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Background and Aims. Radix Rehmanniae and Corni Fructus (RC) have been widely applied to treat diabetic nephropathy (DN) for
centuries. But the mechanism of how RC plays the therapeutic role against DN is unclear as yet. Methods. The information about
RC was obtained from a public database. The active compounds of RC were screened by oral bioavailability (OB) and drug-likeness
(DL). Gene ontology (GO) analysis was performed to realize the key targets of RC, and an active compound-potential target
network was created. The therapeutic effects of RC active compounds and their key signal pathways were preliminarily probed
via network pharmacology analysis and animal experiments. Results. In this study, 29 active compounds from RC and 64 key
targets related to DN were collected using the network pharmacology method. The pathway enrichment analysis showed that
RC regulated advanced glycosylation end product (AGE-) RAGE and IL-17 signaling pathways to treat DN. The animal
experiments revealed that RC significantly improved metabolic parameters, inflammation renal structure, and function to
protect the kidney against DN. Conclusions. The results revealed the relationship between multicomponents and multitargets of
RC. The administratiom of RC might remit the DM-induced renal damage through the AGE-RAGE signaling pathway to
improve metabolic parameters and protect renal structure and function.

1. Introduction

Diabetic nephropathy (DN) is a refractory chronic microvas-
cular complication of diabetic mellitus, resulting in end-stage
renal disease (ESRD) eventually [1]. The pathological hall-
marks of DN are proliferating mesangial cells, thickening
basement membranes, injured glomerular, and tubular cells,
leading to microalbuminuria. At present, the treatment strat-
egy for this complication is mainly focused on controlling
blood glucose levels and inhibiting the renin-angiotensin sys-
tem (RAS) [2]. Angiotensin-converting enzyme (ACE)
inhibitors are used to reduce proteinuria levels and to
restrain the progress of DN in clinics. However, some
patients with DN are unsuitable for the treatment with
ACE inhibitors as who meet side-effects of these medicines,

such as low blood pressure and low cardiac oxygen demand.
Therefore, looking for novel ways to treat DN is urgently
needed.

Increasing evidence in experimental and clinical studies
show that Traditional Chinese Medicine (TCM) herbs play
an efficacious effect on diabetes mellitus [3–6]. For example,
iridoid glycosides and polyphenols extracted fromCorni Fruc-
tus (CF) can significantly improve themetabolic parameters of
diabetic renal damage [7]. Besides, Radix Rehmanniae (RR)
can inhibit the progression of DN by reducing blood glucose,
urea nitrogen, and 5-hydroxy methyl furfural levels [8, 9].
Long clinic practice in TCM attests that coadministration of
Radix Rehmanniae and Corni Fructus (RC) achieves better
curative efficacy to ameliorate DN than treatment with either
reagent, while the mechanism remains unclear.
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As well all know, it is difficult to clarify the specific phar-
macological mechanism of TCM for their multicomponent
and multitarget characteristics [10]. In order to get over the
defects, in the current study, we used the existing data in
the database to establish a pharmacological network and to
analyse the connections between active ingredients of both
reagents and potential targets of the disease [11–13]. The net-
work pharmacology is very suitable for the mechanism study
of TCM. This analysis of complex network is helpful to dis-
cover the relationship among multitarget drugs, drug combi-
nations, and their signal pathways [14].

To date, the network pharmacology about the effect of
RC on DN has not been reported yet [15]. Therefore, in this
study, the effect of RC on DN and its protective mechanism
were probed using network pharmacology analysis and rele-
vant animal experiments (see Figure 1).

2. Materials and Methods

2.1. Data Preparation. All the chemical compositions in RC
were obtained from TCM Systems Pharmacology Database
and Analysis Platform (TCMSP, http://lsp.nwu.edu.cn/
tcmsp.php).

2.2. Screening of Active Compounds. The active compounds
from RR and CF were screened by a combination of
drug-likeness (DL) and oral bioavailability (OB). (1) DL:
As a qualitative concept used in drug design to estimate
the “drug-like” degree of compounds, DL is helpful to
describe the pharmacokinetics and drug properties of
compounds, including solubility and chemical stability.
(2) OB: Bioavailability reflects the percentage of oral dose
absorbed by the gastrointestinal tract into the systemic cir-
culation through the liver. OB value is one of the key fac-
tors to restrict the therapeutic effect of compounds after
oral administration of TCM. We select DL (≥0.18) and
OB (≥30%) as thresholds to screen the active compounds
in RC [16]. However, some chemical constituents, not
meeting the above criterion, were still classified as active
ingredients for their stronger pharmacological effects and
higher activities in the literature search [17, 18].

2.3. Prediction for Potential RC Targets. Potential targets of
active compounds from RC were obtained from the TCMSP
database, and those without target information were
removed [19, 20]. The database provides some comprehen-
sive, high-quality, and freely accessible protein sequence
and functional information. The names of proteins were

Verified by animal experiments GO enrichment analysis KEGG enrichment analysis

ADME

TCMSP

GeneCards
OMIN
DisGeNET

DN-related targets

Compound-potential targets

Potential
targets

DNA-related
targets

71064106

Potential targets

Active
compounds

Figure 1: Workflow of the systematic strategies to elucidate the mechanisms of RC in the treatment of DN.
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listed in UniProtKB (http://www.uniprot.org/), and the
organism was taken as “Homo sapiens” before the official
symbols were retrieved.

2.4. Collection of DN-Related Targets. DN-related targets
were collected from the following databases. (1) GeneCards
provides user-friendly information about annotations and
predictions of human genes. (2) Online Mendelian Inheri-
tance in Man (OMIM) profiles human genes and pheno-
types. We searched for the keyword “diabetic nephropathy”
and finally found the related genes [21]. (3) DisGeNET
(http://www.disgenet.org/web/DisGeNET) offers informa-
tion about the molecular basis of disease and predictive dis-
ease genes, etc. We searched for the keyword “diabetic
nephropathy” and collected all genes [22].

2.5. Network Construction. We established an interaction
network among herbs, active compounds, and potential tar-
gets of DN and RC. The interaction network was visualized
by the Cytoscape 3.6.0 software (version3.6.0, http://www
.cytoscape.org) [23].

2.6. Gene Ontology Analysis. We used annotation, visuali-
zation, and comprehensive discovery database (DAVID6,
6.8 edition) to carry out the functional enrichment anal-
ysis of gene ontology (GO) and to determine the bio-
logical significance of genes [24, 25]. Besides, we used
ClueGO to analyze the key targets of RC. ClueGO is
a Cytoscape plugin for visualizing nonredundant biolog-
ical terms for gene clusters in a functional packet net-
work, which reflects the relationship of relative gene
terms [26].

2.7. Animal Experiment

2.7.1. Animals. 18 KKAy mice and 6 C57BI/6J male mice (10
weeks old, SPF grade) were purchased from Beijing Huafu-
kang Bioscience Co., Ltd. The mice were housed in an exper-
imental facility with an ambient temperature of 20-25°C,
relative humidity of 50-60%, light/dark cycle of 12 h, and
with ad libitum access to food and water. All animals used
were carried out in accordance with the international guide-
lines for the care and use of experimental animals and

Table 1: Active compounds of RR and CF.

No. Molecule ID Molecule name OB (%) DL Herb

1 MOL001494 Mandenol 42 0.19 CF

2 MOL001495 Ethyl linolenate 46.1 0.2 CF

3 MOL001771 Poriferast-5-en-3beta-ol 36.91 0.75 CF

4 MOL002879 Diop 43.59 0.39 CF

5 MOL002883 Ethyl oleate (NF) 32.4 0.19 CF

6 MOL003137 Leucanthoside 32.12 0.78 CF

7 MOL000358 Beta-sitosterol 36.91 0.75 CF

8 MOL000358 Sitosterol 36.91 0.75 CF, RR

9 MOL000449 Stigmasterol 43.83 0.76 CF, RR

10 MOL005360 Malkangunin 57.71 0.63 CF

11 MOL005481 2,6,10,14,18-Pentamethylicosa-2,6,10,14,18-pentaene 33.40 0.24 CF

12 MOL005486 3,4-Dehydrolycopen-16-al 46.64 0.49 CF

13 MOL005489 3,6-Digalloylglucose 31.42 0.66 CF

14 MOL005503 Cornudentanone 39.66 0.33 CF

15 MOL005530 Hydroxygenkwanin 36.47 0.27 CF

16 MOL005531 Telocinobufagin 69.99 0.79 CF

17 MOL008457 Tetrahydroalstonine 32.42 0.81 CF

18 MOL000554 Gallic acid-3-O-(6′-O-galloyl)-glucoside 30.25 0.67 CF

19 MOL005552 Gemin D 68.83 0.56 CF

20 MOL005557 Lanosta-8,24-dien-3-ol,3-acetate 44.30 0.82 CF

21 MOL005499 Morroniside 3.98 0.50 CF

22 MOL001680 Loganin 5.90 0.44 CF

23 MOL000511 Ursolic acid 16.77 0.75 CF

24 MOL000414 Caffeic acid 54.97 0.05 CF

25 MOL000263 Oleanolic acid 29.02 0.76 CF

26 MOL002819 Catalpol 5.07 0.44 RR

27 MOL003333 Acteoside 2.94 0.62 RR

28 MOL000519 Coniferin 31.11 0.32 RR

29 MOL000842 Sucrose 7.17 0.23 RR

Abbreviations: CF: Corni Fructus; RR: Radix Rehmanniae; OB: oral bioavailability; DL: drug-likeness.
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approved by the ethics committee of Nanjing University of
Traditional Chinese Medicine.

2.7.2. Animal Modeling and Grouping. The KKAy mice were
fed with a high-fat food (65.5% of common diet, 24% of lard,
10% of sugar, 0.2% of cholesterol, and 5% of egg yolk pow-
ders) for eight weeks. Then, mice with intravenous glucose
level ≥ 10:0mmol/l and 24 h urine protein ≥ 0:6mg were
used as diabetic nephropathy models. The C57bl/6J mice
were fed with normal food as the normal control group.

The model mice were randomly divided into 3 groups of
6 each: model control group, aminoguanidine group, and RC
group. The latter two groups were intragastrically adminis-
tered with 100mg/kg/d aminoguanidine or 3 g/kg/d RC once
a day for continuous 8 weeks. All mice were given the same
volume of deionized water (0.1ml/10 g body weight) and
were recorded the changes of mental state, body weights,

food consumption, water intake, urine volume, and fasting
blood glucose level during the experiment.

2.7.3. Urinary Protein Quantitation. After administration of
the drugs, the 24 h urine volume of all mice was
obtained at the 0th, 4th, and 8th week, respectively.
The urine was centrifuged at 3000 rpm for 15min. The
24 h urinary protein was determined using the corre-
sponding test kit (Nanjing Jiancheng Bioengineering
Research Co., Nanjing, China) in accordance with the
manufacturer’s instructions.

2.7.4. Sample Collection. Fasted for 12 h after the last injec-
tion, all animals were taken blood samples from the eyes.
Blood glucose was determined by the blood glucose meter
(Bayer HealthCare Ltd., Germany). The serum insulin levels,
the AGE levels in the serum, the AGE levels in the kidney, the
IL-10 levels in the serum, the IL-10 levels in the kidney, the
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Figure 2: Active compound-potential target network. The C-T network was constructed by active compounds and their potential targets. The
red ellipses represent the 29 active compounds, and the blue ellipses represent the 170 potential targets on which the compounds act.
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Table 2: Sixty-four DN-related targets of active compounds.

Uniprot IDs Protein name Gene name

P22303 Acetylcholinesterase ACHE

P08588 Beta-1 adrenergic receptor ADRB1

Q15109 Advanced glycosylation end product-specific receptor AGER

P15121 Aldo-keto reductase family 1 member B1 AKR1B1

P31749 RAC-alpha serine/threonine-protein kinase AKT1

P31751 RAC-beta serine/threonine-protein kinase AKT2

P10415 Apoptosis regulator Bcl-2 BCL2

P42574 Caspase-3 CASP3

P24385 G1/S-specific cyclin-D1 CCND1

P02452 Collagen alpha-1(I) chain COL1A1

P16220 Cyclic AMP-responsive element-binding protein 1 CREB1

P27487 Dipeptidyl peptidase 4 DPP4

P21728 D(1A) dopamine receptor DRD1

P03372 Estrogen receptor ESR1

P00734 Prothrombin F2

P48023 Tumor necrosis factor ligand superfamily member 6 FASLG

P09038 Fibroblast growth factor 2 FGF2

P09601 Heme oxygenase 1 HMOX1

P28223 5-Hydroxytryptamine receptor 2A HTR2A

P05362 Intercellular adhesion molecule 1 ICAM1

P01344 Insulin-like growth factor II IGF2

P01584 Interleukin-1 beta IL1B

P05231 Interleukin-6 IL6

P05412 Transcription factor AP-1 JUN

P61626 Lysozyme C LYZ

P28482 Mitogen-activated protein kinase 1 MAPK1

P27361 Mitogen-activated protein kinase 3 MAPK3

P45983 Mitogen-activated protein kinase 8 MAPK8

P03956 Interstitial collagenase MMP1

P09238 Stromelysin-2 MMP10

P08253 72 kDa type IV collagenase MMP2

P08254 Stromelysin-1 MMP3

P14780 Matrix metalloproteinase-9 MMP9

P42345 Serine/threonine-protein kinase mTOR mTOR

P35228 Nitric oxide synthase type II NOS2

P29474 Nitric oxide synthase type III NOS3

Q9NPH5 NADPH oxidase 4 NOX4

P15559 NAD(P)H dehydrogenase [quinone] 1 NQO1

P04150 GR (nuclear receptor subfamily 3 group C member 1) NR3C1

P08235 Nuclear receptor subfamily 3, group C, member 2 variant 1 NR3C2

P48736 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform PIK3CG

P27986 Phosphatidylinositol 3-kinase regulatory subunit alpha PIK3R1

P00749 Urokinase-type plasminogen activator PLAU

P27169 Serum paraoxonase/arylesterase 1 PON1

P37231 Peroxisome proliferator-activated receptor gamma PPARG

P05771 Protein kinase C beta type PRKCB

Q05655 Protein kinase C delta type PRKCD

P07477 Trypsin-1 PRSS1
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IL-12 levels in the serum, the IL-12 levels in the kidney, the
IL-17 levels in the serum, and the IL-17 levels in the kidney
were measured using ELISA kits (Shanghai Enzyme-linked
Biotechnology Co., Ltd., Shanghai, China) according to the
protocols. The kidneys of all mice were collected and
weighed, and the kidney/body ratio was calculated.

2.7.5. Histological and Immunohistochemical Examination.
The kidney and pancreas were fixed with 10% formalin solu-
tion and embedded in paraffin. The paraffin block was cut
into 5μm thick and stained with hematoxylin and eosin
(HE). After rehydration, the samples were transferred to cit-
rate buffer (pH7.6), heated in a microwave oven at 65°C for
20min, then incubated with rabbit anti-RAGE antibody

(Abcam, ab3611, GR316801-2) and secondary antibody.
The slides were dyed with hematoxylin and analyzed with a
digital camera and ImagePro Plus software.

2.7.6. Western Blot. The protein was extracted from mouse
kidney tissues using RIPA lysis buffer containing 1% phe-
nylmethylsulfonyl fluoride (PMSF), protease, and phospha-
tase inhibitors. Protein was separated using SDS-
polyacrylamide gel electrophoreses and transferred to a
PVDF membrane (Millipore, USA). Afterwards, the mem-
brane was blocked with 5% BSA and incubated with pri-
mary antibodies against RAGE, p65 NF-κB, and
phospho-p65 NF-κB (1 : 1000 diluted), and subsequently
with horseradish peroxidase-conjugated secondary

Table 2: Continued.

Uniprot IDs Protein name Gene name

P60484
Phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase

and dual-specificity protein phosphatase PTEN
PTEN

P23219 Prostaglandin G/H synthase 1 PTGS1

P35354 Prostaglandin G/H synthase 2 PTGS2

P18031 Tyrosine-protein phosphatase nonreceptor type 1 PTPN1

P29350 Tyrosine-protein phosphatase nonreceptor type 6 PTPN6

Q04206 Transcription factor p65 RELA

P16581 E-selectin SELE

P16109 P-selectin SELP

P00441 Superoxide dismutase (Cu-Zn) SOD1

P04179 Superoxide dismutase (Mn) SOD2

Q9NYA1 Sphingosine kinase 1 SphK1

P40763 Signal transducer and activator of transcription 3 STAT3

P01137 Transforming growth factor beta-1 proprotein TGFB1

P01375 Tumor necrosis factor TNF

P04637 Cellular tumor antigen p53 TP53

P15692 Vascular endothelial growth factor A VEGFA

GO:0071456~cellular response to hypoxia

GO:0051092~positive regulation of NF-kappaB transcription factor activity
GO:0051091~positive regulation of sequence-specific DNA binding transcription factor activity

GO:0050901~leukocyte tethering or rolling
GO:0050731~positive regulation of peptidyl-tyrosine phosphorylation

GO:0048146~positive regulation of fibroblast proliferation
GO:0046889~positive regulation of lipid biosynthetic process

GO:0045944~positive regulation of transcription from RNA polymerase II promoter
GO:0045429~positive regulation of nitric oxide biosynthetic process

GO:0043491~protein kinase B signaling
GO:0043066~negative regulation of apoptotic process

GO:0042593~glucose homeostasis
GO:0042493~response to drug

GO:0005634~nucleus

GO:0032461~positive regulation of protein oligomerization
GO:0033138~positive regulation of peptidyl-serine phosphorylation
GO:0035729~cellular response to hepatocyte growth factor stimulus

GO:0031663~lipopolysaccharide-mediated signaling pathway

GO:0030335~positive regulation of cell migration
GO:0030574~collagen catabolic process

GO:0020037~heme binding
GO:0018107~peptidyl-threonine phosphorylation

GO:0006954~inflammatory response
GO:0005829~cytosol

GO:0005615~extracellular space
GO:0001934~positive regulation of protein phosphorylation

GO:0001666~response to hypoxia
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GO:0070374~positive regulation of ERK1 and ERK2 cascade
GO:0051897~positive regulation of protein kinase B signaling

GO:0051781~positive regulation of cell division

Figure 3: GO enrichment analysis of key targets. The number of GO entries in the functional categories of cell composition, molecular
function, and biological process (FDR < 0:05).
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antibodies. Protein bands were visualized using a chemilu-
minescence kit (Millipore, USA), and their intensities were
quantified by the Image J software. Experiments were con-
ducted in triplicate.

2.8. Statistical Analysis. All measurement data were
expressed as the mean ± SEM. The statistical analyses were
carried out with the SPSS 19.0 software (SPSS Inc., Chicago,

IL, USA). One-way analysis of variance (ANOVA) was used
to compare the differences among multiple groups. A value
of P < 0:05 was defined as statistically significant.

3. Results

3.1. Screening of Active Compounds in RC.We found that RC
contains 298 chemical components, 227 of which were

(a)

AGE-RAGE signaling pathway in diabetic complications 33.82% ∗∗

IL-17 signaling pathway 5.88% ∗∗

Estrogen signaling pathway 5.29% ∗∗

VEGF signaling pathway 2.94% ∗∗

B cell receptor signaling pathway 2.35% ∗∗

cAMP signaling pathway 1.47% ∗∗

Cholinergic synapse 2.35% ∗∗

Dopaminergic synapse 0.88% ∗∗
Leishmaniasis 0.88% ∗∗
Amyotrophic lateral sclerosis (ALS) 0.88% ∗∗
Leukocyte transendothelial migration 0.29% ∗∗

Pertussis 2.06% ∗∗
Small cell lung cancer 1.76% ∗∗

Pathways in cancer 4.71% ∗∗
Proteoglycans in cancer 4.71% ∗∗
Prostate cancer 4.71% ∗∗
Toxoplasmosis 4.41% ∗∗

Bladder cancer 4.12% ∗∗

Osteoclast differentiation 4.41% ∗∗

Longevity regulating pathway 3.24% ∗∗
Hepatitis B 3.24% ∗∗

Insulin resistance 5.59% ∗∗

(b)

Figure 4: ClueGO pathway analysis. A functionally grouped network of enriched categories was generated for the key targets. The GO term
was denoted as a node, and the size of the node denoted the richness of the term. Functionally related groups partially overlap. Only the most
important terms in the group are marked. Representative enriched pathway (P < 0:05) interactions among the main RC targets.
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derived from CF and 77 from RR through the TCMSP data-
base. In this study, 21 active compounds from 298 chemical
components were further screened according to the ADME
screening criterion (DL ≥ 0:18; OB ≥ 30%). In addition, eight
compounds below the screening criterion were also taken as
active compounds for further analysis. For example, ursolic
acid (DL = 0:75, OB = 16:77%) and catalpol (DL = 0:44,
OB = 5:9%) are still considered as active components

according to the literature reports, because the former
can improve glomerular hypertrophy and accumulate type
IV collagen (COL-IV) in STZ-induced diabetic mice [27,
28], and the latter can reduce blood glucose level as well
as inhibit inflammation and oxidative stress [29, 30]. In
total, 29 main active compounds were selected from RR
and CF and are shown in Table 1 (detailed compounds
information is presented in Supplementary Table 1).
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Figure 5: RC ameliorated the general diabetic symptoms in mice. (a) Body weights in the 0th, 4th, and 8th weeks during the experiment. (b)
24 h food intake in the 0th, 4th, and 8th weeks during the experiment. (c) 24 h urine volumes in the 0th, 4th, and 8th weeks during the
experiment. (d) 24 h water intakes in the 0th, 4th, and 8th weeks during the experiment. (e) Fasting blood glucose levels in the 0th,4th,
and 8th weeks during the experiment. (f) Serum insulin levels at the end of the experiment. Significance: ##P < 0:01 versus the control
group, ∗P < 0:05, ∗∗P < 0:01 versus the DN group.
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3.2. Prediction of RC Target. We predicted the potential tar-
gets of RC based on their active compounds used in the sys-
tem target prediction method. We forecast 294 potential
targets for 29 active compounds: 246 for CF and 82 for RR.
After duplicates were deleted, there were 170 targets
remained. Detailed information about potential targets is
presented in Supplementary Table 2.

3.3. Network of Active Compound-Potential Target. The study
of complex interactions between active compounds and their
potential targets is helpful to understand the pharmacologi-
cal mechanism of RC. We constructed a network based on
active compounds and their potential targets through Cytos-
cape (see Figure 2). Through the analysis of the network, 29
of 199 are active compound nodes and 170 of 296 are poten-
tial target nodes. The top 10 active compounds ranked by
degree are as follows: hydroxygenkwanin, morroniside, olea-
nolic acid, catalpol, leucanthoside, cornudentanone, sitos-
terol, etc. Of them, morroniside, catalpol, and oleanolic acid
are the main compounds of RR and CF that are widely used
in China to treat DN through antioxidation, hypoglycemic,
anti-inflammatory, hypotensive, and reduction of stress
[30–34]. These active compounds may exert synergistic
effects to treat DN via the activation of the same targets, such
as prostaglandin G/H synthase 2 (PTGS2), dipeptidyl pepti-
dase 4 (DPP4), nuclear receptor coactivator 2 (NCOA2),

nuclear factor kappa-B (NF-κB), and tumor necrosis factor-
alpha (TNF-α) [35–37].

3.4. Collection of DN-Related Targets. After deleting the
duplicate genes, we collected 774 DN-related target genes
from three disease-related databases: OMIM, GeneCards,
and the DisGeNET (Supplementary Table 3). Of them, 64
DN-related targets of active compounds were found as the
key targets, and they are listed in Table 2.

3.5. GO Functional Annotation. Through GO enrichment
analysis, 30 top GO entries (FDR < 0:05) were selected
according to the error detection rate (FDR) as shown in
Figure 3. These key targets in the network tend to reduce cell
migration, proliferation, apoptosis, and differentiation by
activating cell transcription factors and regulating cell
inflammatory response, energy metabolism, and signal
transduction.

3.6. Signaling Pathway Analysis. As shown in Figure 4, the
pathway enrichment analysis with ClueGO (a Cytoscape plu-
gin) showed that key targets were mainly assigned to the
AGE-RAGE and IL-17 signaling pathway. These pathways
played a definite role in oxidative stress, glycolipid metabo-
lism, inflammation, and renal fibrosis [38–40]. The typical
targets of RC are regulated via a lot of pathways, such as
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Figure 6: RC improved kidney function in DN mice. (a) Kidney/body weight ratios at the end of the experiments. (b) Creatinine levels in
serum. (c) BUN levels in serum. (d) 24 h urine protein in the 8th week at the end of the experiment. Significance: ##P < 0:01 versus the
control group, ∗P < 0:05, ∗∗P < 0:01 versus the DN group.
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DPP4, SOD1, ATK1, TGF-β1, SphK1, RAGE, MAPK3, IL-6,
PTK1, NOX4, TNF-α, and NF-κB.

3.7. Animal Experiment

3.7.1. RC Ameliorated Diabetic Symptoms. Body weights,
food consumption, water intake, and urine volume were,
respectively, recorded at the 0th, 4th, and 8th week during
the animal experiment. At the 8th week, body weight, food
consumption, water intake, and urine volume of DN mice
increased significantly (P < 0:01) (Figures 5(a)-5(d)).
Administration of aminoguanidine or RC improved these
symptoms compared to the DN group (Figures 5(a)-5(d)).
In addition, the fasting glucose level of DN mice increased
significantly (P < 0:01), but the insulin level decreased signif-
icantly (P < 0:01) compared with the controls (Figure 5(e)
and 5(d)).

3.7.2. RC Improved Kidney Function of DNMice.As shown in
Figure 6, the kidney/body weight ratio of DN mice signifi-
cantly decreased (P < 0:01) compared with the controls
(Figure 6(a)). Treatment with aminoguanidine or RC
improved the ratio compared to the DN group
(Figure 6(a)). Serum creatinine (Figure 6(b)), urea nitrogen
(Figure 6(c)), and 24 h urine protein levels (Figure 6(d)) in

the DN group increased significantly (P < 0:01), but
decreased in the RC treatment group.

3.7.3. RC Improved the Inflammation of DNMice. In order to
clarify the effect of inflammation on the disease, we measured
the serum IL-10, IL-17, and IL-12 levels and kidney IL-10, IL-
17, and IL-12 levels. The IL-10 levels decreased (P < 0:01),
and IL-12 and IL-17 levels increased (P < 0:01) significantly
in DN mice. Administration of aminoguanidine or RC
upregulated the IL-10 levels and downregulated the IL-12
and IL-17 levels, respectively (Figure 7(a)-7(c)).

3.7.4. RC Improved Kidney and Pancreas Pathohistology.
Images of HE staining showed the increase in the mesangial
matrix, cell vacuolation and degeneration, hyperplasia and
hypertrophy of renal cortex, hyaline degeneration of renal
tubules, and infiltration of inflammatory cells into intersti-
tium of the kidney of DN mice, while there was little pro-
liferation of mesangial matrix and infiltration of
inflammatory cells in interstitial tissue of control mice. In
addition, the pancreas of DN mice also showed vacuolar
degeneration, irregular acinar cells, and disordered arrange-
ment, while treatment with RC or aminoguanidine for 8
weeks alleviated these pathological changes (Figure 8(a)).
The statistic charts for kidneys and pancreas lesion scores
are shown in Figures 8(b) and 8(c).
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Figure 7: RC improved the inflammation in DN mice. (a) IL-10 levels in serum and the kidney. (b) IL-12 levels in serum and the kidney. (c)
IL-17 levels in serum and the kidney. Significance: ##P < 0:01 versus the control group, ∗P < 0:05, ∗∗P < 0:01 versus the DN group.
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3.7.5. RC Inhibited the AGE-RAGE Pathway. In order to fur-
ther explore the potential mechanism of RC, serum advanced
glycation end product (AGE) levels, kidney AGE levels,
RAGE receptor expression, and p65 NF-κB phosphorylation
in the kidney were detected. The serum AGE and kidney
AGE levels in DN mice were higher (P < 0:01) than controls,
but the administration of RC or aminoguanidine might
downregulate the expression of AGE (Figure 9(b)). Com-
pared with the control group, the RAGE expression increased
significantly in DN mice, as evidenced by the immunohisto-
chemistry staining and Western blot (Figures 9(a) and 9(c)).
Moreover, the phosphorylation levels of p65 NF-κB were ele-
vated in DN mice (Figure 9(d)). In contrast, treatment with
RC or aminoguanidine might downregulate the expression
of RAGE and p-p65 NF-κB (P < 0:01).

4. Discussion

DN is a microvascular complication of diabetes mellitus that
is implicated in inflammation, adhesion molecule expression,
vascular lesion, abnormal cell differentiation, migration, and
proliferation. At present, there is no perfect cure for this dis-
ease. Therefore, it is urgent to find new drugs to treat this dis-
ease. We paid attention to TCM which showed great
potential in the development of new drugs. Because of com-
plicated components in TCM, it is difficult to fully clarify
their effective components and related mechanism using tra-
ditional research methods. So the newly developed network

pharmacology and other technologies were expected to solve
the problem of multicomponent/multitarget/complex dis-
eases of TCM. In this study, the mechanism and signal path-
way of RC to alleviate DN were preliminarily explored
through network pharmacological analysis and animal
experiments, in order to provide direction and insight for
follow-up basic and clinical research.

Through the network topology analysis, we determined
the top 10 active compounds in RC according to the degree
and intermediate, such as morroniside, loganin, catalpol,
acteoside, ursolic acid, oleanolic acid, caffeic acid, catapol,
and quercetin. Of them, the first six compounds can down-
regulate the NF-κB signaling, while the latter three may mod-
ulate PPAR-γ and NF-κB activities. The NF-κB transcription
factor is one of the abundant transcription regulators which
can adjust cell inflammation and immune response. NF-κB
is inactive in cytoplasm as it binds to IBA. After stimulus-
inducing phosphorylation of IBA, NF-κB becomes active
and then transfers from the cytoplasm to the nucleus to trig-
ger gene transcription, including IL-6, TNF-α, IL-1 β, and
iNOS [15].

Through the analysis of GO enrichment and KEGG path-
way of key targets, it was found that RC can alleviate hyper-
glycemia, oxidative stress, abnormal glycolipid metabolism,
inflammation, and renal fibrosis and inhibit transcription
factors and cell migration to protect renal function and to
delay DN progression through the regulation of AGE-
RAGE and IL-17 signaling pathways.
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Figure 8: RC improved the pathohistology of the kidneys and pancreas in DN mice. (a) Images of the HE sections in the pancreas
(magnification = 200x) and testes (magnifications = 200) of each group. (b) Statistical chart of the kidney lesion score. (c) Statistical chart
of the pancreas lesion score. Significance: ##P < 0:01 versus the control group, ∗P < 0:05, ∗∗P < 0:01 versus the DN group.

11Journal of Diabetes Research



In the AGE-RAGE signaling pathway, AGEs are pro-
duced by irreversible nonenzymatic glycosylation of reducing
sugars. The accumulation of AGEs may induce endothelial

cells, mesangial cells, monocytes-macrophages, and podo-
cytes to secrete cytokines (such as FN, COL-IV, TNF-α),
leading to extracellular matrix migration (ECM), glomerular
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Figure 9: RC inhibited the AGE-RAGE pathway in the kidney of DN mice. (a) Immunohistochemistry analysis of RAGE protein expression
and statistical chart of RAGE positive staining analyzed by the ImageJ software. Arrows show the protein expression. (b) AGE levels in serum
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proliferative lesion, and renal tubular dysfunction. Besides,
AGEs can bind to RAGE receptors on the cell surface to acti-
vate intracellular signaling pathways, such as AGEs-RAGE,
NF-κB, and AGEs-RAGE-TGFβ1, leading to release various
chemokines and growth factors, proliferate glomerular
mesangial cells, and abduct podocyte apoptosis; these even-
tually aggravate DN [41, 42]. The serum and kidney AGE
content and the RAGE expression in the DN group were
higher than those in the controls and were reduced by treat-
ment with RC. Of the top 10 active compounds in RC, mor-
roniside and loganin can downregulate the mRNA and
protein expression of RAGE and upregulation of AGE levels
to play a part in the protective effect against DN. In addition,
catalpol suppresses the AGE-mediated inflammation by
decreasing the ROS level and NF-κB activity.

In the IL-17 signaling pathway, Th17 is a new type of pro-
inflammatory CD4+ T-effector cells, which are different from
Th1 and Th2 cell lines [43]. The increase in Th17 cytokines
(such as IL-17A) may promote the secretion of proinflamma-
tory factors and infiltration of macrophages and aggravate
the diabetes-induced renal damage in DN [44].

In the current experiment, the administration of RC and
aminoguanidine reduced IL-12, blood sugar, serum creati-
nine, urine protein, and nitrogen levels, but increased the
IL-10 secretion, and improved the symptoms of proteinuria
in DN mice, suggesting that RC and aminoguanidine might
improve the renal function of the DN models. Between both
reagents, the effects of RC were better than aminoguanidine.
The HE staining of kidneys and pancreas in DNmice showed
the increase in mesangial matrix, hyperplasia and hypertro-
phy of renal cortex, vacuolation and degeneration of cells,
hyaline degeneration of renal tubules, and infiltration of
inflammatory cells in the interstitium. Besides, the pancreas
of DNmice also showed vacuolar degeneration, irregular aci-
nar cells, and disordered arrangement. The treatment with
RC or aminoguanidine might alleviate the above pathological
changes. Further investigations are still needed to clarify the
detailed mechanism for RC-inducing alleviation of renal
damage in DN subjects.

5. Conclusions

The characteristics of TCM are with its multicomponent,
multitarget, and multichannel. In this study, the information
about RC was obtained from a lot of public databases. The
network pharmacology method was used to collect 29 active
compounds from RC and 64 key targets related to DN. The
pathway enrichment analysis showed that RC could signifi-
cantly improve the metabolic parameters, renal structure,
and function mainly via AGE-RAGE and IL-17 signaling
pathway to treat DN. The animal experiments revealed that
RC could significantly improve metabolic parameters,
inflammation renal structure, and function to protect the
kidney against DN.
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