in both liquid and tissue specimens, and quantitative measurement data on AR-V7 support 

its functional and clinical relevance. While AR-Vs (e.g. ARv567es) driven by complex AR 

GSRs, as well as dominant expression of AR-V7 in isolated cases provide compelling 

examples of clonal expansion consistent with a driver role for AR-Vs in castration 

resistance, in most cases AR-FL continue to co-exist with AR-Vs, justifying further 

investigations to dissect the distinct roles of the different AR molecules. In this regard, 

distinct genomic functions mediated by AR-FL and AR-Vs have been defined in greater 

details now, further supporting the therapeutic relevance of AR-Vs. Given the feasibility of 

conducting blood-based detection for AR-V7, the hope is that clinical development of agents 

possessing anti-AR-V activity can be accelerated, even in the presence of many competing 

mechanism that may co-exist. Going forward, both challenges and opportunities exist in 

targeting AR-Vs to overcome resistance to current AR-directed therapies. Development of 

agents with specific anti-AR-V7 activity remains a top priority in prostate cancer research.
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Figure 1. 
Decoding the androgen receptor splice variant transcripts. (A) AR gene structure with 

canonical and cryptic exon splice junctions marked according to GRCh37/hg19 human 

genome sequences (not drawn to scale); (B) Nomenclature, functional annotation, exon 

compositions, and variant-specific mRNA (color matched to Figure 1A) and peptide 

sequences (in gray). Modified from reference #70.
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Figure 2. 
Regulatory mechanisms involved in AR-V expression. Splicing factors involved in AR-V 

generation include U2AF65, ASF/SF2, HNRNPA1 (NFκB2/p52- and c-Myc-signaling 

related), and SAP155. LncRNAs involved in splice factor binding to AR pre-mRNA include 

PCGEM1 (p54/nrb signaling related) and MALAT1. Epigenetic modifier KDM3A may bind 

AR pre-mRNA and recruit HNRNPF and U2AF265. RNA helicase DDX39A & DDX39B 

and RNA-binding protein LIN28. Inhibition of CPSF1 by siRNA with morpholinos targeting 

a single polyadenylation signal (PAS) in AR CE3 suppresses AR-V7/V9 expression. Several 

protein kinase pathways, e.g. AKT/ERK/YB-1, and non-coding RNAs including circRNA17 

and miR-181c-5p may also be involved in AR-V expression. Refer to text descriptions for 

details.
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Figure 3. 
Novel preclinical agents that suppress AR/AR-Vs by regulating gene expression, 

degradation, AR transcriptional activity, and downstream signaling. The following broad 

categories are summarized. Refer to Table I for details.

(1) Targeting AR/AR-Vs translation: 6BIO+PS-LNA-AR-ASO

(2) Novel AR antagonists: EPIs, 3E10-AR411, VPC-3022, SARDs, Ad-E1A12 variant,

(3) Enhancing AR or AR-Vs degradation: Niclosamide, ASC-J9, alisertib, PROTAC 

degrader, leelamine

(4) Targeting AR chaperones: C86, VER155008, onalespib

(5) Targeting molecules involved in epigenetic modification: BETi, HDACi, CUDC-101, 

EZH2i, astemizole

(6) Targeting AR/AR-Vs co-regulators or transcriptional activity: KCI807, triptolide/

minnelide, clorgyline/phenelzine, IPI-9119, BETi

(7) Targeting AR/AR-Vs downstream signaling molecules: LY2090314, N9 + doxorubicin, 

G1T28/G1T38, alisertib, FrA
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Table I.

Novel agents targeting AR/AR-V signaling

Name of the agents Description of agents and their 
background

Action mechanisms

Agents inhibit androgen synthesis/AR antagonist/AR or AR-V degradation

Galeterone and its 
derivatives VNPT55

Galeterone (TOK-001) and its analog 
VNPT55‚a 3β-carbamate analog

• Multi-targeted steroidal agents that
function as 17α-hydroxylase/17, 20-lyase A1 (CYP17A1)
inhibitor
•AR/AR-V antagonist
•
Post-translation modulators of AR degradation by enhancing
ubiquitination 96

EPI-001 compound 
family

Derived from endocrine disruptor bisphenol 
A, including EPI-001, EPI-002, EPI-506 (a 
prodrug of EPI-002, aka ralaniten acetate), 
EPI-7386

• Interact with the transcriptional
activation domains TAU1 and TAU5 in AR N-terminal domain 
(NTD) to
exhibit anti-androgen effects in preclinical studies 97.
•
Selectively activate peroxisome proliferator-activated receptor-
gamma
(PPAR-γ) in prostate cancer cells 98.
• EPI-002 was
able to inhibit proliferation of prostate cancer cell lines resistant 
to
enzalutamide and docetaxel with unknown mechanisms 99.
• EPI-7386 is a
more potent, orally bioavailable and metabolically stable AR 
NTD
inhibitor that appears to be a better drug candidate than its
predecessors, and possess antitumor activity in several AR-V7-
positive
CRPC cell lines and xenograft models including in
enzalutamide-refractory models 100.

3E10-AR441 A bispecific single-chain variable antibody 
contains an anti-DNA monoclonal antibody 
(3E10) to facilitate cell penetrance, and an 
anti-AR N-terminal domain mAb (AR441) 
generated with epitope aa299–315 of the AR 
protein.

3E10-AR441 may enter cell nucleus and bind to AR and AR-V7 
and block their function 101.

AR degradation enhancer 
ASC-J9

Aka dimethylcurcumin, 5-hydroxy-1,7-
bis(3,4-dimethoxyphenyl)-1,4,6-heptatrien-3-
one

• Promoting AR degradation by
increasing its association with MDM2 and phosphorylation of 
AKT and MDM2
to promote the proteasome-dependent AR degradation 102.
• Increasing
the dissociation of AR with selective co-regulators protein 55 
(ARA55)
and ARA70, which subsequently resulted in suppression of AR
transactivation and AR-mediated cell growth 102.
• Decreasing
CD133(+)-stem/progenitor PCa cell population in cell culture 
and
suppress CD133(+)-PCa cell invasion via inhibition of known 
AKT-enhancer
of zeste 2-signal transducer-activator of transcription 3
(AKT-EZH2-STAT3) axis involved in regulating stem-like tumor 
cells
103.
• Overcome the resistance of enzalutamide in prostate
cancer cells by decreasing MALAT-1-induced AR-V7 protein 
level
81.

Novel AR antagonists: 
VPC-3022 and its 
derivatives VPC-3033 
and VPC-3045

VPC-3022: 10-benzylidene-10H-anthracen-9-
one, and its derivatives (e.g. VPC-3033, 
VPC-3045)

• VPC-3022 docks at the hormone binding
site of AR.
• May induce AR/AR-V7 degradation though the
unknown mechanism 104,105.
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Name of the agents Description of agents and their 
background

Action mechanisms

Selective AR degraders 
(SARDs): UT-69, 
UT-155, and (R)-
UT-155; modified 
indolyl and indolinyl 
propanamides (series II 
and III); bisphenol AP

A series of modified AR antagonist 
molecules (including UT-69, UT-155, (R)-
UT-155, indolyl (series II) and indolinyl 
(series III) propanamides)

• Targeting AR as antagonist and
functioning as AR/AR-V degrader.
• The SARD activity may
be mediated through a binding site in the NTD of AR/AR-Vs, 
implicating
its capability in overcoming drug resistance mediated by AR 
LBD point
mutation or AR-Vs 106,107.

Proteolysis targeting 
chimeras (PROTAC) 
degraders: ARV-110, 
ARD-69, ARCC-4, 
ARV-771

Bifunctional small molecules which mainly
combine a target-binding moiety and an E3 
ligase recruiter to bring a
target protein into contact with an E3 ligase 
for ubiquitylation and
subsequent protein degradation by 
proteasome 108.
ARV-110, ARD-69,
ARCC-4: Function against AR 109–112.
ARV-771: Function against AR co-regulators
of transcriptional activity bromodomain and 
extra-terminal (BET) family
proteins BRD2/3/4 113.

• Inducing AR or its co-regulator
degradation.
• Inhibiting AR signaling including
suppression of AR-FL and AR-V7 expression 113.
• On March 2019,
the first phase I clinical trial on AR PROTAC degrader ARV-110 
has been
launched by Arvinas Inc. in multiple clinical institutes with 
primary
objective in evaluating the safety and tolerability in men with 
mCRPC
who have progressed on at least 2 prior systemic therapies for 
their
castrate resistant disease (one of which must be enzalutamide or
abiraterone) (NCT03888612).

Antisense 
oligonucleotide 
enhancer: 6BIO

6-bromo-indirubin-3’-oxime (6BIO), a 
derivative of indirubin, was found to enhance 
the activity of antisense oligonucleotides 
(ASOs)

• Repressing AR-FL and AR-V7 expression
through the simultaneous inhibition of GSK-3α and GSK-3β.
• The combination of 6BIO with an anti-AR
phosphorothioate (PS) modified locked nucleic acids containing 
ASO (PS
LNA AR-ASO) virtually eliminated all AR expression in PCa 
cells
114.

Reluzole An anti‐glutamatergic agent and FDA‐
approved treatment for amyotrophic lateral 
sclerosis (ALS)

Promoting protein degradation of AR‐FL, mutant ARs, and AR‐
V7 via activating transcription factor 6 alpha (ATF6α)/inositol 
requiring kinase enzyme 1 alpha (IRE1α)‐mediated endoplasmic 
reticulum stress (ERS) pathway and downstream selective 
autophagy 115.

Leelamine (LLM) A component extracted from pine tree bark Non-covalently interacting with Y739 in AR and inhibits AR 
activity 116.

Targeting AR chaperones

Heat shock protein 
(HSP40/70/90) inhibitors

HSP40 inhibitor: C86
(3-nitro-2’,4’,6’-trimethoxychalcone)
HSP70
inhibitors: Quercetin and VER155008
HSP90 Inhibitor: onalespib
(AT13387)

• C86: identified by a compound screen
for perturbing the AR-FL/AR-V7 transcriptional program in 
22Rv1 cells.
Decreased protein levels of AR-FL and AR-V7 with suppressed 
FL-AR- and
AR-V7-mediated transcriptional activity. The inhibition effect of 
C86 on
tumor growth was enhanced by combination administration of 
HSP70
inhibitor JG98 in a 22Rv1 CRPC xenograft model 117.
• HSP70
inhibitors: quercetin and VER155008 decreased LNCaP95 cell
proliferation, and the levels of AR-FL and AR-V7. VER155008 
decreased
AR-FL and AR-V7 in mRNA level indirectly via down-
regulation of Y-box
binding protein 1 (YB-1) phosphorylation and nuclear 
localization
118.
VER155008 was also reported to destabilize AR-V7 protein by 
promoting
AR-V7 dissociation from HSP70 and degradation via co-
chaperone/E3
ubiquitin ligase STIP1 homology and U-box containing protein 
1
(STUB1)-related ubiquitination 118.
• HSP90 Inhibitor onalespib
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Name of the agents Description of agents and their 
background

Action mechanisms

(AT13387): this second generation HSP90 inhibitor potently 
inhibited the
growth of AR-V7-containing cell lines VCaP, 22Rv1 and 
LNCaP95 in
vitro. Onalespib also decreased protein levels of AR and
AR-V7, together with other client proteins. Onalespib also
down-regulated mRNA level of AR-V7 but not AR-FL via 
possible disruption
of AR splicing following HSP90 inhibition 119. However, this 
agent did not
demonstrate efficacy in a Phase I/II trial when combined with
abiraterone in patients progressing on abiraterone 
(NCT01685268).

Targeting molecules involved in epigenetic modification

BET/BRD4 inhibitors: 
GSK525762, GS5829, 
OTX015, JQ1, 
ABBV-075, ZEN-3694, 
PFI-1

The bromodomain and extra-terminal (BET) 
domain containing protein 4 (BRD4), an 
epigenetic adapter, interacts with the 
acetylated histones 3 and 4 through its 
bromodomain, and regulates gene 
transcription by recruiting and activating the 
essential transcription elongation complex, 
the positive transcription elongation factor b 
(P-TEFb). BRD4 is also an AR 
transcriptional coregulator. BRD4 interacts 
with the AR NTD to facilitate transcriptional 
activity 120,121. BET inhibitors (BETi) (e.g. 
GSK525762, GS5829, OTX015, JQ1, 
ABBV-075, ZEN-3694, PFI-1) targeting 
BET-containing protein family members 
including BRD2, BRD3, and BRD4 were 
under development for CRPC treatment.

• Disrupting BRD4-AR interaction and
prevent DNA binding of AR-FL or AR variants.
• Decreasing
AR-V7 expression by regulating splicing factors required for its
generation 120,121.
•
Enhancing the response of homologous recombination-proficient 
cancer
cells to PARP inhibition (PARPi)-induced DNA damage by 
decreasing
transcription of critical proteins BRCA1 and RAD5 involved in 
homologous
recombination of double-strand DNA repair 122.
• BRD4 protein
degradation was depended on cullin 3-speckle-type POZ protein
(CUL3-SPOP)-mediated ubiquitination. In PCa cells with SPOP 
mutation,
BETi treatment may lack efficacy due to the dominant-negative 
effect of
mutant SPOP and an increased level of BRD4, implicating that 
SPOP
mutation detection may be considered as a treatment selection 
biomarker
for BETi treatment 123,124.
ZEN-3694 is a BETi that has entered clinical trials either as a 
single
agent Phase I study in CRPC (NCT02705469) or a Phase 1b/2a 
safety and tolerability
study in combination with enzalutamide in mCRPC patients 
(NCT02711956).

HDAC3-selective 
inhibitor: RGFP966

A slow-on/slow-off, competitive, tight-
binding inhibitor targeting class I HDACs 
(HDAC1, 2, 3, 8) with the greatest inhibition 
of HDAC3 125.

Epigenetically suppressing AR signaling without induction of 
epithelial-mesenchymal transition (EMT) in PCa cells 126.

EZH2 inhibitors: 
GSK126, GSK343, 
GSK503,
NPD13668, EPZ6438
and PRC2 inhibitor: 
astemizole

Enhancer of zeste 2 (EZH2), the enzymatic 
subunit of polycomb repressive complex 2 
(PRC2), catalyzes histone H3 lysine 27 
trimethylatiion (H3K27me3) to trigger gene 
silencing. In prostate cancer, EZH2 was 
found to be overexpressed and quantitatively 
associated with progression and poor 
prognosis 127. In addition to its 
methyltransferase activities, EZH2 could also 
act as transcriptional coactivator in gene 
activation including AR 128.

• EZH2 binds to AR gene exon 1 around
~1.7–2.5 kb downstream of the transcriptional start site
(TSS) to elicit its transactivity in a PRC2-independent manner, 
and thus
mediates dual methylation-dependent and -independent 
transcription
programs in PCa 129.
• Preclinical study showed that using EZH2 inhibitors
(such as GSK126, GSK343, GSK503, NPD13668) can 
effectively inhibit the
growth of prostate cancer cells 130,131.
• EZH2 inhibitors GSK126 and EPZ6438 could also help to
restore the expression of AR and re-sensitize tumor response to
enzalutamide in neuroendocrine prostate cancer (NEPC) mouse 
models with
Pten+Rb1 KO or Pten+Rb1+Trp53 KO 132. Together with 
docetaxel, the resistance of
EZH2 inhibitor could be overcome in PTEN-mutated cancer 
cells via
releasing EZH2 suppression on PTEN effector FOXO1 gene 
expression and
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Name of the agents Description of agents and their 
background

Action mechanisms

sustaining FOXO1 nuclear localization to induce cell death 133.
•
EZH2 and embryonic ectoderm development (EED) (another 
component of
PRC2) could also affect AR signaling by directly interacting 
with AR to
target AR downstream genes. Using a newly identified PRC2 
inhibitor
astemizole, the AR-EZH2-EED interaction can be disrupted and 
led to
protein degradation of AR and EZH2; thus astemizole exerted a 
potent
therapeutic effect on prostate cancer preclinically 134.
•
Currently, the EZH2 inhibitor CPI-1205 (Constellation 
Pharmaceuticals)
is under Phase 1b/2 study in mCRPC patients to determine the 
maximum
tolerated dose and safety in combination with enzalutamide or
abiraterone/prednisone (NCT03480646) and AR-V7
expression in CTC was included as a monitoring variable for 
drug
response.

CUDC-101 CUDC-101 exerts inhibition effect on 
multiple targets including histone 
deacetylase, the receptor kinases epidermal 
growth factor receptor (EGFR) and human 
epidermal growth factor receptor 2 (HER2) in 
lung and breast cancer cells 135.

Suppressing PCa cell growth and downregulated AR-FL and 
AR-V7 via HDAC5 and HDAC10 inhibition 136.

CBP/p300 inhibitors: 
GNE049, CCS1477, 
NEO2734

The highly homologous histone 
acetyltransferases CBP [cAMP response 
element binding protein (CREB) binding 
protein] and p300 are both coactivators of 
AR, especially the p300 is widely required 
for androgen-induced gene regulation and 
histone acetylation and methylation 137. CBP 
and p300 were both highly expressed during 
androgen deprivation in prostate cancer 138.

• Several CBP/p300 bromodomain
inhibitors (e.g. GNE049, CCS1477), and a novel dual inhibitor 
of both
BET and CBP/p300, NEO2734 (Epigene Therapeutics Inc.) had 
been suggested
in suppression of prostate cancer growth in models of in
vitro and in vivo
139–141.
• In
preclinical study, CCS1477 led to protein reduction of AR-FL, 
AR-Vs, and
c-Myc, AR-targeted gene expression, and in vivo tumor
growth of bicalutamide-resistant LNCaP cells either as 
monotherapy or in
combination with enzalutamide 140.
• CCS1477 is currently in a
Phase I/IIa study for CRPC by CellCentric Ltd (NCT03568656) 
142.

Targeting AR/AR-V co-regulators or related downstream signaling

Cell cycle CDK4/6 
inhibitors: G1T28 and 
G1T38

G1T28 and G1T38 were two new CDK4/6 
inhibitors
that were previously investigated in lung and 
breast cancers (e.g.
NCT02978716, NCT02514447).
PCa is also a cancer with
upregulated expression of cyclin D1 and 
activation of the G1
cyclin-dependent kinases CDK4/6 [124].

Stice et. al. tested G1T28 and G1T38 in preclinical in vitro and 
in vivo models of PCa as single drug and compared them to 
docetaxel and enzalutamide. Results showed these inhibitors 
were as effective as docetaxel in mouse models of enzalutamide-
resistant LNCaP-AR-F876L+ xenograft or AR-V7+ CWR22Rv1 
xenograft with less toxicity 143.

Aurora kinase A 
inhibitor: alisertib

Aurora kinase A (AURKA) is a serine/
threonine kinase with a major role in 
promoting mitosis by phosphorylating polo 
like kinase 1 (PLK1) for CDK1 activation. 
AURKA could also stabilize the transcription 
factor N-MYC by preventing its proteasomal 
degradation, and thereby promotes G1–S 
progression.

• Inhibition of AURKA suppressed the
growth of CRPC cells that had high AR expression, and 
AURKA also
indirectly regulated the expression of AR-V7 in PCa cells 144.
•
Inhibition of AURKA reduced AR-V7 protein level and AR 
target gene
expression and suppressed CWR22Rv1 cell proliferation in
vitro
145.
•
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Name of the agents Description of agents and their 
background

Action mechanisms

AURKA inhibition decreased AR proteasome degradation via 
decreasing
phosphorylation of E3 ubiquitin-protein ligase CHIP (carboxyl 
terminus
of Hsc70 interacting protein) 146.
• Alisertib is under a phase
II trial for mCRPC patients with neuroendocrine/small cell PCa 
feature
(NCT01799278). Eight patients
(13.4%) were radiographic progression free at 6 months as 
primary
endpoint. Eighteen patients (30%) had stable disease or better at 
cycle
3 scans with exceptional responders were identified including 2 
with
complete remission of liver metastases on therapy and 2 with 
prolonged
stable disease for14 months and 3.8 years. Although the study 
did not
meet its primary endpoint, a subset of patients of mCRPC with 
activated
signaling in Aurora-A and N-myc achieved promising clinical 
response
147.

Triptolides and its pro-
drug minnelide

Triptolide (TPL) is a diterpene triepoxide 
isolated from a Chinese herb Tripterygium 
wilfordii

Triptolide inhibited the proliferation of prostate cancer cells via 
variable mechanisms, most notably through inhibition of gene 
transcription 148. However, due to its poor aqueous solubility, its 
clinical application was limited and a water-soluble pro-drug 
minnelide was developed 149. Preclinically, minnelide showed 
sufficient effect on suppressing 22Rv1 tumors growth in mice 
150.

ETS Like-1 protein 
(ELK1)-AR interrupter: 
KCI807

ELK1 is a member of the E26 
transformation-specific (ETS) family of 
transcription factors and of the ternary 
complex factor (TCF) subfamily. 
Phosphorylation of ELK1 by MAPKs 
activates TCF and enhances ELK1-containing 
TCF binding to the corresponding DNA 
response element. ELK1 could also interact 
with AR and activate some AR targeted genes 
151. Using cell-based systems, KCI807 was 
discovered as the top hit of 92 compounds 
screened out from a total of 18,270 
compounds.

• Disrupting AR interaction with
ELK1
• Reducing chromatin recruitment mediated by
ELK1
• Suppressing growth of enzalutamide-resistant
prostate cancer cells overexpressing AR-V7 152.

Monoamine oxidase A 
(MAOA) inhibitors: 
clorgyline and 
phenelzine

Clorgyline: a selective,
irreversible MAOA inhibitor
Phenelzine: a
non-selective, irreversible MAOA inhibitor

• Clorgyline and phenelzine decreased
growth and proliferation of androgen‐sensitive LNCaP cells and
castration‐resistant prostate cancer cells C4‐2B, and
22Rv1.
• Clorgyline also inhibited expression of
AR‐FL and AR‐V7 expression and decreases growth of an
enzalutamide‐resistant, AR-V7-positive C4‐2B cell line
153.

Fatty acid synthase 
(FASN) inhibitor: 
IPI-9119

IPI-9119 irreversibly inhibited FASN Reducing FASN activity by IPI-9119 inhibited PCa cell growth 
with cell apoptosis and altered metabolome. The altered 
metabolome might subsequently induced reticulum endoplasmic 
stress response that led to protein translation inhibition including 
AR/AR-V7 protein 154.

GSK3 inhibitor 
LY-2090314

LY‐2090314, a GSK3 inhibitor, identified as 
AR-V7 transcription inhibitor using a PSA-
luciferase reporter system with AR-V7 co-
expression

LY‐2090314 inhibited AR-V7 action partially via the activation 
of β-catenin signaling. Reciprocally, AR-V7 signaling also 
negatively regulated β-catenin signaling, and therefore, GSK3 
inhibition can repress AR-V7 transcriptional activity by inducing 
a positive feedback to maintain the activation of β-catenin 
signaling 155.

CCNB1/CDK1 inhibitor: 
N9-isopropylolomoucine 
(N-9)

With an integrated and unbiased data mining 
and experimental strategy, Magani el. al. 
identified a 7-gene set [(kinesin family 
member 20A (KIF20A), kinesin family 

By combined treatment of doxorubicin (DOX), a TOP2A 
inhibitor, and N9‐isopropylolomoucine (N‐9), AR-V7 
downstream cell cycle genes were targeted and led to the 
reduction of cell proliferation in CRPC cell line 22Rv1 156.
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Name of the agents Description of agents and their 
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Action mechanisms

member 23 (KIF23), topoisomerase DNA II 
alpha (TOP2A), cyclin B1 (CCNB1), cyclin 
B2 (CCNB2), BUB1 mitotic checkpoint 
serine/threonine kinase (BUB1)]. These genes 
were upregulated with association of higher 
levels of AR‐V7 in prostate cancer patients.

GHR antagonist: 
pegvisomant

Growth hormone (GH)-insulin like growth 
factor 1 (IGF-1) axis signaling is associated 
with prostate cancer. The source of GH in 
PCa might come from pituitary or tumor 
itself as autocrine/paracrine since GH was 
detected in PCa cells. In LnCaP and 
enzalutamide-resistant C4–2B cells, GH 
promoted cell growth with increased 
expression of AR-V7 and IGF1.

GHR antagonist pegvisomant blocked GH action and reversed 
the effect of GH on PCa cells, which also implicating the 
promoting role of GH in PCa progression during castration 157.

VNLG-152 VNLG-125, a novel retinamide as retinoic 
acid metabolism blocking agent (RAMBA) 
with multi-function in anti-tumor therapy.

• Suppressing PCa tumor growth via
reducing AR/AR-V7 protein levels and AR signaling pathway 
158.
•
Inhibiting PCa invasiveness by reducing epithelial-mesenchymal
transition (EMT) and mitogen‐activated protein
kinase‐interacting kinase 1/2 (MNK1/2)–eukaryotic
initiation factor 4E (eIF4E) pathway 159.

Adenovirus 12 E1A (Ad-
E1A12)

A protein identified in adenovirus contains a 
conserved region (CR3) that could compete 
with co-repressors for binding to nuclear 
receptors, thereby promoting nuclear receptor 
activation

The full length of E1A12 (266aa) preferentially binds to AR, 
while the shorter E1A12 variant (235 aa) interacts stronger with 
AR-V7 to promote AR nuclear translocation, trigger apoptosis 
and these functions were enhanced by PI3K-AKT-mTOR 
signaling pathway inhibition 160.

Artesunate Artemisinin derivatives (ADs), such as 
artesunate, are semi-synthetic compounds 
derived from Artemisia annua and used for 
treating malarial infection

Artesunate (AS) was reported by Nunes et. al. that in 
combination with bicalutamide (Bic), it exhibited inhibition 
effect on prostate cancer cells by suppressing nuclear factor 
(NF)-κB signaling, reducing AR and AR-V7 levels via 
ubiquitin-mediated proteasomal degradation, and inducing 
oxidative stress and apoptosis 161.

Frondoside A (FrA) A triterpene glycoside compound from sea 
cucumber

• Inducing PCa cell cycle arrest and
apoptosis in caspase-dependent or -independent manner via up-
regulating
several pro-apoptotic proteins (Bax, Bad, PTEN), and down-
regulating of
anti-apoptotic proteins (survivin and Bcl-2).
•
Inhibiting pro-survival autophagy in PCa cells to inhibit growth 
of
prostate cancer cells with high AR-V7 activity 162.
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